Citation: Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen. A variant of Jensen-type inequality and related results for harmonic convex functions[J]. AIMS Mathematics, 2020, 5(6): 6404-6418. doi: 10.3934/math.2020412
[1] | Ping Zhu . Dynamics of the positive almost periodic solution to a class of recruitment delayed model on time scales. AIMS Mathematics, 2023, 8(3): 7292-7309. doi: 10.3934/math.2023367 |
[2] | Yanshou Dong, Junfang Zhao, Xu Miao, Ming Kang . Piecewise pseudo almost periodic solutions of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations. AIMS Mathematics, 2023, 8(9): 21828-21855. doi: 10.3934/math.20231113 |
[3] | Xiaofang Meng, Yongkun Li . Pseudo almost periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays and leakage delays on time scales. AIMS Mathematics, 2021, 6(9): 10070-10091. doi: 10.3934/math.2021585 |
[4] | Shihe Xu, Zuxing Xuan, Fangwei Zhang . Analysis of a free boundary problem for vascularized tumor growth with time delays and almost periodic nutrient supply. AIMS Mathematics, 2024, 9(5): 13291-13312. doi: 10.3934/math.2024648 |
[5] | Ramazan Yazgan . An analysis for a special class of solution of a Duffing system with variable delays. AIMS Mathematics, 2021, 6(10): 11187-11199. doi: 10.3934/math.2021649 |
[6] | Yongkun Li, Xiaoli Huang, Xiaohui Wang . Weyl almost periodic solutions for quaternion-valued shunting inhibitory cellular neural networks with time-varying delays. AIMS Mathematics, 2022, 7(4): 4861-4886. doi: 10.3934/math.2022271 |
[7] | Lini Fang, N'gbo N'gbo, Yonghui Xia . Almost periodic solutions of a discrete Lotka-Volterra model via exponential dichotomy theory. AIMS Mathematics, 2022, 7(3): 3788-3801. doi: 10.3934/math.2022210 |
[8] | Qi Shao, Yongkun Li . Almost periodic solutions for Clifford-valued stochastic shunting inhibitory cellular neural networks with mixed delays. AIMS Mathematics, 2024, 9(5): 13439-13461. doi: 10.3934/math.2024655 |
[9] | Ardak Kashkynbayev, Moldir Koptileuova, Alfarabi Issakhanov, Jinde Cao . Almost periodic solutions of fuzzy shunting inhibitory CNNs with delays. AIMS Mathematics, 2022, 7(7): 11813-11828. doi: 10.3934/math.2022659 |
[10] | Jin Gao, Lihua Dai . Weighted pseudo almost periodic solutions of octonion-valued neural networks with mixed time-varying delays and leakage delays. AIMS Mathematics, 2023, 8(6): 14867-14893. doi: 10.3934/math.2023760 |
Let V be an ℓ-dimensional vector space over a field K of characteristic 0. An arrangement of hyperplanes A is a finite collection of codimension one affine subspaces in V. An arrangement A is called central if every hyperplane H∈A goes through the origin.
Let V∗ be the dual space of V, and S=S(V∗) be the symmetric algebra over V∗. A K-linear map θ:S→S is called a derivation if for f,g∈S,
θ(fg)=fθ(g)+gθ(f). |
Let DerK(S) be the S-module of derivations. When A is central, for each H∈A, choose αH∈V∗ with ker(αH)=H. Define an S-submodule of DerK(S), called the module of A-derivations by
D(A):={θ∈DerK(S)|θ(αH)∈αHSforallH∈A}. |
The arrangement A is called free if D(A) is a free S-module. Then, D(A) has a basis comprising of ℓ homogeneous elements. For an affine arrangement A in V, cA denotes the cone over A [7], which is a central arrangement in an (ℓ+1)-dimensional vector space by adding the new coordinate z.
Let E=Rℓ be an ℓ-dimensional Euclidean space with a coordinate system x1,…,xℓ, and let Φ be a crystallographic irreducible root system in the dual space E∗. Let Φ+ be a positive system of Φ. For α∈Φ+ and k∈Z, define an affine hyperplane Hα,k by
Hα,k:={v∈E∣(α,v)=k}. |
The Shi arrangement Shi(ℓ) was introduced by Shi in the study of the Kazhdan-Lusztig representation theory of the affine Weyl groups in [9] by
Shi(ℓ):={Hα,k∣α∈Φ+,0≤k≤1}, |
when the root system is of type Aℓ−1.
