
Citation: Chris R. Varney, Farida A. Selim. Color centers in YAG[J]. AIMS Materials Science, 2015, 2(4): 560-572. doi: 10.3934/matersci.2015.4.560
[1] | Taqi A. M. Shatnawi, Nadeem Abbas, Wasfi Shatanawi . Comparative study of Casson hybrid nanofluid models with induced magnetic radiative flow over a vertical permeable exponentially stretching sheet. AIMS Mathematics, 2022, 7(12): 20545-20564. doi: 10.3934/math.20221126 |
[2] | Yasir Khan, Sohaib Abdal, Sajjad Hussain, Imran Siddique . Numerical simulation for thermal enhancement of $ H_2O $ + Ethyl Glycol base hybrid nanofluid comprising $ GO + (Ag, AA7072, MoS_2) $ nano entities due to a stretched sheet. AIMS Mathematics, 2023, 8(5): 11221-11237. doi: 10.3934/math.2023568 |
[3] | S. R. Mishra, Subhajit Panda, Mansoor Alshehri, Nehad Ali Shah, Jae Dong Chung . Sensitivity analysis on optimizing heat transfer rate in hybrid nanofluid flow over a permeable surface for the power law heat flux model: Response surface methodology with ANOVA test. AIMS Mathematics, 2024, 9(5): 12700-12725. doi: 10.3934/math.2024621 |
[4] | C. S. K. Raju, S.V. Siva Rama Raju, S. Mamatha Upadhya, N. Ameer Ahammad, Nehad Ali Shah, Thongchai Botmart . A numerical study of swirling axisymmetric flow characteristics in a cylinder with suspended PEG based magnetite and oxides nanoparticles. AIMS Mathematics, 2023, 8(2): 4575-4595. doi: 10.3934/math.2023226 |
[5] | Mohammed Alrehili . Managing heat transfer effectiveness in a Darcy medium with a vertically non-linear stretching surface through the flow of an electrically conductive non-Newtonian nanofluid. AIMS Mathematics, 2024, 9(4): 9195-9210. doi: 10.3934/math.2024448 |
[6] | Subhan Ullah, Hassan Ali Ghazwani, Dolat Khan, Zareen A. Khan . Heat transfer augmentation of Jeffery–Hamel hybrid nanofluid in a stretching convergent/divergent channel through porous medium. AIMS Mathematics, 2025, 10(1): 388-402. doi: 10.3934/math.2025018 |
[7] | Yousef Jawarneh, Samia Noor, Ajed Akbar, Rafaqat Ali Khan, Ahmad Shafee . Intelligent neural networks approach for analysis of the MHD viscous nanofluid flow due to rotating disk with slip effect. AIMS Mathematics, 2025, 10(5): 10387-10412. doi: 10.3934/math.2025473 |
[8] | Umar Nazir, Abdelaziz Nasr . Utilizing the Box-Behnken method on modeling of ternary-Casson nanofluid with variable density and heat sink across a vertical jet. AIMS Mathematics, 2025, 10(4): 10093-10123. doi: 10.3934/math.2025460 |
[9] | Nadeem Abbas, Wasfi Shatanawi, Taqi A. M. Shatnawi . Innovation of prescribe conditions for radiative Casson micropolar hybrid nanofluid flow with inclined MHD over a stretching sheet/cylinder. AIMS Mathematics, 2025, 10(2): 3561-3580. doi: 10.3934/math.2025164 |
[10] | Umair Khan, Aurang Zaib, Sakhinah Abu Bakar, Anuar Ishak, Dumitru Baleanu, El-Sayed M Sherif . Computational simulation of cross-flow of Williamson fluid over a porous shrinking/stretching surface comprising hybrid nanofluid and thermal radiation. AIMS Mathematics, 2022, 7(4): 6489-6515. doi: 10.3934/math.2022362 |
Abbreviations: $ {A}_{*} $: permeability component; $ {\beta }_{0} $: the strength magnetic field; $ {\beta }_{1} $: The ratio of nanolayer thickness to Particle radius; $ {\sigma }_{el} $: electrical conductivity; p: pressure; $ \widehat{T} $: fluids temperature; $ {k}_{s1} $: thermals conductivity of first Particle; $ {k}_{s2} $: thermals conductivity of second Particle; $ {k}_{bf} $: thermals conductivity of base fluids; $ {k}_{nf} $: thermals conductivity of the nanofluid; $ {k}_{nfl} $: thermals conductivity of the Nanofluid with effect of nanolayer; $ {k}_{hnf} $: thermals conductivity of the Hybrid nanofluid; $ {k}_{hnfl} $: effective nanolayer thermal conductivity of hybrid nanofluid; $ {k}_{pe} $: equivalent thermals conductivity of equivalent Particle; $ {k}_{pe1} $: equivalent thermals conductivity of first equivalent Particle; $ {k}_{pe2} $: equivalent thermals conductivity of second equivalent Particle; S: shape factor; $ {\sigma }_{hnf} $: thermals conductivity of the hybrid nanofluid; $ {\sigma }_{s1} $: thermals conductivity of first nanoparticle; $ {\sigma }_{s2} $: thermals conductivity of second nanoparticle; $ {\rho }_{s1}: $ density of the first nanoparticle; $ {\rho }_{s2}: $ density of the second nanoparticle; $ {c}_{p}: $ Specifics heats at constant pressures; $ {\left({c}_{p}\right)}_{nf}: $ Specifics heats for the Nanofluid; $ {M}_{*} $: the magnetic parameter; $ {S}_{c} $: Schmidt number; $ {R}_{e}: $ the permeability Reynolds number; $ {P}_{r}: $ the Prandtl number; $ {\mu }_{hnf}: $ the viscosity of the hybrid nanofluid; $ {\rho }_{hnf} $: the density of the hybrid nanofluid; $ {\alpha }_{hnf} $: the thermal diffusivity of hybrid nanofluid; $ {\upsilon }_{hnf}: $ the kinematic viscosity of hybrid nanofluid; HNF: hybrid nanofluid; ENTC: effective nanolayer thermal conductivity; NENTC: non-effective nanolayer thermal conductivity; SFC: Skin friction coefficients; MNC: Matrix nanocomposite; $ {\alpha }_{*}: $ the wall expansion ratio; $ \eta : $ scaled boundary layer coordinate; $ \theta : $ self-similar temperature; $ \mu : $ dynamic viscosity; $ \upsilon : $ kinematic viscosity; $ \rho : $ density; $ {\varphi }_{s1} $: first nanoparticle volume fraction; $ {\varphi }_{s2} $: second nanoparticle volume fraction; nf: nanofluid; hnf: hybrid nanofluid; hnfl: effective hybrid nanofluid; s1: first nanoparticle; s2: second nanoparticle
Polytetrafluoroethylene (PTFE) is an excellent claimant in extensive applications, such as mechanical systems, biomaterials, chemical, and electrical, because of its low frictional coefficient and dielectric constant, few moistures absorption, chemical inertness, and excellent thermal stability [1]. Plunkett [2] initially described PTFE, which has remarkable physical properties in addition to the highly fluorinated saturated organic compounds. Polymer matrix nanocomposites (PMNC) is the material which composes of polymeric matrix distributed in silica, CNT, or organic substances. The distribution and reinforcement of matrix material particles at the nano-scale lead to a significant improvement in the mechanical properties of the produced composite. PMNC is appreciative in transportation, aircraft, defensive weapons etc. The most widely used reinforcement in PMNC is CNT due to their remarkable mechanical and electrical properties [3]. Chen et al. [4] have examined the behavior of CNT-filled composites of PTFE. Lin et al. [5] have investigated the Functionalization of Polymeric Carbon Nanocomposites from CNT with polymer matrix.
