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1. Introduction

A real-valued function f : I ⊆ R→ R is said to be convex (concave) on I if the inequality

f (tx + (1 − t) y) ≤ (≥)t f (x) + (1 − t) f (y)

holds for all x, y ∈ I and t ∈ [0, 1].
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Recently, the generalizations, variants and extensions for the convexity have attracted the attention
of many researchers, for example, the harmonic-convexity [1, 2, 3], harmonic (s,m)-convexity [4, 5],
harmonic (p,(s,m))-convexity [6], harmonic (s,m)-preinvexity [7], harmonic log-convexity [8],
harmonic (p,h,m)-preinvexity [9], exponential-convexity [10, 11], s-convexity [12, 13],
Hp,q-convexity [14], generalized convexity [15], GG-and GA-convexities [16] and
quasi-convexity [17, 18]. In particular, many remarkable inequalities can be found in the
literature [19–36] via the convexity theory.

Jensen [37] provided a characterization for the convex functions as follows.

Theorem 1.1. Let f be a convex function defined on the interval I ⊆ R. Then the inequality

f
( n∑

i=1

λixi

)
≤

n∑
i=1

λi f (xi) (1.1)

holds for all x1, x2, · · · , xn ∈ I and λ1, λ2, · · · , λn ≥ 0 with
∑n

i=1 λi = 1.

If f is a concave function, then the inequality (1.1) is reversed. The inequality (1.1) for convex
functions plays a pivotal role in the theory of inequalities due to many other inequalities, for instance,
the Hölder inequality, Minkowski inequality and arithmetic mean-geometric mean inequality can be
obtained as a particular case of inequality (1.1). Furthermore, it is also important to observe that the
inequality (1.1) has a close relation with numerous other prime inequalities like the reverse
Minkowski inequality [38], Ostrowski inequality [39, 40], Petrović inequality [41],
Hermite-Hadamard inequality [42], Bessel function inequality [43] and Pólya-Szegö inequality [44].

Next, we recall the definition of harmonic convex functions [2, 3, 45].

Definition 1.2. A real-valued function f : I ⊆ R\{0} → R is said to be harmonic convex on I if the
inequality

f
(

xy
tx + (1 − t)y

)
≤ t f (y) + (1 − t) f (x) (1.2)

holds for all x, y ∈ I and t ∈ [0, 1]. If inequality (1.2) is reversed, then f is said to be harmonic concave.

Now, we provide several examples of harmonic convex functions. The function f (x) = ln x is a
harmonic convex function on the interval (0,∞), but it is not a convex function (See Figure 1).

Figure 1. Harmonic convex function but not convex function.
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The following three functions are harmonic convex on the interval (0,∞) (See Figure 2).

Figure 2. Three harmonic convex functions.

Very recently, Dragomir [46] established a Jensen-type inequality for harmonic convex
function as follows.

Theorem 1.3. Let I ⊆ (0,∞) be an interval and f : I → R be a harmonic convex function. Then the
Jensen-type inequality

f
( 1∑n

i=1
ti
xi

)
≤

n∑
i=1

ti f (xi) (1.3)

holds for all x1, · · · , xn ∈ I and t1, · · · , tn ≥ 0 with
∑n

i=1 ti = 1.

In [47], Varošanec introduced the concept of h-convex function which is the generalizations of
many generalized convex functions, like s-convex function, Godunova-Levin function, s-Godunova-
Levin function, P-convex function and so on. In the similar manner, the harmonic h-convexity was
introduced to unify various types of harmonic convexities.

Definition 1.4. (See [48]) Let h : [0, 1] → R+ be a non-negative function. Then the real-valued
function f : I ⊆ R\{0} → (0,∞) is said to be harmonic h-convex on I if the inequality

f
(

xy
tx + (1 − t)y

)
≤ h(t) f (y) + h (1 − t) f (x) (1.4)

holds for all x, y ∈ I and t ∈ [0, 1]. If inequality (1.4) is reversed, then f is said to be harmonic concave.