For m∈Z≥0, the extended Shi arrangement Shik of the type Φ is an affine arrangement defined by
Shik:={Hα,k∣α∈Φ+,−m+1≤k≤m}. |
There are a lot of researches on the freeness of the cones over the extended Shi arrangements [1,3,4]. The first breakthrough was the proof of the freeness of multi-Coxeter arrangements with constant multiplicities by Terao in [13]. Combining it with algebro-geometric method, Yoshinaga proved the freeness of the extended Shi arrangements in [15]. Nevertheless, there has been limited progress in constructing their bases, and a universal method for determining these bases remains elusive. For types Aℓ−1, Bℓ, Cℓ, and Dℓ, explicit bases for the cones over the Shi arrangements were constructed in [6,10,11]. Notably, a basis for the extended Shi arrangements of type A2 was established in [2]. Recently, Suyama and Yoshinaga constructed explicit bases for the extended Shi arrangements of type Aℓ−1 using discrete integrals in [12]. Feigin et al. presented integral expressions for specific bases of certain multiarrangements in [5]. In these studies, Suyama and Terao first constructed a basis for the derivation module of the cone over the Shi arrangement, as detailed in [11], with Bernoulli polynomials playing a central role in their approach. The following definitions are pertinent to this result.
For (k1,k2)∈(Z≥0)2, the homogenization polynomial of degree k1+k2+1 is defined by
¯Bk1,k2(x,z):=zk1+k2+1k1∑i=01k2+i+1(k1i){Bk2+i+1(xz)−Bk2+i+1}, |
where Bk(x) denotes the k-th Bernoulli polynomial and Bk(0)=Bk denotes the k-th Bernoulli number. Using this polynomial, the basis for D(cShi(ℓ)) was constructed as follows.
Theorem 1.1. [11, Theorem 3.5] The arrangement cShi(ℓ) is free with the exponents (0,1,ℓℓ−1). The homogeneous derivations
η1:=∂1+∂2+⋯+∂ℓ,η2:=x1∂1+x2∂2+⋯+xℓ∂ℓ+z∂z,ψ(ℓ)j:=(xj−xj+1−z)ℓ∑i=1∑0≤k1≤j−10≤k2≤ℓ−j−1(−1)k1+k2Ij−k1−1[1,j−1]Iℓ−j−k2−1[j+2,ℓ]¯Bk1,k2(xi,z)∂i, |
form a basis for D(cShi(ℓ)), where 1≤j≤ℓ−1 and ∂i(1≤i≤ℓ), ∂z denote ∂∂xi, ∂∂z respectively. Ik[u,v] represents the elementary symmetric function in the variables {xu,xu+1,…,xv} of degree k for 1≤u≤v≤ℓ.
The above conclusion was reached by using Saito's criterion, which is a crucial theorem for determining the basis of a free arrangement.
Theorem 1.2. [8, Saito's criterion] Let A be a central arrangement, and Q(A) be the defining polynomial of A. Given θ1,…,θℓ∈D(A), the following two conditions are equivalent:
(1)detM(θ1,…,θℓ)≐Q(A),
(2)θ1,…,θℓ form a basis for D(A) over S,
where M(θ1,…,θℓ)=(θj(xi))ℓ×ℓ denotes the coefficient matrix, and A≐B means that A=cB, c∈K∖{0}.
This theorem provides a useful tool for determining when a set of derivations forms a basis for the module of derivations associated with a central arrangement.
Let αℓ=(1,…,1)T and βℓ=(x1,…,xℓ)T be the ℓ×1 column vectors, and define ψ(ℓ)i,j:=ψ(ℓ)j(xi) for 1≤i≤ℓ, 1≤j≤ℓ−1. Suyuma and Terao in [11] proved the equality
detM(η1,η2,ψ(ℓ)1,…,ψ(ℓ)ℓ−1)=det(αℓβℓ(ψ(ℓ)i,j)ℓ×(ℓ−1)0z01×(ℓ−1))(ℓ+1)×(ℓ+1)≐z∏1≤m<n≤ℓ(xm−xn)(xm−xn−z), |
which yields
det(αℓ(ψ(ℓ)i,j)ℓ×(ℓ−1))≐∏1≤m<n≤ℓ(xm−xn)(xm−xn−z). | (1.1) |
A graph G=(V,E) is defined as an ordered pair, where the set V={1,2,…,ℓ} represents the vertex set, and E is a collection of two-element subsets of V. If {i,j}∈E for some i,j∈V, then {i,j} is referred to as an edge. Writing {i,j}∈G implies {i,j}∈E. Let U⊆V, and define E(U)={{i,j}∣i,j∈U,{i,j}∈E}. We say U induces a subgraph GU=(U,E(U)). Specifically, we use the symbol KU for the induced subgraph of the complete graph Kℓ. For i<j, the interval notation [i,j] represents {i,i+1,…,j}.
For a graph G on the vertex set {1,2,…,ℓ}, the arrangement Shi(G) was defined in [14] by
Shi(G):={{xm−xn=0}|{m,n}∈G}∪{{xm−xn=1}|1≤m<n≤ℓ}. |
Then, Shi(G) is an arrangement between the Linial arrangement
{{xm−xn=1}∣1≤m<n≤ℓ}, |
and the Shi arrangement Shi(ℓ). Write A(G):=cShi(G). It was classified to be free according to the following theorem.