Yu et al. [6] demonstrated that liquid molecules near particle surfaces form layered structures and behave like solids. Despite the fact that the related layer of fluid molecules at the interface is only a few nanometers thick, it may play a significant role in heat transmission from concrete to a surrounding fluid. As a result, the theoretical investigation by Yu and Choi [7] suggested that the nanolayer which exists between the base fluid and NPs is a key factor. Xue [8] suggested a thermal conductivity (TC) model based on the theory of Maxwell and theory of the average polarization. An elliptical interfacial layer was examined Yu and Choi [9]. However, with the various sorts and forms of particles, it is not clear what his model's depolarization factor would be. Furthermore, it is complicated to determine the TC of complex NPs (NPs with an interfacial layer). The experimental data is matched with the expected TC values by using a thicker interfacial layer thickness (h = 03nm), which cannot be accurate for smaller particles. The influence of nanolayer near the particles to the Maxwell equation for the effective TC of solid–fluid interruption. The TC of the nanolayer was assumed to be similar as that of the particles in their model. This is impracticable due to the fact that interfacial layer is formed via way of means of fluid molecules surrounding the particle surface, and the awareness of these adsorbed molecules with inside the interfacial layer is smaller than that of the solid particle. As a result, the interfacial layer's TC should be smaller than that of solid particles but greater than that of liquid.
Permeable co-axial disks have remarkable applications in the fields of biomechanics, the processes of crystal growth, oceanography, mass and heat transfer, lubricants, viscometer, rotating machineries, and storage devices for computers. Several researchers have focused on issues with disks with various wall conditions. As an example, the impact of shape and size on the dispersion of metallic/ceramic matrix nanocomposite material in magnetized hybrid nanofluids flow via permeable coaxial disks was examined by Qureshi et al. [10]. Abdelmalek et al. [11] investigated the effects of several magnetized hybrid nanoparticles on the fluid flow between two orthogonal spinning disks. Banchok et al. [12] investigated heat transfers in nanofluid flow over a rotating porous disk. The Heat and Mass Transfer Analysis of Unsteady Non-Newtonian Fluid Flow between Porous Surfaces in the Presence of Magnetic Nanoparticles was investigated by Qureshi et al. [13]. By using the Darcy-Forchheimer relation, Bilal et al. [14] investigated the mathematical analysis of hybridized ferromagnetic nanofluid with the induction of copper oxide nanoparticles in permeable surfaces.
The flow behavior of a moving conducting fluid is described by magnetohydrodynamics, which polarizes it. Magnetic field effects are studied in industrial operations such as fuel manufacturing, electrical generators, crystal fabrication, nuclear power plants, and aerodynamics, among others. Elfven et al. [15] established the field of magnetohydrodynamics. Aly et al. [16] presented a numerical study of a hybrid magnetic nanomaterial in a stretching medium that is permeable. The MHD nanofluids natural convection in an insertion below have an effect on thermal radiation usage of the controlled volume-based finite element approach, as well as the form factor of NPs using the Duan Rach Approach was investigated by Chamkha et al. [17]. For turbine cooling applications, Dogonchi and Ganji [18] have explored the equations for the transfer of heat in an axisymmetric channel with permeable walls for a non-Newtonian fluid flow. Krishna [19] has analyzed the heat transfer of aluminium oxide and copper nanofluids flowing through a stretched porous surface in a steady MHD flow. Devi and Devi [20] investigated the magnetohydrodynamics flow of copper-alumina/H2O hybrid nanofluids computationally. Krishna et al. [21] have recently investigated the radiative MHD Casson hybrid nanofluids flow across an immense exponentially improved perpendicular permeable surface. Abbas et al. [22] investigated heat transfer in MHD hybrid nanofluid flow across a nonlinear stretched curved surface with thermal slip. Upreti et al. [23] investigated the entropy generation and unstable squeezing flow of MHD hybrid nanofluids within parallel plates. Heat transfer in three-dimensional hybrid nanofluids flow due to convective surface and base fluids was investigated by Upreti et al. [24]. Abbas et al. [25] investigated the techniques of data collection of Cu−Al2O3/H2O flow over a vertical wedge in water. Nadeem et al. [26] investigated the flow of a nanomaterial with a base viscoelastic MHD micropolar fluid over a stretched surface. Anwar et al. [27] investigated the computational analysis of induced MHD nonlinear stretching sheet flow. MHD hybrid nanofluid flow investigated by many researchers [28,29,30,31,32,33,34].
The above mentioned literature revealed to the authors that no research has been done on the dispersion of polymer/CNT matrix nanocomposite material through permeable surfaces subject to magnetized hybrid nanofluids flow with the influence of morphological nanolayer. Further, in the present study, we examined numerically the prominence of the permeability function consisting of the permeable Reynold number associated with the expansion/contraction ratio. The governing equations are transformed into dimensionless ordinary differential equations (ODEs) via similarity variable transformation technique. The Runge-Kutta and shooting procedures are implemented to achieve the solution of ODEs. Variations in skin friction coefficient and Nusselt number at the lower and upper walls of disks, as well as heat transfer rate measurements are computed using important engineering physical factors. A comparison table and graph of effective nanolayer thermal conductivity and non-effective nanolayer thermal conductivity are presented.
Flows between two disks have many important applications in the fields of biomechanics, the processes of crystal growth, oceanography, mass and heat transfer, lubricants, viscometer, rotating machineries, and storage devices for computers. The disks in thrust bearings are separated through a lubricant pumped via disks. Furthermore, in modern lubrication technology fluids with polymer additives have been used as enhanced lubricating oils. In this problem, we assume the laminar, viscous, incompressible, unsteady, 2D flow of hybrid nanofluid (HNF) containing PTFE-SWCNT/H2O between two porous disks which are orthogonally moving in the presence of an external magnetic field utilized in the z-direction. $ 2{\mathrm{r}}_{1} $ is the diameter of the boundary disks. $ 2\mathrm{k}\left(\mathrm{t}\right) $ is the distance between the disks. The disks move uniformly at a time-dependent rate $ \mathrm{k}\mathrm{\text{'}}\left(\mathrm{t}\right) $ down or up and have the same permeability. The physical model uses a cylindrical coordinate system (r, θ, z) velocity $ \widehat{\mathrm{u}} $ in the line of r and velocity $ \widehat{\mathrm{w}} $ in the line of z, but velocity v̂ disappears. The $ {\mathrm{T}}_{\mathrm{l}} $ represents the temperature at the lower disk and $ {\mathrm{T}}_{\mathrm{u}} $ represents the temperature at the upper disk shown in Figure 1. The thermophysical properties of nanoparticles and bases fluids are mentioned in the Tables 1 and 2. The governing equations are as follows [35]:
$ \frac{\partial \widehat{\mathrm{u}}}{\partial \mathrm{r}}+\frac{\widehat{\mathrm{u}}}{\mathrm{r}}+\frac{\partial \widehat{\mathrm{w}}}{\partial \mathrm{z}}=0 , $ | (1) |
$ {\mathrm{\rho }}_{\mathrm{h}\mathrm{n}\mathrm{f}}\left(\frac{\partial \widehat{\mathrm{u}}}{\partial \mathrm{t}}+\widehat{\mathrm{u}}\frac{\partial \widehat{\mathrm{u}}}{\partial \mathrm{r}}+\widehat{\mathrm{w}}\frac{\partial \widehat{\mathrm{u}}}{\partial \mathrm{z}}\right)=-\frac{\partial \mathrm{P}}{\partial \mathrm{r}}+{\mathrm{\mu }}_{\mathrm{h}\mathrm{n}\mathrm{f}}\left(\frac{{\partial }^{2}\widehat{\mathrm{u}}}{\partial {\mathrm{r}}^{2}}+\frac{1}{\mathrm{r}}\frac{\partial \widehat{\mathrm{u}}}{\partial \mathrm{r}}-\frac{\widehat{\mathrm{u}}}{{\mathrm{r}}^{2}}+\frac{{\partial }^{2}\widehat{\mathrm{u}}}{\partial {\mathrm{z}}^{2}}\right)-{\mathrm{\sigma }}_{\mathrm{h}\mathrm{n}\mathrm{f}}{\mathrm{\beta }}_{0}^{2}\widehat{\mathrm{u}} , $ | (2) |
$ {\mathrm{\rho }}_{\mathrm{h}\mathrm{n}\mathrm{f}}\left(\frac{\partial \widehat{\mathrm{w}}}{\partial \mathrm{t}}+\widehat{\mathrm{u}}\frac{\partial \widehat{\mathrm{w}}}{\partial \mathrm{r}}+\widehat{\mathrm{w}}\frac{\partial \widehat{\mathrm{w}}}{\partial \mathrm{z}}\right)=-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}+{\mathrm{\mu }}_{\mathrm{h}\mathrm{n}\mathrm{f}}\left(\frac{{\partial }^{2}\widehat{\mathrm{w}}}{\partial {\mathrm{r}}^{2}}+\frac{1}{\mathrm{r}}\frac{\partial \widehat{\mathrm{w}}}{\partial \mathrm{r}}-\frac{\widehat{\mathrm{w}}}{{\mathrm{r}}^{2}}+\frac{{\partial }^{2}\widehat{\mathrm{w}}}{\partial {\mathrm{z}}^{2}}\right) , $ | (3) |
$ {\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{h}\mathrm{n}\mathrm{f}}\left(\frac{\partial \widehat{\mathrm{T}}}{\partial \mathrm{t}}+\widehat{\mathrm{u}}\frac{\partial \widehat{\mathrm{T}}}{\partial \mathrm{r}}+\widehat{\mathrm{w}}\frac{\partial \mathrm{T}}{\partial \mathrm{z}}\right)={\mathrm{K}}_{\mathrm{h}\mathrm{n}\mathrm{f}\mathrm{l}}\frac{{\partial }^{2}\widehat{\mathrm{T}}}{\partial {\mathrm{z}}^{2}} , $ | (4) |
where $ {\mathrm{\rho }}_{\mathrm{h}\mathrm{n}\mathrm{f}} $ is the density of HNF, $ {\mathrm{\beta }}_{0} $ is magnetic field strength, $ {\mathrm{\sigma }}_{\mathrm{h}\mathrm{n}\mathrm{f}} $ is the electrically conductivity of hybrid nanofluid, T̂ is the temperature, $ \mathrm{P} $ is the pressure, $ {\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{h}\mathrm{n}\mathrm{f}} $ is the heat capacitance of HNF, $ {\mathrm{K}}_{\mathrm{h}\mathrm{n}\mathrm{f}\mathrm{l}} $ is the ENTC and $ {\mathrm{\mu }}_{\mathrm{h}\mathrm{n}\mathrm{f}} $ is the viscosity of HNF. Which are given in Table 1.