AIMS Mathematics Volume 5, Issue 6, 6404–6418.
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Remark 1.5. We provide several examples of harmonic h-convex (concave) functions as follows:

• We clearly see that if h(t) = t, then the class of non-negative harmonic convex (concave) functions
on I is contained in the class of harmonic h-convex (concave) functions on I.
• Let t ∈ (0, 1) and h(t) = t2. Then the function f : [−1, 0) ∪ (0, 1] → R defined by f (x) = 1

is neither non-increasing nor non-decreasing h-convex function. Therefore, we know that f is a
harmonic h-convex function by the Proposition 2.1 given in [49].
• Let t ∈ (0, 1) and h : (0, 1) → (0,∞) be a real-valued function such that h(t) ≥ t on (0, 1). Then

the following four functions: h1(t) = t, h2(t) = ts (s ∈ (0, 1)), h3(t) = 1
t and h4(t) = 1 satisfy

the conditions of the function h mentioned above. Therefore, f is a harmonic hk-convex function
for k = 1, 2, 3, 4 if f : I ⊆ (0,∞) → (0,∞) is a a non-decreasing convex function, or harmonic
s-convex function, or harmonic Godunova-Levin function or harmonic P-function.
• Let f : (0,∞) → (0,∞) be a non-decreasing continuous function and h : [0, 1] → (0,∞) be

a continuous self-concave function such that f (tx + (1 − t)y) ≤ h(t) f (x) + (1 − t) f (y) for some
t ∈ (0, 1) and all x, y ∈ (0,∞). Then f is a h-convex function by Lemma 1 of [50] and hence f is
a harmonic h-convex function by proposition 2.1 of [49].

Definition 1.6. A real-valued function h : I ⊆ R → R is said to be a submultiplicative function if
the inequality

h(xy) ≤ h(x)h(y) (1.5)

for all x, y ∈ I. If inequality (1.5) is reversed, then h is said to be a supermultiplicative function. If just
equality holds in the relation (1.5), then h is said to be a multiplicative function.

Definition 1.7. Let n ≥ 2, a = (a1, · · · , an) and b = (b1, · · · , bn) be two n-tuples of real numbers, and
[a] = (a[1], · · · , a[n]) and [b] = (b[1], · · · , b[n]) be the descending rearrangements of a and b, namely

a[1] ≥ a[2] ≥ · · · ≥ a[n], b[1] ≥ b[2] ≥ · · · ≥ b[n].

Then we say a majorizes b (in symbols a � b) if

•
∑k

i=1 a[i] ≥
∑k

i=1 b[i] for k = 1, 2, · · · , n − 1.
•

∑n
i=1 a[i] =

∑n
i=1 b[i].

The well-known memorization type theorem can be stated as follows.

Theorem 1.8. (See [2]) Let a = (a1, ..., an), b = (b1, ..., bn) be finite sequences from I ⊆ R\{0} and if a
majorizes b (in symbols a � b). Now, if f : I → R is harmonic convex, then following inequality

n∑
i=1

ai f (ai) ≥
n∑

i=1

bi f (bi) (1.6)

holds.

2. Main results

In this section, we will establish a variant of the Jensen-type inequality presented in Theorem 1.3,
provide a Jensen-type inequality and its variant for the harmonic h-convex functions. In order to prove
our main results, we need a lemma which we present in this section.
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Lemma 2.1. Let I ⊆ R\{0} be an interval, {xk}
n
k=1 ∈ I be a finite positive increasing sequence and f be

a harmonic convex function on the interval I. Then the inequality

f
( 1

1
x1

+ 1
xn
− 1

xk

)
≤ f (x1) + f (xn) − f (xk) (2.1)

holds for all 1 ≤ k ≤ n.

Proof. Let 1
yk

= 1
x1

+ 1
xn
− 1

xk
. Then 1

yk
+ 1

xk
= 1

x1
+ 1

xn
, so that the pairs x1, xn and xk, yk possess the same

harmonic mean. Therefore, we can find µ, λ ∈ [0, 1] with µ + λ = 1 such that

xk =
x1xn

µx1 + λxn

and
yk =

x1xn

λx1 + µxn
.