Theorem 1.3. [14, Theorem 3] The arrangement A(G) is free if and only if G consists of all edges of three complete induced subgraphs G[1,s],G[t,ℓ],G[2,ℓ−1], where 1≤s≤ℓ, t≤s+1. The free arrangement A(G) has exponents (0,1,(ℓ−1)ℓ+t−s−2,ℓs−t+1) for s<ℓ and t>1, and (0,1,ℓℓ−1) for s=ℓ or t=1.
For s,t∈Z+, we may define the arrangement
A[s,t]:=A(K[2,ℓ−1])∪{{x1−xn=0}∣2≤n≤s≤ℓ}∪{{xm−xℓ=0}∣1≤t≤m≤ℓ−1}. |
By Theorem 1.3, for 1≤s≤ℓ and t≤s+1, the arrangement A[s,t] is free with exponents (0,1,(ℓ−1)ℓ+t−s−2,ℓs−t+1) for s<ℓ and t>1, and (0,1,ℓℓ−1) for s=ℓ or t=1.
For 0≤q≤ℓ−2, we write A[q]:=A[ℓ−1,ℓ−q], then A[q] is free with exponents (0,1,(ℓ−1)ℓ−q−1,ℓq).
In this section, based on the conclusions of Suyama and Terao, we provide an explicit construction of the basis for D(A[q]), 0≤q≤ℓ−2. First, we shall establish a basis for D(A[0]), which is the ingredient of the basis for D(A[q]).
Theorem 2.1. For 1≤j≤ℓ−2, define homogeneous derivations
φ(0)j:=(xj−xj+1−z)ℓ∑i=1∑0≤k1≤j−10≤k2≤ℓ−j−2(−1)k1+k2Ij−k1−1[1,j−1]Iℓ−j−k2−2[j+2,ℓ−1]¯Bk1,k2(yi,z)∂i,φ(0)ℓ−1:=ℓ−1∏s=1(xs−xℓ−z)∂ℓ∈D(A[0]), |
where
yi={xi,1≤i≤ℓ−1,xℓ+z,i=ℓ. |
Then, the derivations η1,η2,φ(0)1,…,φ(0)ℓ−1 form a basis for D(A[0]).
Proof. Write φ(0)i,j:=φ(0)j(xi),1≤i≤ℓ,1≤j≤ℓ−1, and from the definitions of φ(0)j and ψ(ℓ)j, we can get
φ(0)i,j=ψ(ℓ−1)i,j, | (2.1) |
for 1≤i≤ℓ−1, 1≤j≤ℓ−2. Consequently, for 1≤m<n≤ℓ−1, it follows that φ(0)j(xm−xn) is divisible by xm−xn, and φ(0)j(xm−xn−z) is divisible by xm−xn−z. For 1≤m≤ℓ−1, let the congruence notation (m,k)≡ in the subsequent calculation denote modulo the ideal (xm−xℓ−kz). We derive
φ(0)j(xm−xℓ−z)=(xj−xj+1−z)∑0≤k1≤j−10≤k2≤ℓ−j−2(−1)k1+k2Ij−k1−1[1,j−1]Iℓ−j−k2−2[j+2,ℓ−1][¯Bk1,k2(xm,z)−¯Bk1,k2(xℓ+z,z)](m,1)≡0, |
which implies that φ(0)j(xm−xℓ−z) is divisible by xm−xℓ−z. Thus, φ(0)j∈D(A[0]) for 1≤j≤ℓ−2. Therefore, we have η1,η2,φ(0)1,…,φ(0)ℓ−1∈D(A[0]). Additionally, we obtain
detM(η1,η2,φ(0)1,…,φ(0)ℓ−1)=(−1)ℓ+1zdet(1φ(0)1,1⋯φ(0)1,ℓ−20⋮⋮⋱⋮⋮1φ(0)ℓ−1,1⋯φ(0)ℓ−1,ℓ−201φ(0)ℓ,1⋯φ(0)ℓ,ℓ−2ℓ−1∏s=1(xs−xℓ−z))ℓ×ℓ=(−1)ℓ+1zℓ−1∏s=1(xs−xℓ−z)det(1φ(0)1,1⋯φ(0)1,ℓ−2⋮⋮⋱⋮1φ(0)ℓ−1,1⋯φ(0)ℓ−1,ℓ−2)(ℓ−1)×(ℓ−1)=(−1)ℓ+1zℓ−1∏s=1(xs−xℓ−z)det(αℓ−1(φ(0)i,j)(1≤i≤ℓ−1,1≤j≤ℓ−2))(ℓ−1)×(ℓ−1). |
According to the equalities (1.1) and (2.1), we have
det(αℓ−1(φ(0)i,j)(1≤i≤ℓ−1,1≤j≤ℓ−2))≐∏1≤m<n≤ℓ−1(xm−xn)(xm−xn−z). |
Hence, we obtain
detM(η1,η2,φ(0)1,…,φ(0)ℓ−1).=zℓ−1∏s=1(xs−xℓ−z)∏1≤m<n≤ℓ−1(xm−xn)(xm−xn−z)=z∏1≤m<n≤ℓ−1(xm−xn)∏1≤m<n≤ℓ(xm−xn−z)=Q(A[0]). |
By applying Theorem 1.2, we conclude that the derivations η1,η2,φ(0)1,…,φ(0)ℓ−1 form a basis for D(A[0]).