For nanofluid | For HNF |
$ {\mathrm{\rho }}_{\mathrm{n}\mathrm{f}}=\left(1-\mathrm{\varphi }\right){\mathrm{\rho }}_{\mathrm{f}}+\mathrm{\varphi }{\mathrm{\rho }}_{\mathrm{s}1} $, | $ {\mathrm{\rho }}_{\mathrm{h}\mathrm{n}\mathrm{f}}=\left(1-{\mathrm{\varphi }}_{\mathrm{s}1}-{\mathrm{\varphi }}_{\mathrm{s}2}\right){\mathrm{\rho }}_{\mathrm{f}}+{\mathrm{\varphi }}_{\mathrm{s}1}{\mathrm{\rho }}_{\mathrm{s}1}+{\mathrm{\varphi }}_{2}{\mathrm{\rho }}_{\mathrm{s}2} $, |
$ {\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{n}\mathrm{f}}=\left(1-\mathrm{\varphi }\right){\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{f}}+\mathrm{\varphi }{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{s}1}, $ | $ {\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{h}\mathrm{n}\mathrm{f}}=\left(1-{\mathrm{\varphi }}_{\mathrm{s}1}-{\mathrm{\varphi }}_{\mathrm{s}2}\right){\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{f}}+{\mathrm{\varphi }}_{\mathrm{s}1}{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{s}1}+{\mathrm{\varphi }}_{2}{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{s}2} $, |
$ {\mathrm{\mu }}_{\mathrm{n}\mathrm{f}}=\frac{{\mathrm{\mu }}_{\mathrm{f}}}{{\left(1-\mathrm{\varphi }\right)}^{2.5}} $, | $ {\mathrm{\mu }}_{\mathrm{h}\mathrm{n}\mathrm{f}}=\frac{{\mathrm{\mu }}_{\mathrm{f}}}{{\left(1-{\mathrm{\varphi }}_{1}-{\mathrm{\varphi }}_{2}\right)}^{2.5}} $, |
$ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}\mathrm{l}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\mathrm{\varphi }}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\mathrm{\varphi }}\right] $, where $ {\mathrm{k}}_{\mathrm{p}\mathrm{e}}=\frac{\left[2\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)\right]\mathrm{\lambda }}{-\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)}{\mathrm{k}}_{\mathrm{s}} $, |
$ \frac{{\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}\mathrm{l}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}\,\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}2}}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}\,\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}2}}\right] $, where $ \frac{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\,right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\,\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}\right] $, where $ {\mathrm{k}}_{\mathrm{p}\mathrm{e}1}=\frac{\left[2\left(1-{\mathrm{\lambda }}_{1}\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2{\mathrm{\lambda }}_{1}\right)\right]{\mathrm{\lambda }}_{1}}{-\left(1-{\mathrm{\lambda }}_{1}\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2{\mathrm{\lambda }}_{1}\right)}{\mathrm{k}}_{\mathrm{s}1} $, $ {\mathrm{k}}_{\mathrm{p}\mathrm{e}2}=\frac{\left[2\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)\right]\mathrm{\lambda }}{-\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)}{\mathrm{k}}_{\mathrm{s}2} $, |
$ \frac{{\sigma }_{nf}}{{\sigma }_{f}}=\frac{{\sigma }_{s1}+2{\sigma }_{f}-2{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})}{{\sigma }_{s1}+2{\sigma }_{f}+{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})} $. | $ \frac{{\sigma }_{hnf}}{{\sigma }_{bf}}=\frac{{\sigma }_{s2}+2{\sigma }_{bf}-2{\mathrm{\varphi }}_{2}({\sigma }_{bf}-{\sigma }_{s2})}{{\sigma }_{s2}+2{\sigma }_{bf}+{\mathrm{\varphi }}_{2}({\sigma }_{bf}-{\sigma }_{s2})} $, where $ \frac{{\sigma }_{bf}}{{\sigma }_{f}}=\frac{{\sigma }_{s1}+2{\sigma }_{f}-2{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})}{{\sigma }_{s1}+2{\sigma }_{f}+{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})} $. |
Physical properties | Base fluid | Nanoparticles | |
Water (H2O) | PTFE | SWCNT | |
$ {\mathrm{C}}_{\mathrm{P}}(\mathrm{j}/\mathrm{k}\mathrm{g}\; \mathrm{K}) $ | 4179 | 970 | 425 |
$ \mathrm{\rho }(\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3}) $ | 997 | 2200 | 2600 |
$ \mathrm{K}(\mathrm{W}/\mathrm{m}\mathrm{K}) $ | 0.608 | 0.25 | 6600 |
In Table 1, $ {\varphi }_{s1} $ and $ {\varphi }_{s2} $ shows volume fraction, $ {\rho }_{f} $ is the base fluid density, $ {\rho }_{s1} $ and $ {\rho }_{s2} $ is the solid NP density, $ {\left(\rho {C}_{p}\right)}_{s1} $ and $ {\left(\rho {C}_{p}\right)}_{s1} $ is the thermal capacitance of solid NP, the thermal capacitance for base fluid is represented as $ {\left(\rho {C}_{p}\right)}_{f} $, $ {k}_{hnfl} $ is the ENTC of HNF, $ {k}_{f} $ and $ {k}_{bf} $ represent base fluid TC, $ {k}_{nfl} $ is the nanofluids TC with the effect of nanolayer, $ {k}_{pe1}\; and \;{k}_{pe2} $ is equivalent TC of the equivalent solid NP, the ratio of the nanolayer thickness to the radius of NP is $ {\beta }_{1}=\frac{h}{r} $, $ {\lambda }_{1}=\frac{{k}_{layers}}{{k}_{s1}} $ is the ratio of TC of nanolayer to TC of the first particle, $ \lambda =\frac{{k}_{layers}}{{k}_{s2}} $ is the ratio of ENTC to TC of the second particle, $ {k}_{s1}\;and\;{k}_{s2} $ is TC of the first particle and second particle respectively, The particle radius is r, and the thickness of the nanolayer is h, $ {\sigma }_{hnf} $ is the electrical conductivity of hybrid nanofluid, $ {\sigma }_{nf} $ is the electrical conductivity of nanofluid, $ {\sigma }_{s1} $ and $ {\sigma }_{s2} $ are the electrical conductivity of first and second nanoparticles, respectively, $ {\sigma }_{bf} $ is the electrical conductivity of base fluid.