It follows from the harmonic convexity of f that

f (yk) = f
( x1xn

λx1 + µxn

)
≤ µ f (x1) + λ f (xn)

= (1 − λ) f (x1) + (1 − µ) f (xn)

= f (x1) + f (xn) − [λ f (x1) + µ f (xn)]

≤ f (x1) + f (xn) − f
( x1xn

µx1 + λxn

)
= f (x1) + f (xn) − f (xk).

Therefore, inequality (2.1) follows from 1
yk

= 1
x1

+ 1
xn
− 1

xk
. �

Remark 2.2. Lemma 2.1 lead to the conclusion that

1. Since f (x) = ln x is harmonic convex on (0,∞), so using (2.1) we get 2ab
a+b ≤

a+b
2 for all a, b ∈

(0,∞).
2. Since f (x) = 1

x2 is harmonic convex on (0,∞), so using (2.1) we get ( 2ab
a+b )2 ≤ a2+b2

2 for all a, b ∈
(0,∞).

3. Since f (x) =
√

x is harmonic convex on (0,∞), so using (2.1) we get
√

2ab
a+b ≤

√
a+
√

b
2 for all

a, b ∈ (0,∞).
4. It was proved in [49] that ( a+b

2 )2 ≤ 1
3 (a2 + ab + b2) ≤ a2+b2

2 for all a, b ∈ (0,∞). Therefore, in the
light of previous remarks, we get its improvement as( 2ab

a + b

)2

≤

(a + b
2

)2

≤
1
3

(a2 + ab + b2) ≤
a2 + b2

2
. (2.2)

5. Since f (x) = ex is harmonic convex on (0,∞), so using (2.1) we get e
2ab
a+b ≤ ea+eb

2 .
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Remark 2.3. (Discrete form of Hölder’s inequality) Let xi, yi > 0 and p, q > 1 with 1
p + 1

q = 1. Then
one has

n∑
i=1

xiyi ≤

( n∑
i=1

xp
i

) 1
p
( n∑

i=1

yq
i

) 1
q

. (2.3)

Proof. Since f (x) = 1
xp is harmonic convex on the interval (0,∞), hence by use of the substitutions

ti =
yi∑n

i=1 yq
i

and si = x−1
i y

q
p

i we get

( 1∑n
i=1 |yi|

q

n∑
i=1

|yi|
q|xi||yi|

−
q
p

)p

≤
1∑n

i=1 |yi|
q

n∑
i=1

|yi|
q(|xi||yi|

−
q
p )p,

which gives the desired inequality (2.3). �

Theorem 2.4. Let I ⊆ R\{0} be an interval and f : I → R be a harmonic convex function. Then the
inequality

f

 1
1
x1

+ 1
xn
−

∑n
k=1

tk
xk

 ≤ f (x1) + f (xn) −
n∑

k=1

tk f (xk). (2.4)

holds for any finite positive sequence {xk}
n
k=1 ∈ I and t1, · · · , tn ≥ 0 with

∑n
i=1 ti = 1.

Proof. It follows from Theorem 1.3 and Lemma 2.1 together with the harmonic convexity of f on the
interval I that

f

 1
1
x1

+ 1
xn
−

∑n
k=1

tk
xk

 = f

 1∑n
k=1 tk( 1

x1
+ 1

xn
− 1

xk
)


≤

n∑
k=1

tk f

 1
1
x1

+ 1
xn
− 1

xk


≤

n∑
k=1

tk( f (x1) + f (xn) − f (xk))

= f (x1) + f (xn) −
n∑

k=1

tk f (xk),

which completes the proof of Theorem 2.4. �

Theorem 2.5. Let n ≥ 2, J ⊆ (0, 1) be an interval, {xk}
n
k=1 ∈ I ⊆ R \ {0}, p1, p2, · · · , pn > 0, Pn =∑n

i=1 pi, h : J → R be a non-negative supermultiplicative function and f be a non-negative harmonic
h-convex function on I. Then one has

f
( 1

1
Pn

∑n
i=1

pi
xi

)
≤

n∑
i=1

h
( pi

Pn

)
f (xi). (2.5)