Definition 2.1. For 1≤q≤ℓ−2, 1≤j≤ℓ−1, define the homogeneous derivations
φ(q)j:={φ(0)j,1≤j≤ℓ−q−2,(xj+1−xℓ)φ(0)j−(xj−xj+1−z)j−1∑a=ℓ−q−1φ(0)a,ℓ−q−1≤j≤ℓ−3,φ(0)j+1+j∑a=ℓ−q−1(ℓ−a−1)φ(0)a,j=ℓ−2,(xj−xℓ)φ(0)j+(xj−xj+1−z)j−2∑a=ℓ−q−1(ℓ−a−2)φ(0)a,j=ℓ−1. |
To prove the derivations η1,η2,φ(q)1,…,φ(q)ℓ−1 form a basis for D(A[q]), first we prove all such derivations belong to the module D(A[q]).
Theorem 2.2. For 1≤m≤ℓ−1, 1≤j≤ℓ−2, we have
φ(0)j(xm−xℓ)(m,0)≡(−z)(xj−xj+1−z)j−1∏s=1(xs−xm−z)ℓ−1∏s=j+2(xs−xm). | (2.2) |
Proof. We have the following congruence relation of polynomials modulo the ideal (xm−xℓ).
φ(0)j(xm−xℓ)=(xj−xj+1−z)∑0≤k1≤j−10≤k2≤ℓ−j−2(−1)k1+k2Ij−k1−1[1,j−1]Iℓ−j−k2−2[j+2,ℓ−1][¯Bk1,k2(xm,z)−¯Bk1,k2(xℓ+z,z)](m,0)≡(xj−xj+1−z)∑0≤k1≤j−10≤k2≤ℓ−j−2(−1)k1+k2+1Ij−k1−1[1,j−1]Iℓ−j−k2−2[j+2,ℓ−1][¯Bk1,k2(xm+z,z)−¯Bk1,k2(xm,z)]=(xj−xj+1−z)∑0≤k1≤j−10≤k2≤ℓ−j−2(−1)k1+k2+1Ij−k1−1[1,j−1]Iℓ−j−k2−2[j+2,ℓ−1]zk1+k2+1(xm+zz)k1(xmz)k2=(−z)(xj−xj+1−z)j−1∑k1=0Ij−k1−1[1,j−1][−(xm+z)]k1ℓ−j−2∑k2=0Iℓ−j−k2−2[j+2,ℓ−1](−xm)k2=(−z)(xj−xj+1−z)j−1∏s=1(xs−xm−z)ℓ−1∏s=j+2(xs−xm). |
We complete the proof.
Remark 2.1 In equality (2.2), we observe that ℓ−1∏s=j+2(xs−xm)=0 for j+2≤m≤ℓ−1. This implies that φ(0)j(xm−xℓ) is divisible by xm−xℓ for 1≤j≤ℓ−3 and j+2≤m≤ℓ−1.
According to Remark 2.1, for 1≤j≤ℓ−q−2, we have φ(0)j(xm−xℓ) is divisible by xm−xℓ for ℓ−q≤m≤ℓ−1, which implies that φ(q)j=φ(0)j∈D(A[q]). Therefore, to prove the derivations belong to the module D(A[q]), it suffices to prove φ(q)j∈D(A[q]) for ℓ−q−1≤j≤ℓ−1.
For the sake of convenience in the proof, let us introduce the notations for f,g,h∈Z+,
A[g,h]f:=h∏s=g(xs−xf),B[g,h]f:=h∏s=g(xs−xf−z). |
If g>h, we agree that A[g,h]f=B[g,h]f=1.