Table 2, $ {C}_{P} $ shows Specifics heats at constant pressures, $ \rho $ is the density, and $ K $ is the thermal capacitance of base fluid and solid NP.
The upper boundary and lower boundary have the following boundary conditions:
$atZ=−k(t),ˆu=0,ˆw=−A∗k′(t)andˆT=Tl,atZ=k(t),ˆu=0,ˆw=A∗k′(t)andˆT=Tu, $
|
(5) |
where $ {\mathrm{A}}_{\mathrm{*}} $ is denote the permeability and the prime denotes the time derivative w.r.t t.
The similarity variables listed below are used as:
$ \mathrm{\eta }=\frac{\mathrm{z}}{\mathrm{k}}, \widehat{\mathrm{u}}=-\frac{\mathrm{r}{\mathrm{\upsilon }}_{\mathrm{f}}}{{\mathrm{k}}^{2}}{\mathrm{F}}_{\mathrm{\eta }}\left(\mathrm{\eta }, \mathrm{t}\right), \widehat{\mathrm{w}}=\frac{2{\mathrm{\upsilon }}_{\mathrm{f}}}{\mathrm{k}}\mathrm{F}\left(\mathrm{\eta }, \mathrm{t}\right), \;\mathrm{\theta }=\frac{\widehat{\mathrm{T}}-{\mathrm{T}}_{\mathrm{u}}}{{\mathrm{T}}_{\mathrm{l}}-{\mathrm{T}}_{\mathrm{u}}} . $ | (6) |
First of all the continuity equation is satisfied by the similarity variables stated in Eq (6). Furthermore, the similarity variables are used in the governing equations to acquire Eqs (7) and (8):
$ \frac{{\mathrm{\upsilon }}_{\mathrm{h}\mathrm{n}\mathrm{f}}}{{\mathrm{\upsilon }}_{\mathrm{f}}}{\mathrm{F}}_{\mathrm{\eta }\mathrm{\eta }\mathrm{\eta }\mathrm{\eta }}+{\mathrm{\alpha }}_{\mathrm{*}}\left(3{\mathrm{F}}_{\mathrm{\eta }\mathrm{\eta }}+\;\;\;\;\;\;\mathrm{\eta }{\mathrm{F}}_{\mathrm{\eta }\mathrm{\eta }\mathrm{\eta }}\right)-2\mathrm{F}{\mathrm{F}}_{\mathrm{\eta }\mathrm{\eta }\mathrm{\eta }}-\frac{{\mathrm{K}}^{2}}{{\mathrm{\upsilon }}_{\mathrm{f}}}{\mathrm{F}}_{\mathrm{\eta }\mathrm{\eta }\mathrm{t}}-\frac{{\mathrm{\rho }}_{\mathrm{f}}}{{\mathrm{\rho }}_{\mathrm{h}\mathrm{n}\mathrm{f}}}\frac{{\sigma }_{hnf}}{{\sigma }_{f}}{\mathrm{M}}_{\mathrm{*}}{\mathrm{F}}_{\mathrm{\eta }\mathrm{\eta }}=0 , $ | (7) |
$ {\mathrm{\theta }}_{\mathrm{\eta }\mathrm{\eta }}+\frac{{\mathrm{\upsilon }}_{\mathrm{f}}}{{\mathrm{\alpha }}_{\mathrm{h}\mathrm{n}\mathrm{f}}}\left({\mathrm{\alpha }}_{\mathrm{*}}\mathrm{\eta }-2\mathrm{F}\right){\mathrm{\theta }}_{\mathrm{\eta }}-\frac{{\mathrm{k}}^{2}}{{\mathrm{\alpha }}_{\mathrm{h}\mathrm{n}\mathrm{f}}}{\mathrm{\theta }}_{\mathrm{t}}=0 , $ | (8) |
where $ {\mathrm{\alpha }}_{\mathrm{h}\mathrm{n}\mathrm{f}} $ is the thermal diffusivity of HNF and $ {\mathrm{\alpha }}_{\mathrm{h}\mathrm{n}\mathrm{f}}=\frac{{\mathrm{K}}_{\mathrm{h}\mathrm{n}\mathrm{f}\mathrm{l}}}{{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{h}\mathrm{n}\mathrm{f}}} $, $ {\mathrm{\upsilon }}_{\mathrm{h}\mathrm{n}\mathrm{f}} $ is the kinematics viscosity of the HNF and $ {\mathrm{\upsilon }}_{\mathrm{h}\mathrm{n}\mathrm{f}}=\frac{{\mathrm{\mu }}_{\mathrm{h}\mathrm{n}\mathrm{f}}}{{\mathrm{\rho }}_{\mathrm{h}\mathrm{n}\mathrm{f}}} $, $ {\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{h}\mathrm{n}\mathrm{f}} $ is the heat capacitance of HNF, the viscosity of HNF is $ {\mathrm{\mu }}_{\mathrm{h}\mathrm{n}\mathrm{f}} $, the density of HNF is $ {\mathrm{\rho }}_{\mathrm{h}\mathrm{n}\mathrm{f}} $.
Associated boundary conditions are
$ \mathrm{F}=-{\mathrm{R}}_{\mathrm{e}}, {\mathrm{F}}_{\mathrm{\eta }}=0, \;\mathrm{\theta }=1, \;\mathrm{a}\mathrm{t}\;\mathrm{\eta }=-1, $ |
$ \mathrm{F}={\mathrm{R}}_{\mathrm{e}}, {\mathrm{F}}_{\mathrm{\eta }}=0, \;\;\;\;\mathrm{\theta }=0, \;\mathrm{a}\mathrm{t}\;\mathrm{\eta }=1, $ | (9) |
here $ {\mathrm{R}}_{\mathrm{e}}=\frac{{\mathrm{A}}_{\mathrm{*}}\mathrm{k}\mathrm{k}\mathrm{\text{'}}\left(\mathrm{t}\right)}{2{\mathrm{\upsilon }}_{\mathrm{f}}} $ is absorptivity Reynold number, here $ {\mathrm{A}}_{\mathrm{*}} $ is the permeability, and is defined as the function of Reynold number and wall expansion ratio, and mathematically defined as $ {\mathrm{A}}_{\mathrm{*}}={\mathrm{A}}_{\mathrm{*}}\left({\mathrm{\alpha }}_{\mathrm{*}}, {\mathrm{R}}_{\mathrm{e}}\right)=\frac{{\mathrm{R}}_{\mathrm{e}}}{2{\mathrm{\alpha }}_{\mathrm{*}}} $, $ {\mathrm{\alpha }}_{\mathrm{*}}=\frac{\mathrm{k}\mathrm{k}\mathrm{\text{'}}\left(\mathrm{t}\right)}{{\mathrm{\upsilon }}_{\mathrm{f}}} $ is the ratio of wall expansion, and $ {\mathrm{M}}_{\mathrm{*}}=\frac{{\mathrm{\sigma }}_{}{\mathrm{\beta }}_{0}^{2}{\mathrm{k}}^{2}}{{\mathrm{\mu }}_{\mathrm{f}}} $ is the magnetic parameter.