Proof. We use mathematical induction to prove Theorem 2.5. If n = 2, then inequality (2.5) is
equivalent to inequality (1.4) with t =

p1
P2

and 1 − t =
p2
P2

.
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Suppose that inequality (2.5) holds for n − 1. Then for the n-tuples (x1, · · · , xn) and (p1, · · · , pn),
we have

f
( 1

1
Pn

∑n
i=1

pi
xi

)
= f

( 1
pn

Pn xn
+

∑n−1
i=1

pi
Pn xi

)
= f

( 1
pn

Pn xn
+ Pn−1

Pn

∑n−1
i=1

pi
Pn−1 xi

)
≤ h

( pn

Pn

)
f (xn) + h

(Pn−1

Pn

)
f
( 1∑n−1

i=1
pi

Pn−1.xi

)
≤ h

( pn

Pn

)
f (xn) + h

(Pn−1

Pn

) n−1∑
i=1

h
( pi

Pn−1

)
f (xi)

≤ h
( pn

Pn

)
f (xn) +

n−1∑
i=1

h
( pi

Pn

)
f (xi)

=

n∑
i=1

h
( pi

Pn

)
f (xi),

which completes the proof of Theorem 2.5. �

Remark 2.6. Let h(α) = α. Then inequality (2.5) becomes the Jensen-type inequality (1.3) for
harmonic convex function.

In order to prove our next result, we need the following Lemma 2.7 which is a generalization of
Lemma 2.1.

Lemma 2.7. Let h : J ⊇ (0, 1) → R be a non-negative supermutiplicative function on J, µ, λ ∈ [0, 1]
such that µ + λ = 1 and h(µ) + h(λ) ≤ 1. If f : I ⊆ R\{0} → R is a non-negative harmonic h-convex
function, then for finite positive increasing sequence {xk}

n
k=1 ∈ I, we again have the inequality (2.1).

Proof. Similarly to proof of Lemma 2.1, suppose that 1
yk

= 1
x1

+ 1
xn
− 1

xk
. Then 1

yk
+ 1

xk
= 1

x1
+ 1

xn
, so that

the pairs x1, xn and xk, yk possess the same harmonic mean. Therefore, we can find µ, λ ∈ [0, 1] such
that

xk =
x1xn

µx1 + λxn

and
yk =

x1xn

λx1 + µxn
,

where µ + λ = 1 and 1 ≤ k ≤ n. Now, by taking into account that f is harmonic h-convex, we get

f (yk) = f
( x1xn

λx1 + µxn

)
≤ h(µ) f (x1) + h(λ) f (xn)
≤ (1 − h(λ)) f (x1) + (1 − h(µ)) f (xn)
= f (x1) + f (xn) − [h(λ) f (x1) + h(µ) f (xn)]

≤ f (x1) + f (xn) − f
( x1xn

µx1 + λxn

)
= f (x1) + f (xn) − f (xk),

which completes the proof of Lemma 2.7. �

AIMS Mathematics Volume 5, Issue 6, 6404–6418.



6411

Theorem 2.8. Let h : J ⊇ (0, 1) → R be a non-negative supermutiplicative function, p1, · · · , pn be

positive real numbers (n ≥ 2) such that Pn =
∑n

k=1 pi and
∑n

k=1 h
(

pk
Pn

)
≤ 1. If f is non-negative harmonic

h-convex on I ⊆ R\{0}, then for any finite positive increasing sequence {xk}
n
k=1 ∈ I, we have

f
( 1

1
x1

+ 1
xn
− 1

Pn

∑n
k=1

pi
xi

)
≤ f (x1) + f (xn) −

n∑
k=1

h
( pk

Pn

)
f (xk). (2.6)

If h is submultiplicative function,
∑n

k=1 h
(

pk
Pn

)
≥ 1 and f is harmonic h-concave, then the inequality (2.6)

is reversed.