Lemma 2.1. For any u,v,w∈Z+ that satisfy 4≤ℓ−j+1≤u≤ℓ−2, 3≤v≤ℓ−2, and 3≤w≤ℓ−2, we have the following three equalities:
B[ℓ−u,j−1]ℓ−u−1=A[ℓ−u+1,j]ℓ−u−1+j−1∑a=ℓ−u(xa−xa+1−z)A[a+2,j]ℓ−u−1B[ℓ−u,a−1]ℓ−u−1. | (2.3) |
B[ℓ−v,ℓ−1]ℓ−v−1=(v+1)A[ℓ−v,ℓ−1]ℓ−v−1+ℓ−2∑a=ℓ−v−1(ℓ−a−1)(xa−xa+1−z)A[a+2,ℓ−1]ℓ−v−1B[ℓ−v−1,a−1]ℓ−v−1. | (2.4) |
B[ℓ−w,ℓ−2]ℓ−w−1=wA[ℓ−w,ℓ−2]ℓ−w−1+ℓ−3∑a=ℓ−w−1(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−2]ℓ−w−1B[ℓ−w−1,a−1]ℓ−w−1. | (2.5) |
Proof. We will only prove equality (2.5) by induction on w. The proofs of equalities (2.3) and (2.4) are similar. For w=3,
3A[ℓ−3,ℓ−2]ℓ−4+ℓ−3∑a=ℓ−4(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−2]ℓ−4B[ℓ−4,a−1]ℓ−4=3(xℓ−3−xℓ−4)(xℓ−2−xℓ−4)+2(xℓ−4−xℓ−3−z)(xℓ−2−xℓ−4)+(xℓ−3−xℓ−2−z)(−z)=(xℓ−3−xℓ−4−z)(xℓ−2−xℓ−4−z)=B[ℓ−3,ℓ−2]ℓ−4, |
and the equality holds. Assume that for w=k≤ℓ−3, the equality holds. Then, we replace xℓ−k−1 with xℓ−k−2, and multiply both sides of the equality by (xℓ−k−1−xℓ−k−2−z) to get
B[ℓ−k−1,ℓ−2]ℓ−k−2=(k−1)(xℓ−k−2−xℓ−k−z)(xℓ−k−1−xℓ−k−2−z)A[ℓ−k+1,ℓ−2]ℓ−k−2+k(xℓ−k−1−xℓ−k−2−z)A[ℓ−k,ℓ−2]ℓ−k−2+ℓ−3∑a=ℓ−k(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−2]ℓ−k−2B[ℓ−k−2,a−1]ℓ−k−2=(k+1)A[ℓ−k−1,ℓ−2]ℓ−k−2+ℓ−3∑a=ℓ−k−2(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−2]ℓ−k−2B[ℓ−k−2,a−1]ℓ−k−2. |
We have completed the induction.
Lemma 2.2. The derivation φ(q)j belongs to the module D(A[q]) for 2≤q≤ℓ−2 and ℓ−q−1≤j≤ℓ−3.
Proof. For 2≤q≤ℓ−2 and j=ℓ−q−1, it is evident from Remark 2.1 that
φ(q)ℓ−q−1=(xℓ−q−xℓ)φ(0)ℓ−q−1∈D(A[q]). |
For 3≤q≤ℓ−2 and ℓ−q≤j≤ℓ−3, we will establish this by induction on q. From Theorem 2.2, for ℓ−q≤m≤ℓ−1, we have
φ(q)j(xm−xℓ)=(xj+1−xℓ)φ(0)j(xm−xℓ)−(xj−xj+1−z)j−1∑a=ℓ−q−1φ(0)a(xm−xℓ)(m,0)≡(−z)(xj−xj+1−z)A[j+1,ℓ−1]mB[1,ℓ−q−2]m[B[ℓ−q−1,j−1]m−j−1∑a=ℓ−q−1(xa−xa+1−z)A[a+2,j]mB[ℓ−q−1,a−1]m]. |
(1) For q=3, we get
φ(3)ℓ−3(xm−xℓ)(m,0)≡(−z)(xℓ−3−xℓ−2−z)A[ℓ−2,ℓ−1]mB[1,ℓ−5]m(xℓ−3−xm). |
If m=ℓ−3,ℓ−2,ℓ−1, then we have φ(3)ℓ−3(xm−xℓ)(m,0)≡0, which indicates that φ(3)ℓ−3(xm−xℓ) is divisible by xm−xℓ for m=ℓ−3,ℓ−2,ℓ−1. Therefore, φ(3)j∈D(A[3]).
(2) For q=k≤ℓ−3, assume that φ(k)j∈D(A[k]), which implies that φ(k)j(xm−xℓ) is divisible by xm−xℓ for ℓ−k≤m≤ℓ−1.
For q=k+1, we observe that
φ(k+1)j=φ(k)j−(xj−xj+1−z)φ(0)ℓ−k−2. |
According to the induction hypothesis and Remark 2.1, it is sufficient to prove that φ(k+1)j(xℓ−k−1−xℓ) is divisible by xℓ−k−1−xℓ. By using the equality (2.3), we obtain
φ(k+1)j(xℓ−k−1−xℓ)(ℓ−k−1,0)≡(−z)(xj−xj+1−z)A[j+1,ℓ−1]ℓ−k−1B[1,ℓ−k−3]ℓ−k−1[B[ℓ−k−2,j−1]ℓ−k−1−j−1∑a=ℓ−k−2(xa−xa+1−z)A[a+2,j]ℓ−k−1B[ℓ−k−2,a−1]ℓ−k−1]=(−z)2(xj−xj+1−z)A[j+1,ℓ−1]ℓ−k−1B[1,ℓ−k−2]ℓ−k−1[B[ℓ−k,j−1]ℓ−k−1−A[ℓ−k+1,j]ℓ−k−1−j−1∑a=ℓ−k(xa−xa+1−z)A[a+2,j]ℓ−k−1B[ℓ−k,a−1]ℓ−k−1]=0. |
Therefore, φ(k+1)j(xℓ−k−1−xℓ) is divisible by xℓ−k−1−xℓ, and it follows that φ(k+1)j∈D(A[k+1]). Consequently, we can conclude that for any 3≤q≤ℓ−2 and ℓ−q≤j≤ℓ−3, φ(q)j∈D(A[q]).