Finally, we set $ \mathrm{F}=\mathrm{f}{\mathrm{R}}_{\mathrm{e}} $ and by following Majdalani et al. [36]. When $ \mathrm{\alpha } $ is constant, $ \mathrm{f}=\mathrm{f}\left(\mathrm{\eta }\right) $ and $ \mathrm{\theta }=\mathrm{\theta }\left(\mathrm{\eta }\right) $, which leads to $ {\mathrm{\theta }}_{\mathrm{t}}=0 $ and $ {\mathrm{f}}_{\mathrm{\eta }\mathrm{\eta }\mathrm{t}}=0 $. Thus, we have
$ \frac{{\mathrm{\upsilon }}_{\mathrm{h}\mathrm{n}\mathrm{f}}}{{\mathrm{\upsilon }}_{\mathrm{f}}}{\mathrm{f}}_{\mathrm{\eta }\mathrm{\eta }\mathrm{\eta }\mathrm{\eta }}+{\mathrm{\alpha }}_{\mathrm{*}}\left(3{\mathrm{f}}_{\mathrm{\eta }\mathrm{\eta }}+\;\mathrm{\eta }{\mathrm{f}}_{\mathrm{\eta }\mathrm{\eta }\mathrm{\eta }}\right)-2{\mathrm{R}}_{\mathrm{e}}\mathrm{f}{\mathrm{f}}_{\mathrm{\eta }\mathrm{\eta }\mathrm{\eta }}-\frac{{\mathrm{\rho }}_{\mathrm{f}}}{{\mathrm{\rho }}_{\mathrm{h}\mathrm{n}\mathrm{f}}}\frac{{\sigma }_{hnf}}{{\sigma }_{f}}{\mathrm{M}}_{\mathrm{*}}{\mathrm{f}}_{\mathrm{\eta }\mathrm{\eta }}=0 , $ | (10) |
$ {\mathrm{\theta }}_{\mathrm{\eta }\mathrm{\eta }}+\left({\mathrm{\varphi }}_{1}\frac{{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{s}1}}{{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{f}}}+{\mathrm{\varphi }}_{2}\frac{{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{s}2}}{{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{f}}}-\left(1-{\mathrm{\varphi }}_{1}-{\mathrm{\varphi }}_{2}\right)\right)\frac{{\mathrm{k}}_{\mathrm{f}}}{{\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}\mathrm{l}}}{\mathrm{P}}_{\mathrm{r}}\left({\mathrm{\alpha }}_{\mathrm{*}}\mathrm{\eta }-2{\mathrm{R}}_{\mathrm{e}}\mathrm{f}\right){\mathrm{\theta }}_{\mathrm{\eta }}=0 . $ | (11) |
At lower and upper wall of channel boundary condition are
$atη=−1,f=−1,fη=0,andθ=1,atη=1,f=1,fη=0,andθ=0. $
|
(12) |
Nusselt number and SFC at both permeable walls are computed coefficients that are of engineering interest are computed in this section.
The SFC of the upper and lower disk represents as $ {\mathrm{C}}_{\mathrm{f}1} $ and $ {\mathrm{C}}_{\mathrm{f}-1} $ and expressed as in [10],
$ {\mathrm{C}}_{\mathrm{f}-1}=\frac{\mathrm{r}{\mathrm{\varsigma }}_{\mathrm{z}\mathrm{r}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1}}{\mathrm{k}{\mathrm{\rho }}_{\mathrm{f}}{\left({\mathrm{K}}^{\mathrm{\text{'}}{\mathrm{A}}_{1}}\right)}^{2}}=\frac{\left({\left(1-{\mathrm{\varphi }}_{\mathrm{s}1}-{\mathrm{\varphi }}_{\mathrm{s}2}\right)}^{-2.5}\,\right)}{{\mathrm{R}}_{\mathrm{e}}}{\mathrm{f}}^{\mathrm{\text{'}}\mathrm{\text{'}}}\left(-1\right), $ |
$ \mathrm{And} \;{\mathrm{C}}_{\mathrm{f}1}=\frac{\mathrm{r}{\mathrm{\varsigma }}_{\mathrm{z}\mathrm{r}}{\mathrm{ǀ}}_{\mathrm{\eta }=1}}{\mathrm{k}{\mathrm{\rho }}_{\mathrm{f}}{\left(\mathrm{K}\mathrm{\text{'}}{\mathrm{A}}_{1}\right)}^{2}}=\frac{\left({\left(1-{\mathrm{\varphi }}_{\mathrm{s}1}-{\mathrm{\varphi }}_{\mathrm{s}2}\right)}^{-2.5}\,\right)}{{\mathrm{R}}_{\mathrm{e}}}{\mathrm{f}}^{\mathrm{\text{'}}\mathrm{\text{'}}}\left(1\right), $ | (13) |
where $ {\mathrm{R}}_{\mathrm{e}} $ denote the Reynold number and $ {\mathrm{\varsigma }}_{\mathrm{z}\mathrm{r}} $ denote the shear stress at the bottom and upper disks in the radial direction, respectively,
$ {\mathrm{\varsigma }}_{\mathrm{z}\mathrm{r}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1}={\mathrm{\mu }}_{\mathrm{h}\mathrm{n}\mathrm{f}}\left(\frac{\partial \widehat{\mathrm{u}}}{\partial \mathrm{z}}\right){\mathrm{ǀ}}_{\mathrm{\eta }=-1} , \mathrm{and}\;{\mathrm{\varsigma }}_{\mathrm{z}\mathrm{r}}{\mathrm{ǀ}}_{\mathrm{\eta }=1}={\mathrm{\mu }}_{\mathrm{h}\mathrm{n}\mathrm{f}}\left(\frac{\partial \widehat{\mathrm{u}}}{\partial \mathrm{z}}\right){\mathrm{ǀ}}_{\mathrm{\eta }=1} $ | (14) |
The heat transfer rate (Nusselt number) calculations at the bottom and upper disks are given as $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ and $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=1} $, respectively [10]
$ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1}=\frac{\mathrm{k}{\mathrm{s}}_{\mathrm{z}}}{{\mathrm{k}}_{\mathrm{f}}\left({\mathrm{T}}_{1}-{\mathrm{T}}_{2}\right)}{\mathrm{ǀ}}_{\mathrm{\eta }=-1}=\frac{{\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{f}}}{\mathrm{\theta }}^{\mathrm{\text{'}}}\left(-1\right), \mathrm{a}\mathrm{n}\mathrm{d}\;{\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=1}=\frac{\mathrm{k}{\mathrm{s}}_{\mathrm{z}}}{{\mathrm{k}}_{\mathrm{f}}\left({\mathrm{T}}_{1}-{\mathrm{T}}_{2}\right)}{\mathrm{ǀ}}_{\mathrm{\eta }=1}=\frac{{\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{f}}}\mathrm{\theta }\mathrm{\text{'}}\left(1\right) , $ | (15) |
here $ {\mathrm{s}}_{\mathrm{z}} $ is the heat flux, which is following as,
$ {\mathrm{s}}_{\mathrm{z}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1}=-{\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}}\left(\frac{\partial \mathrm{T}}{\partial \mathrm{z}}\right){\mathrm{ǀ}}_{\mathrm{\eta }=-1}, \;\mathrm{a}\mathrm{n}\mathrm{d}\;{\mathrm{s}}_{\mathrm{z}}{\mathrm{ǀ}}_{\mathrm{\eta }=1}=-{\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}}\left(\frac{\partial \mathrm{T}}{\partial \mathrm{z}}\right){\mathrm{ǀ}}_{\mathrm{\eta }=1} . $ | (16) |
Thermophysical properties like density, viscosity, heat capacitance, and TC of base liquids are changed due to the mixing of NPs and distinguishing the efficacy of NPs on thermo-physical properties of resulting nanofluids. Gupta et al. [39] give a detailed investigation of the thermophysical characteristics of nanofluids. TC is a key thermophysical feature of nanofluids, according to a comprehensive examination of their thermophysical properties. Over the years, numerous investigations on the TC of nanofluids have been done. Yang et al. [40] have submitted a report on the effect of critical factors on the TC of nanofluids. Until now, several researchers have attempted to calculate the TC of nanofluids using various methods to provide a comprehensive correlation to compute this in nanofluids. Maxwell [41] established the first correlation to calculate the TC of nanofluids in 1881. This relationship is accurate for globe-shaped NP and small amounts of NP. Later, in 1962, Hamilton and Crosser (H-C) [42] established the Maxwell correlation, which included the effect of morphology on nanofluids TC. Subsequently, a research study by Jiang et al. [43] found that i = 1.550 was more suitable for CNT nanofluids.
The three models in Table 3 of TC failed to predict the high TC of nanofluids. The reason for this is that these TC models ignore the effect of nanolayer and particle radius. Murshed et al. [44] proposed a TC model in which the nanolayer is assumed as a separate component when calculating the effective TC of nano-fluids in 2007. Below is a representation of a nanoparticle with a nanolayer in the base fluid.