Proof. Since
∑n

k=1
pk
Pn

= 1 and f is harmonic h-convex on I, so by taking into account Theorem 2.5 and
Lemma 2.7 we have

f
( 1

1
x1

+ 1
xn
− 1

Pn

∑n
k=1

pk
xk

)
= f

 1∑n
k=1

pk
Pn

( 1
x1

+ 1
xn
− 1

xk
)


≤

n∑
k=1

h
( pk

Pn

)
f

 1
1
x1

+ 1
xn
− 1

xk


≤

n∑
k=1

h
( pk

Pn

)
( f (x1) + f (xn) − f (xk))

= [ f (x1) + f (xn)]
n∑

k=1

h
( pk

Pn

)
−

n∑
k=1

h
( pk

Pn

)
f (xk)

≤ f (x1) + f (xn) −
n∑

k=1

h
( pk

Pn

)
f (xk),

which completes the proof of Theorem 2.8. �

3. Related results

In this section, we present an extension of inequality (2.2) and some related results.

Theorem 3.1. Let f : [a, b] → R be a continuous harmonic convex function on [a, b] ⊂ (0,∞).
Suppose that a = (a1, · · · , am) with a j ∈ [a, b] and X = (xi j) is a real n ×m matrix such that xi j ∈ [a, b]
for all i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m. If a majorizes each row of X, that is

xi = (xi1, xi2, xi3, · · · , xim) ≺ (a1, · · · , am) = a f or each i = 1, 2, 3 · · · , n

and
m∑

j=1

1
a j

=

m∑
j=1

1
xi j
, (3.1)

then we have the inequality

f

 1∑m
j=1

1
a j
−

∑m−1
j=1

∑n
i=1

wi
xi j

 ≤ m∑
j=1

a j f (a j)
xim

−

m−1∑
j=1

n∑
i=1

wixi j f (xi j)
xim

, (3.2)

where wi ≥ 0 with
∑n

i=1 wi = 1.

AIMS Mathematics Volume 5, Issue 6, 6404–6418.
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Proof. Since f is harmonic convex. Therefore, by taking into account the Jensen-type inequality for
harmonic convex function, we have

f

 1∑m
j=1

1
a j
−

∑m−1
j=1

∑n
i=1

wi
xi j

 = f

 1∑m
j=1

∑n
i=1 wi

1
a j
−

∑m−1
j=1

∑n
i=1 wi

1
xi j


= f

 1∑n
i=1 wi

[∑m
j=1

1
a j
−

∑m−1
j=1

1
xi j

] (3.3)

≤

n∑
i=1

wi f

 1∑m
j=1

1
a j
−

∑m−1
j=1

1
xi j


=

n∑
i=1

wi

xim

[
xim f

 1∑m
j=1

1
a j
−

∑m−1
j=1

1
xi j

].
From Eq (3.1) and using majorization-type Theorem 1.8 for f , we have

xim f

 1∑m
j=1

1
a j
−

∑m−1
j=1

1
xi j

 = xim f (xim)

≤

m∑
j=1

a j f (a j) −
m−1∑
j=1

xi j f (xi j). (3.4)

From (3.3) and (3.4), we get the required result. �

Now, we present the alternative form of above theorem as follows.

Theorem 3.2. If all conditions of Theorem 3.1 are satisfied, then we have

f

 1∑m
j=1

1
a j
−

∑k−1
j=1

∑n
i=1

wi
xi j
−

∑m−1
j=k+1

∑n
i=1

wi
xi j


≤

m∑
j=1

a j f (a j)
xim

−

k−1∑
j=1

n∑
i=1

wixi j f (xi j)
xim

−

m−1∑
j=k+1

n∑
i=1

wixi j f (xi j)
xim

. (3.5)

Proof. Using the technique of Theorem 3.1, the proof is quite obvious. �

Theorem 3.3. If f : [a, b] ⊆ (0,∞)→ R is an harmonic convex function and x1, · · · , xn ∈ [a, b], then

n − 1
n

n∑
k=1

f (xk) + f (x1) + f (xn) − f
( 1

1
x1

+ 1
xn
−

∑n
k=1

1
n
xk

)
(3.6)

≥ f
( 2x1x2

x1 + x2

)
+ ... + f

( 2x1xn−1

xn−1 + xn

)
+ f

( 2xnx1

xn + xn

)
.
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Proof. Using (1.2) with t = 1
2 , we get

f
( 2x1x2

x1 + x2

)
+ ... + f

( 2x1xn−1

xn−1 + xn

)
+ f

( 2xnx1

xn + xn

)
≤

1
2

[ f (x1) + f (x2)] + ... +
1
2

[ f (xn−1) + f (xn)] +
1
2

[ f (xn) + f (x1)]