Lemma 2.3. The derivation φ(q)ℓ−2 belongs to the module D(A[q]) for 1≤q≤ℓ−2.
Proof. From Theorem 2.2, we can get the following equality for ℓ−q≤m≤ℓ−1,
φ(q)ℓ−2(xm−xℓ)=φ(0)ℓ−1(xm−xℓ)+ℓ−2∑a=ℓ−q−1(ℓ−a−1)φ(0)a(xm−xℓ)(m,0)≡−B[1,ℓ−1]m+(−z)ℓ−2∑a=ℓ−q−1(ℓ−a−1)(xa−xa+1−z)A[a+2,ℓ−1]mB[1,a−1]m. |
(1) For q=1,2, this conclusion is straightforward to verify.
(2) For q=k≤ℓ−3, assume that φ(k)ℓ−2∈D(A[k]), which implies that φ(k)ℓ−2(xm−xℓ) is divisible by xm−xℓ for ℓ−k≤m≤ℓ−1.
For q=k+1, we have
φ(k+1)ℓ−2=φ(k)ℓ−2+(k+1)φ(0)ℓ−k−2. |
By using the equality (2.4), we have
φ(k+1)ℓ−2(xℓ−k−1−xℓ)(ℓ−k−1,0)≡−B[1,ℓ−1]ℓ−k−1+(−z)ℓ−2∑a=ℓ−k−2(ℓ−a−1)(xa−xa+1−z)A[a+2,ℓ−1]ℓ−k−1B[1,a−1]ℓ−k−1=B[1,ℓ−k−1]ℓ−k−1[−B[ℓ−k,ℓ−1]ℓ−k−1+(k+1)A[ℓ−k,ℓ−1]ℓ−k−1+ℓ−2∑a=ℓ−k−1(ℓ−a−1)(xa−xa+1−z)A[a+2,ℓ−1]ℓ−k−1B[ℓ−k−1,a−1]ℓ−k−1]=0. |
Therefore, φ(k+1)ℓ−2(xℓ−k−1−xℓ) is divisible by xℓ−k−1−xℓ. According to the induction hypothesis and Remark 2.1, we have φ(k+1)ℓ−2∈D(A[k+1]). Hence, we may conclude that for any 1≤q≤ℓ−2, φ(q)ℓ−2∈D(A[q]).
Lemma 2.4. The derivation φ(q)ℓ−1 belongs to the module D(A[q]) for 1≤q≤ℓ−2.
Proof. First, from Theorem 2.2, for ℓ−q≤m≤ℓ−1, we can get
φ(q)ℓ−1(xm−xℓ)=(xℓ−1−xℓ)φ(0)ℓ−1(xm−xℓ)+(xℓ−1−xℓ−z)ℓ−3∑a=ℓ−q−1(ℓ−a−2)φ(0)a(xm−xℓ)(m,0)≡−(xℓ−1−xm)B[1,ℓ−1]m+(−z)(xℓ−1−xm−z)ℓ−3∑a=ℓ−q−1(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−1]mB[1,a−1]m. |
(1) For q=1,2, it is obvious that φ(q)ℓ−1∈D(A[q]).
(2) For q=k≤ℓ−3, assume that φ(k)ℓ−1∈D(A[k]), which implies that φ(k)ℓ−1(xm−xℓ) is divisible by xm−xℓ for ℓ−k≤m≤ℓ−1.
For q=k+1, we can see
φ(k+1)ℓ−1=φ(k)ℓ−1+k(xℓ−1−xℓ−z)φ(0)ℓ−k−2. |
By using the equality (2.5), we have
φ(k+1)ℓ−1(xℓ−k−1−xℓ)(ℓ−k−1,0)≡−(xℓ−1−xℓ−k−1)B[1,ℓ−1]ℓ−k−1+(−z)(xℓ−1−xℓ−k−1−z)ℓ−3∑a=ℓ−k−2(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−1]ℓ−k−1B[1,a−1]ℓ−k−1=(xℓ−1−xℓ−k−1)(xℓ−1−xℓ−k−1−z)B[1,ℓ−k−1]ℓ−k−1[−B[ℓ−k,ℓ−2]ℓ−k−1+kA[ℓ−k,ℓ−2]ℓ−k−1+ℓ−3∑a=ℓ−k−1(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−2]ℓ−k−1B[ℓ−k−1,a−1]ℓ−k−1]=0. |
Therefore, φ(k+1)ℓ−1(xℓ−k−1−xℓ) is divisible by xℓ−k−1−xℓ. According to the induction hypothesis and Remark 2.1, we have φ(k+1)ℓ−1∈D(A[k+1]). Hence, we may conclude that for any 1≤q≤ℓ−2, φ(q)ℓ−1∈D(A[q]).