Maxwell model | Hamilton and Crosser (H-C) model | Xue model |
$ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\frac{{\mathrm{k}}_{\mathrm{s}}+2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}-2\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})}{{\mathrm{k}}_{\mathrm{s}}+2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})} $ | $ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\frac{{\mathrm{k}}_{\mathrm{s}}+(\mathrm{S}-1){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-(\mathrm{S}-1)\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})}{{\mathrm{k}}_{\mathrm{s}}+(\mathrm{S}-1){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})} $ | $ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\frac{1-\mathrm{\varphi }+2\mathrm{\varphi }\left[\frac{{\mathrm{k}}_{\mathrm{s}}}{\left({\mathrm{k}}_{\mathrm{s}}-{\mathrm{k}}_{\mathrm{b}\mathrm{f}}\right)}\right]\mathrm{I}\mathrm{n}\left[\frac{{\mathrm{k}}_{\mathrm{s}}+{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}\right]}{1-\mathrm{\varphi }+2\mathrm{\varphi }\left[\frac{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{\left({\mathrm{k}}_{\mathrm{s}}-{\mathrm{k}}_{\mathrm{b}\mathrm{f}}\right)}\right]\mathrm{I}\mathrm{n}\left[\frac{{\mathrm{k}}_{\mathrm{s}}+{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}\right]} $ |
In the above Table 3, $ {k}_{bf} $ denotes the TC of the base fluid, $ {\mathrm{k}}_{\mathrm{s}} $ denotes the TC of NP, and $ {\mathrm{k}}_{\mathrm{n}\mathrm{f}} $ denotes the TC of nanofluid, $ \mathrm{S}=\frac{3}{{\left(\mathrm{\varpi }\right)}^{\mathrm{i}}} $ where$ \mathrm{\varpi } $ is sphericalness, $ \mathrm{\varpi }=1.00 $ for spherical NP, and $ \mathrm{\varpi }=0.50 $ for cylindrical NP, and the variable "i" is experimental. In the actual H-C correlation, I = 1 is used.
The model of effective TC is given below, for nanofluids,
$ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}\mathrm{l}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\mathrm{\varphi }}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\mathrm{\varphi }}\right] , $ |
$ {\mathrm{k}}_{\mathrm{p}\mathrm{e}}=\frac{\left[2\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)\right]\mathrm{\lambda }}{-\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)}{\mathrm{k}}_{\mathrm{s}} $ | (17) |
where $ {\mathrm{k}}_{\mathrm{n}\mathrm{f}\mathrm{l}} $ is the TC of nanofluids with the effect of nanolayer, $ {\mathrm{k}}_{\mathrm{p}\mathrm{e}} $is equivalent TC of the equivalent particles, where $ \mathrm{\lambda }=\frac{{\mathrm{k}}_{\mathrm{l}}}{{\mathrm{k}}_{\mathrm{s}}} $ is the ratio of nanolayer TC to TC of particle, the ratio of the thickness of nanolayer to the radius of NP is $ {\mathrm{\beta }}_{1}=\frac{\mathrm{h}}{\mathrm{r}} $.
The effective TC correlation is shown below, for HNF,
$ \frac{{\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}\mathrm{l}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}2}}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}2}}\right], $ |
$ \frac{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}\right] , $ | (18) |
where $ {\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\; \mathrm{a}\mathrm{n}\mathrm{d}\; {\mathrm{k}}_{\mathrm{p}\mathrm{e}2} $ are equivalent TC of the equivalent first particle and second particle respectively, and defined as
$ {\mathrm{k}}_{\mathrm{p}\mathrm{e}1}=\frac{\left[2\left(1-{\mathrm{\lambda }}_{1}\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2{\mathrm{\lambda }}_{1}\right)\right]{\mathrm{\lambda }}_{1}}{-\left(1-{\mathrm{\lambda }}_{1}\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2{\mathrm{\lambda }}_{1}\right)}{\mathrm{k}}_{\mathrm{s}1} , $ |
$ {\mathrm{k}}_{\mathrm{p}\mathrm{e}2}=\frac{\left[2\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)\right]\mathrm{\lambda }}{-\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)}{\mathrm{k}}_{\mathrm{s}2} , $ | (19) |
where $ {\mathrm{\lambda }}_{1}=\frac{{\mathrm{k}}_{\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s}}}{{\mathrm{k}}_{\mathrm{s}1}} $ is the ratio of nanolayer TC to TC of the first particle, $ \mathrm{\lambda }=\frac{{\mathrm{k}}_{\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s}}}{{\mathrm{k}}_{\mathrm{s}2}} $ is the ratio of nanolayer TC to TC of the second particle, $ {\mathrm{k}}_{\mathrm{s}1}\; \mathrm{a}\mathrm{n}\mathrm{d}\; {\mathrm{k}}_{\mathrm{s}2} $ is TC of the first particle and second particle respectively.
Because the system of ODE$ \mathrm{\text{'}} $s is manipulated in Eqs (10) and (11) are complex and involve boundary value conditions, the numerical solution is obtained rather than using analytical methods. The shooting technique is used in conjunction with the RK method for numerical computations. The Runge–Kutta method is a preferable alternative since it requires less computing, is more stable, and produces accurate results in less time. The rapidity (computational cost) and additivity of this technique to the IVP are its main advantages. Finding the IVP (initial value problem) using an appropriate shooting approach is massively successful because of the importance of IVPs in real-world/practical applications. The missing beginning condition at the Interval's start point is assumed in a shooting method, and the DE (differential equation) is then numerically integrated as an IVP. The accuracy of the missing initial condition is determined by comparing the computed value of the dependent variable at the terminal point with its given value here. If there is a difference, the process is repeated with a new value. This method is repeated until the calculated and given conditions are in agreement. Table 4 shows how our numerical results converge as the step size gets reduced for this purpose, providing us confidence in our computing technique. Our boundary conditions satisfy accurate and symmetric shear stress results at the lower wall as well.
$ \mathrm{\eta } $ | $ \mathrm{f}\left(\mathrm{\eta }\right) $ | $ \mathrm{f}\mathrm{\text{'}}\left(\mathrm{\eta }\right) $ | $ \mathrm{f}\mathrm{\text{'}}\mathrm{\text{'}}\left(\mathrm{\eta }\right) $ |
-1 | -1 | 0 | 1.23169 |
-0.8 | -0.971619 | 0.303868 | 1.83141 |
-0.6 | -0.869844 | 0.734952 | 2.45554 |
-0.4 | -0.671254 | 1.25769 | 2.64651 |
-0.2 | -0.370295 | 1.72443 | 1.82153 |
0 | 4.8871×10(-8) | 1.91717 | -5.09381×10(-8) |
0.2 | 0.370295 | 1.72443 | -1.82153 |
0.4 | 0.671254 | 1.25769 | -2.64651 |
0.6 | 0.869844 | 0.734952 | -2.45554 |
0.8 | 0.971619 | 0.303868 | -1.83141 |
1 | 1 | 0 | -1.23169 |
A massive representation of a non-linear coupled system of ODE$ \mathrm{\text{'}} $s with coefficients that have matrix composite material and HNF properties.