= f (x1) + ... + f (xn) =

n∑
k=1

f (xk). (3.7)

Note that

n∑
k=1

f (xk) =
n − 1

n

n∑
k=1

f (xk) +

n∑
k=1

1
n

f (xk)

=
n − 1

n

n∑
k=1

f (xk) + f (x1) + f (xn) −
[

f (x1) + f (xn) −
n∑

k=1

1
n

f (xk)
]
. (3.8)

Therefore, the required result follows from (2.4) and (3.7) and (3.8). �

Theorem 3.4. If f : [a, b] ⊆ (0,∞)→ R is a harmonic convex function and x1, · · · , xn ∈ [a, b], then

n∑
k=1

f (yk) ≤
n − 1

n

n∑
k=1

f (xk) + f (x1) + f (xn) − f
( 1

1
x1

+ 1
xn
−

∑n
k=1

1
n
xk

)
, (3.9)

where yk = n
(n−1)α−1+x−1

k
and α = n

x−1
1 +...+ x−1

n
.

Proof. Using Jensen-type inequality for harmonic convex function, we have

n∑
k=1

f (yk) = f (y1) + ... + f (yn)

= f
( n
(n − 1)α−1 + x−1

1

)
+ ... + f

( n
(n − 1)α−1 + x−1

n

)
≤ [

1
n

f (α) +
n − 1

n
f (x1)] + ... + [

1
n

f (α) +
n − 1

n
f (xn)]

= f (α) +
n − 1

n

n∑
k=1

f (xk)

= f
( n

x−1
1 + ... + x−1

n

)
+

n − 1
n

n∑
k=1

f (xk)

≤
1
n

n∑
k=1

f (xk) +
n − 1

n

n∑
k=1

f (xk).

Therefore, the required result follows from (2.4) and (3.8). �
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Theorem 3.5. Let f be a harmonic convex function on [m,M]. Then

f

 1
1
m + 1

M −
2xy
x+y

 ≤ f (m) + f (M) −
∫ 1

0
f
( xy
tx + (1 − t)y

)
dt

≤ f (m) + f (M) − f
( 2xy

x + y

)
. (3.10)

Proof. It follows from the inequality (2.4) that

f

 1
1
m + 1

M −
2ab
a+b

 ≤ f (m) + f (M) −
f (a) + f (b)

2
(3.11)

for all a, b ∈ [m,M].
Let t ∈ [0, 1] and x, y ∈ [m,M]. Then Replacing a and b respectively by xy

tx+(1−t)y and xy
ty+(1−t)x

in (3.10), we obtain

f

 1
1
m + 1

M −
2xy
x+y

 ≤ f (m) + f (M) −
f
(

xy
tx+(1−t)y

)
+ f

(
xy

ty+(1−t)x

)
2

. (3.12)

Integrating both sides of (3.12) with respect to t on [0, 1], we get

f

 1
1
m + 1

M −
2xy
x+y

 ≤ f (m) + f (M)

−
1
2

∫ 1

0
[ f

( xy
tx + (1 − t)y

)
+ f

( xy
ty + (1 − t)x

)
]dt. (3.13)

Due to ∫ 1

0
f
( xy
tx + (1 − t)y

)
dt =

∫ 1

0
f
( xy
ty + (1 − t)x

)
]dt =

xy
y − x

∫ y

x

f (t)
t2 dt, (3.14)

the inequality (3.13) give rise to the first inequality of (3.10). The second inequality of (3.10) follows
directly from the Hermite-Hadamard type inequality for harmonic convex functions. �

4. Conclusions

We have found a variant of the discrete Jensen-type inequality for harmonic convex functions, and
have provided a Jensen-type inequality and it variant for the harmonic h-convex functions. In
Addition, we considered here different examples of harmonic convex functions and give a short proof
of Hölder’s inequality by using Jensen-type inequality. Our obtained results are the improvements
and generalization of many previously known results, and our ideas and approach may lead to a lot of
follow-up research.
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