From the above proof, we finally conclude that φ(q)1,…,φ(q)ℓ−1 belong to the module D(A[q]).
Theorem 2.3. For 1≤q≤ℓ−2, the derivations η1,η2,φ(q)1,…,φ(q)ℓ−1 form a basis for D(A[q]).
Proof. According to Lemmas 2.2–2.4, it suffices to prove that
detM(η1,η2,φ(q)1,⋯,φ(q)ℓ−1)≐Q(A[q]). |
Let
γ1=(q,q−1,…,1,1)T |
and
γ2=((q−1)(xℓ−1−xℓ−z),(q−2)(xℓ−1−xℓ−z),…,xℓ−1−xℓ−z,0,xℓ−1−xℓ)T |
be the (q+1)×1 column vectors, and define a matrix
M(q+1)×(q−1):=(xℓ−q−xℓ−(xℓ−q−xℓ−q+1−z)⋯−(xℓ−3−xℓ−2−z)0xℓ−q+1−xℓ⋯−(xℓ−3−xℓ−2−z)⋮⋮⋱⋮00⋯xℓ−2−xℓ00⋯000⋯0). |
Write ˜M(q+1)×(q+1):=(M(q+1)×(q−1),γ1,γ2), then
det˜M(q+1)×(q+1)=ℓ−1∏s=ℓ−q(xs−xℓ). |
Thus, we obtain the following equality
(η1,η2,φ(q)1,⋯,φ(q)ℓ−1)(ℓ+1)×(ℓ+1)=(η1,η2,φ(0)1,⋯,φ(0)ℓ−1)(Eℓ−q0(ℓ−q)×(q+1)0(q+1)×(ℓ−q)˜M(q+1)×(q+1)). |
Hence,
detM(η1,η2,φ(q)1,⋯,φ(q)ℓ−1)=detM(η1,η2,φ(0)1,⋯,φ(0)ℓ−1)det˜M(q+1)×(q+1).=z∏1≤m<n≤ℓ−1(xm−xn)∏1≤m<n≤ℓ(xm−xn−z)ℓ−1∏s=ℓ−q(xs−xℓ)=Q(A[q]). |
We complete the proof.
Meihui Jiang: writing-original draft; Ruimei Gao: writing-review and editing, methodology and supervision. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have used Artificial Intelligence (AI) tools in the creation of this article.
The work was partially supported by Science and Technology Development Plan Project of Jilin Province, China (No. 20230101186JC) and NSF of China (No. 11501051).
The authors declare no conflict of interest in this paper.
[1] | İ. İşcan, Hermite-Hadamard type inequaities for harmonically functions, Hacet. J. Math. Stat., 43, (2014), 935-942. |
[2] | I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7. |
[3] |
M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
![]() |
[4] | I. A. Baloch, I. Işcan, S. S. Dragomir, Fejer's type inequalities for harmonically (s, m)-convex functions, Int. J. Anal. Appl., 12 (2016), 188-197. |
[5] | I. A. Baloch, I. Işcan, Some Ostrowski type inequalities for harmonically (s, m)-convex functions in Second Sense, Int. J. of Anal., 2015 (2015), 672-675. |
[6] | I. A. Baloch, I. Işcan, Some Hermite-Hadamard type integral inequalities for Harmonically (p, (s, m))-convex functions, J. Inequal. Spec. Funct., 8 (2017), 65-84. |
[7] | I. A. Baloch, I. Işcan, Integral inequalities for differentiable harmonically (s, m)-preinvex functions, Open J. Math. Anal., 1 (2017), 25-33. |
[8] |
I. A. Baloch, S. S. Dragomir, New inequalities based on harmonic log-convex functions, Open J. Math. Anal., 3 (2019), 103-105. doi: 10.30538/psrp-oma2019.0043
![]() |
[9] | S. H. Wu, I. A. Baloch, I. Iscan, On Harmonically (p, h, m)-preinvex functions, J. Funct. Space., 2017 (2017), 1-9. |
[10] |
M. A. Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931-4945. doi: 10.3934/math.2020315
![]() |
[11] |
S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
![]() |
[12] |
M. A. Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
![]() |
[13] |
S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[14] |
M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
![]() |
[15] |
S. Z. Ullah, M. A. Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
![]() |
[16] |
Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable fractional integral inequalities for GG-and GA-convex function, AIMS Math., 5 (2020), 5012-5030. doi: 10.3934/math.2020322
![]() |
[17] |
M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
![]() |
[18] | I. A. Baloch, B. R. Ali, On new inequalities of Hermite-Hadamard type for functions whose fourth derivative absolute values are quasi-convex with applications, J. New Theory, 10 (2016), 76-85. |
[19] |
W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334
![]() |
[20] | M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271. |
[21] |
T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512-4528. doi: 10.3934/math.2020290
![]() |
[22] |
T. Abdeljawad, S. Rashid, H. Khan, et al. On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
![]() |
[23] |
S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