$ (1−φs1−φs2)2.5(1−φs1−φs2)+φs1(ρCp)s1(ρCp)f+φs2(ρCp)s2(ρCp)ff''''+α∗(3f''+ηf''')−2Reff'''−1(1−φs1−φs2)+φs1ρs1ρf+φs2ρs2ρfσhnfσfM∗f''=0, $
|
(20) |
$ θ''+(φs1(ρCp)s1(ρCp)f+φs2(ρCp)s2(ρCp)f−(1−φs1−(φs2))(kpe2+(S−1)kbf−(S−1)(kbf−kpe2)(1+β1)3φs2kpe2+(S−1)kbf+(kbf−kpe2)(1+β1)3φs2)(kpe1+(S−1)kf−(S−1)(kf−kpe1)(1+β1)3φs1kpe1+(S−1)kf+(kf−kpe1)(1+β1)3φs1)Pr(α∗η−2Ref)θ''=0. $
|
(21) |
Where, we let the following expressions as:
$ {\mathrm{G}}_{1}=\frac{{\left(1-{\mathrm{\varphi }}_{\mathrm{s}1}-{\mathrm{\varphi }}_{\mathrm{s}2}\right)}^{2.5}}{\left(1-{\mathrm{\varphi }}_{\mathrm{s}1}-{\mathrm{\varphi }}_{\mathrm{s}2}\right)+{\mathrm{\varphi }}_{\mathrm{s}1}\frac{{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\,\right)}_{\mathrm{s}1}}{{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\,\right)}_{\mathrm{f}}}+{\mathrm{\varphi }}_{2}\frac{{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\,\right)}_{\mathrm{s}2}}{{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\,\right)}_{\mathrm{f}}}} , $ |
$ {\mathrm{G}}_{2}=\frac{1}{\left(1-{\mathrm{\varphi }}_{\mathrm{s}1}-{\mathrm{\varphi }}_{\mathrm{s}2}\right)+{\mathrm{\varphi }}_{\mathrm{s}1}\frac{{\mathrm{\rho }}_{\mathrm{s}1}}{{\mathrm{\rho }}_{\mathrm{f}}}+\frac{{\mathrm{\varphi }}_{\mathrm{s}2}{\mathrm{\rho }}_{\mathrm{s}2}}{{\mathrm{\rho }}_{\mathrm{f}}}}\frac{{\sigma }_{hnf}}{{\sigma }_{f}}, $ |
$ {\mathrm{G}}_{3}=\left(φs1(ρCp)s1(ρCp)f+φs2(ρCp)s2(ρCp)f−(1−φ1−φ2) \right) , $
|
$ {\mathrm{G}}_{4}=\left(\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}2}}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}2}}\right), $ |
$ {\mathrm{G}}_{5}=\left(\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}\right) . $ |
By putting the values of $ {\mathrm{G}}_{1} $, $ {\mathrm{G}}_{2} $, $ {\mathrm{G}}_{3} $, $ {\mathrm{G}}_{4} $, and $ {\mathrm{G}}_{5} $ in Eqs (21) and (22), the final Equations are:
$ {\mathrm{G}}_{1}{\mathrm{f}}^{\text{'}\text{'}\text{'}\text{'}}+{\mathrm{\alpha }}_{\mathrm{*}}\left(3{\mathrm{f}}^{\text{'}\text{'}}+\;\mathrm{\eta }{\mathrm{f}}^{\text{'}\text{'}\text{'}}\right)-2{\mathrm{R}}_{\mathrm{e}}\mathrm{f}{\mathrm{f}}^{\text{'}\text{'}\text{'}}-{\mathrm{G}}_{2}{\mathrm{M}}_{\mathrm{*}}{\mathrm{f}}^{\text{'}\text{'}}=0 , $ | (22) |
$ {\mathrm{\theta }}^{\text{'}\text{'}}+{\mathrm{G}}_{3}{\mathrm{G}}_{4}{\mathrm{G}}_{5}{\mathrm{P}}_{\mathrm{r}}\left({\mathrm{\alpha }}_{\mathrm{*}}\mathrm{\eta }-2{\mathrm{R}}_{\mathrm{e}}\mathrm{f}\right){\mathrm{\theta }}^{\text{'}}=0. $ | (23) |
For the determination of solving the existing flow model, we used the RK technique with the addition of shooting methods. The following substitution is required to begin the process:
$ {\mathrm{w}}_{1} $=$ \mathrm{f} $($ \mathrm{\eta } $), $ {\mathrm{w}}_{2} $=$ {\mathrm{f}}^{\text{'}}\left(\mathrm{\eta }\right) $, $ {\mathrm{w}}_{3} $=$ {\mathrm{f}}^{\text{'}\text{'}}\left(\mathrm{\eta }\right) $, $ {\mathrm{w}}_{4} $=$ {\mathrm{f}}^{\text{'}\text{'}\text{'}}\left(\mathrm{\eta }\right) $, $ {\mathrm{w}}_{5} $=$ \mathrm{\theta }\left(\mathrm{\eta }\right) $, $ {\mathrm{w}}_{6}={\mathrm{\theta }}^{\text{'}}\left(\mathrm{\eta }\right) $ | (24) |
First, in Eqs (22) and (23), change the model in the following pattern:
$ {\mathrm{f}}^{\text{'}\text{'}\text{'}\text{'}}\left[\eta \right] = \frac{1}{{\mathrm{G}}_{1}}(-{\mathrm{\alpha }}_{\mathrm{*}}\left(3{\mathrm{f}}^{\text{'}\text{'}}+\;\;\;\;\;\;\mathrm{\eta }{\mathrm{f}}^{\text{'}\text{'}\text{'}}\right)+2{\mathrm{R}}_{\mathrm{e}}\mathrm{f}{\mathrm{f}}^{\text{'}\text{'}\text{'}}+{\mathrm{G}}_{2}{\mathrm{M}}_{\mathrm{*}}{\mathrm{f}}^{\text{'}\text{'}}) $ | (25) |
$ {\mathrm{\theta }}^{\text{'}\text{'}}\left[\eta \right]=({\mathrm{G}}_{3}{\mathrm{G}}_{4}{\mathrm{G}}_{5}{\mathrm{P}}_{\mathrm{r}}\left(2{\mathrm{R}}_{\mathrm{e}}\mathrm{f}-{\mathrm{\alpha }}_{\mathrm{*}}\mathrm{\eta }\right){\mathrm{w}}_{6} $ | (26) |
The following system is obtained by using the substitution contained in Eq (24):
$ \left[w'1w'2w'3w'4w'5w'6 \right]=\left[w2w3w41G1(−α∗(3f''+ηf''')+2Reff'''+G2M∗f'')w6(G3G4G5Pr(2Ref−α∗η)w6) \right] $
|
(27) |
Consequently, the initial condition is:
$ \left[w'1w'2w'3w'4w'5w'6 \right]=\left[−101010 \right] $
|
(28) |
Mathematical techniques and an appropriate initial condition are now used to solve the aforementioned system. Runge-Kutta and the well-known accurate "shooting method" have been considered in this case. This approach is suitable for dealing with dimensionless ODEs. First, we create the initial condition by applying the shooting procedure in a way that satisfies boundary criteria and yields the necessary level of efficiency and accuracy.
This section explains the influence of flow on concerning equations and physical parameters like expansion/contraction ratio parameter "$ {\mathrm{\alpha }}_{\mathrm{*}} $", suction/injection permeable Reynold number "$ {\mathrm{R}}_{\mathrm{e}} $", NTP (nanolayer thickness of particles) "h", the radius of particles "r", shape size factor "S", the magnetic parameter "$ {\mathrm{M}}_{\mathrm{*}} $", volume friction parameters "$ {\mathrm{\varphi }}_{\mathrm{s}1} $ and $ {\mathrm{\varphi }}_{\mathrm{s}2} $", Prandtl number "$ {\mathrm{P}}_{\mathrm{r}} $", on velocity and temperature profile are explained through Figures 3–10. The default values of involve parameters are: for $ \mathrm{h}=0.4, \; \; \; \; \mathrm{r}=0.8, {\mathrm{\varphi }}_{\mathrm{s}1}={\mathrm{\varphi }}_{\mathrm{s}2}=0.02, {\mathrm{R}}_{\mathrm{e}}=-2.5, {\mathrm{P}}_{\mathrm{r}}=6.2, {\mathrm{M}}_{\mathrm{*}}=1 \; \mathrm{a}\mathrm{n}\mathrm{d}\;{\mathrm{\alpha }}_{\mathrm{*}}=3 $. In addition, engineering quantities such as shear stress coefficients at the upper and lower disks, as well as heat fluxes, are estimated numerically against the variables involved. Table 5 shows the comparison result of effective nanolayer thermal conductivity (ENTC) and non-effective nanolayer thermal conductivity (NENTC). It is observed that the enhancement in h, increases the ENTC, and has no effect on NENTC. The reason is that the NENTC does not include the influence of the nanolayer thickness of the particle. The nanolayer thickness and radius of particle have opposite behavior on ENTC. The increment in volume fraction increases the ENTC and NENTC are noticed. For all three cases of shape size factor (sphere, cylindrical, laminar) the highest values of ENTC and NENTC are achieved for aspherical shape. Table 6 represents the variation in SFC and Nusselt numbers for suction and injection cases at the lower disks. For suction $ {\mathrm{R}}_{\mathrm{e}} < 0 $ case, suction occurs when inertia is less than viscosity, it is observed the increment in NTP increases the Nusselt number. The NTP and radius of particles have opposite behavior on the Nusselt number. For all three cases of shape size factor (sphere, cylindrical, laminar) the highest value of Nusselt number is achieved for aspherical shape. It is also obtrusive that the amount of SFC and Nusselt number rises with the volume fraction and magnetic parameter. it is noticed that as the value of $ {\mathrm{\alpha }}_{\mathrm{*}} $ changes from negative to positive the SFC and Nusselt numbers decreased. The Prandtl number and radius of particles have the same behavior as the Nusselt number. The reason is that the Prandtl number is the product of diffusive momentum to the inverse of thermal diffusivity, so increasing the $ {\mathrm{P}}_{\mathrm{r}} $ momentum increases diffusivity, which decreases the coefficient of heat flux. For injection $ {\mathrm{R}}_{\mathrm{e}} > 0 $ cases, injection occurs when inertia is greater than viscosity, it is observed that the effect of NTP, radius of particles, shape size factor, volume fraction, expansion/contraction ratio parameter, and magnetic parameter have the same nature in both suction /injection case on SFC and Nusselt number. The Prandtl number has opposite behavior in both suction /injection cases on SFC and Nusselt number, therefore as the increment in Prandtl number increases the Nusselt number.