![]() |
[24] |
S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 5859-5883. doi: 10.3934/math.2020375
![]() |
[25] | L. Xu, Y. M. Chu, S. Rashid, et al. On new unified bounds for a family of functions with fractional q-calculus theory, J. Funct. Space., 2020 (2020), 1-9. |
[26] | S. Rashid, A. Khalid, G. Rahman, et al. On new modifications governed by quantum Hahn's integral operator pertaining to fractional calculus, J. Funct. Space., 2020 (2020), 1-12. |
[27] |
J. M. Shen, S. Rashid, M. A. Noor, et al. Certain novel estimates within fractional calculus theory on time scales, AIMS Math., 5 (2020), 6073-6086. doi: 10.3934/math.2020390
![]() |
[28] |
H. X. Qi, M. Yussouf, S. Mehmood, et al. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Math., 5 (2020), 6030-6042. doi: 10.3934/math.2020386
![]() |
[29] | H. Kalsoom, M. Idrees, D. Baleanu, et al. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function, J. Funct. Space., 2020 (2020), 1-13. |
[30] |
H. Ge-JiLe, S. Rashid, M. A. Noor, et al. Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 6108-6123. doi: 10.3934/math.2020392
![]() |
[31] |
A. Iqbal, M. A. Khan, N. Mohammad, et al. Revisiting the Hermite-Hadamard integral inequality via a Green function, AIMS Math., 5 (2020), 6087-6107. doi: 10.3934/math.2020391
![]() |
[32] |
M. B. Sun, Y. M. Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
![]() |
[33] | J. M. Shen, Z. H. Yang, W. M. Qian, et al. Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843-853. |
[34] | M. K. Wang, Y. M. Chu, Y. M. Li, et al. Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl., 23 (2020), 821-841. |
[35] | T. Abdeljawad, S. Rashid, Z. Hammouch, et al. Some new local fractional inequalities associated with generalized (s, m)-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 1-27. |
[36] |
X. Z. Yang, G. Farid, W. Nazeer, et al. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function, AIMS Math., 5 (2020), 6325-6340. doi: 10.3934/math.2020407
![]() |
[37] |
J. L. W. V. Jensen, Sur les fonctions convexes et les inégalits entre les valeurs moyennes, Acta Math., 30 (1906), 175-193. doi: 10.1007/BF02418571
![]() |
[38] | S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12. |
[39] |
S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629-2645. doi: 10.3934/math.2020171
![]() |
[40] | I. A. Baloch, New ostrowski type inequalities for functions whose derivatives are p-preinvex, J. New Theory, 16 (2017), 68-79. |
[41] | I. A. Baloch, M. Bohner, M. D. L. Sen, Petrovic-type inequalities for harmonic convex functions on coordinates, J. Inequal. Spec. Funct., 11 (2020), 16-23. |
[42] |
Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, AIMS Math., 5 (2020), 5106-5120. doi: 10.3934/math.2020328
![]() |
[43] |
T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
![]() |
[44] |
S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
![]() |
[45] | S. Y. Guo, Y. M. Chu, G. Farid, et al. Fractional Hadamard and Fejér-Hadamard inequaities associated with exponentially (s, m)-convex functions, J. Funct. Space., 2020 (2020), 1-10. |
[46] | S. S. Dragomir, Inequalities of Jensen type for HA-convex functions, An. Univ. Oradea Fasc. Mat., 27 (2020), 103-124. |
[47] |
S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. doi: 10.1016/j.jmaa.2006.02.086
![]() |
[48] |
M. U. Awan, M. A. Noor, M. V. Mihai, et al. Some new bounds for Simpson's rule involving special functions via harmonic h-convexity, J. Nonlinear Sci. Appl., 10 (2017), 1755-1766. doi: 10.22436/jnsa.010.04.37
![]() |
[49] | I. A. Baloch, M. D. L. Sen, İ. İşcan, Characterizations of classes of harmonic convex functions and applications, Int. J. Anal. Appl., 17 (2019), 722-733. |
[50] | M. R. Delavar, S. S. Dragomir, M. D. L. Sen, A note on characterization of h-convex functions via Hermite-Hadamard type inequality, Probl. Anal. Issues Anal., 8 (2019), 28-36. |