h | r | $ {\mathrm{\varphi }}_{\mathrm{s}1}={\mathrm{\varphi }}_{\mathrm{s}2} $ | S | $ {\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}\mathrm{l}} $ | $ {\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}} $ |
0.4 | 0.8 | 2% | 3 | 1.25951 | 1.04573 |
0.6 | 1.39172 | 1.04573 | |||
0.8 | 1.4749 | 1.04573 | |||
1 | 1.52875 | 1.04573 | |||
1.2 | 1.56473 | 1.04573 | |||
1.4 | 1.58951 | 1.04573 | |||
1.6 | 1.60707 | 1.04573 | |||
0.4 | 1 | 2% | 3 | 1.25951 | 1.04573 |
1.2 | 1.18620 | 1.04573 | |||
1.4 | 1.08329 | 1.04573 | |||
1.6 | 1.04631 | 1.04573 | |||
1.8 | 1.01581 | 1.04573 | |||
2 | 0.990267 | 1.04573 | |||
0.4 | 0.8 | 3% | 3 | 1.29148 | 1.06891 |
4% | 1.32414 | 1.09232 | |||
5% | 1.35752 | 1.11595 | |||
6% | 1.39162 | 1.13982 | |||
7% | 1.42647 | 1.16394 | |||
8% | 1.46208 | 1.18831 | |||
0.2 | 0.8 | 2% | 3 | 1.25951 | $ 1.04573 $ |
5.7 | $ 1.23202 $ | $ 1.01163 $ | |||
16 | $ 1.18829 $ | $ 1.00984 $ |
h | r | $ {\mathrm{\varphi }}_{\mathrm{s}1}={\mathrm{\varphi }}_{\mathrm{s}2} $ | S | $ {\mathrm{\alpha }}_{\mathrm{*}} $ | $ {\mathrm{M}}_{\mathrm{*}} $ | $ {\mathrm{P}}_{\mathrm{r}} $ | $ {\mathrm{C}}_{\mathrm{f}-1} $ for suction case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for suction case | $ {\mathrm{C}}_{\mathrm{f}-1} $ for injection case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for injection case |
0.4 | 0.8 | 2% | 3 | -1 | 1 | 6.2 | 4.1612 | 0.391643 | 5.15113 | 6.38635 |
0.8 | 4.1612 | 0.426513 | 5.15113 | 6.97705 | ||||||
1.2 | 4.1612 | 0.43887 | 5.15113 | 7.27113 | ||||||
1.6 | 4.1612 | 0.4430 | 5.15113 | 7.36504 | ||||||
0.2 | 1 | 2% | 4.1612 | 0.377217 | 5.15113 | 6.11274 | ||||
1.2 | 4.1612 | 0.36550 | 5.15113 | 5.91552 | ||||||
1.4 | 4.1612 | 0.355864 | 5.15113 | 5.73457 | ||||||
1.6 | 4.1612 | 0.34729 | 5.15113 | 5.5923 | ||||||
1.8 | 4.1612 | 0.339912 | 5.15113 | 5.44889 | ||||||
2 | 4.1612 | 0.333482 | 5.15113 | 5.34295 | ||||||
0.8 | 3% | 4.4447 | 0.417098 | 5.99246 | 5.22673 | |||||
4% | 4.6902 | 0.419584 | 6.10532 | 5.37543 | ||||||
5% | 5.09975 | 0.42962 | 6.45018 | 5.40737 | ||||||
6% | 5.39447 | 0.43225 | 7.33692 | 5.52024 | ||||||
2% | 5.7 | 4.16126 | 4.68091 | 5.15113 | 4.68091 | |||||
16 | 4.16126 | 4.48139 | 5.15113 | 4.48139 | ||||||
-2 | 5.6884 | 1.5682 | 7.4958 | 6.0701 | ||||||
-1 | 4.8060 | 0.5089 | 7.4885 | 4.01579 | ||||||
0 | 3.0190 | 0.11391 | 4.6616 | 2.07580 | ||||||
1 | 1.6621 | 0.02079 | 1.69420 | 0.83367 | ||||||
2 | 0.7781 | 0.0034132 | -1.6029 | 0.287673 | ||||||
-1 | 1 | 4.63161 | 0.434089 | 5.70674 | 4.88936 | |||||
3 | 5.58803 | 0.44855 | 6.45215 | 4.57098 | ||||||
9 | 5.87033 | 0.46987 | 6.9390 | 3.86002 | ||||||
11 | 6.8723 | 0.473094 | 7.2379 | 3.85519 | ||||||
1 | 6.2 | 4.26126 | 0.41097 | 5.49747 | 5.54713 | |||||
5.5 | 4.26126 | 0.42796 | 5.49747 | 4.89344 | ||||||
5.2 | 4.26126 | 0.435245 | 5.49747 | 4.58897 | ||||||
4.5 | 4.26126 | 0.452571 | 5.49747 | 3.8860 |
Table 7 demonstrates the variation in SFC and Nusselt numbers for expansion and contraction cases at the lower disk. For contraction $ {\mathrm{\alpha }}_{\mathrm{*}} < 0 $ cases, contraction occurs when viscosity is enhanced, it is observed the increment in NTP increases the Nusselt number. The NTP and radius of particles have opposite natures on Nusselt number that is the Nusselt number is decrease as the increase in radius of particles. It is also evident that the amount of SFC and Nusselt number rises with volume fraction and magnetic parameter. For all three cases of shape size factor (sphere, cylindrical, laminar) the highest value of Nusselt number is achieved for aspherical shape. It is noticed that the value of $ {\mathrm{R}}_{\mathrm{e}} $ changes from negative to positive the increase the SFC and decrease the Nusselt number. It is observed that the NTP and Prandtl number have opposite in nature to the Nusselt number. For expansion $ {\mathrm{\alpha }}_{\mathrm{*}} > 0 $ cases, expansion occurs when viscosity decreases, it is observed that the effect of NTP, radius of particles, shape size factor, volume fraction, magnetic parameter, and Prandtl number have the same nature in both contraction /expansion cases on SFC and Nusselt number. The $ {\mathrm{R}}_{\mathrm{e}} $ have opposite behavior in both contraction /expansion cases on SFC and Nusselt numbers. Table 4 states the numerical stability of the results for$ \mathrm{f}\; (-1), \; \mathrm{f}\; \mathrm{\text{'}}\; (-1), \; \mathrm{a}\mathrm{n}\mathrm{d}\; \mathrm{f}\; \mathrm{\text{'}}\mathrm{\text{'}}\; (-1) $ at various values of$ \mathrm{\eta } $. Table 8 demonstrates the comparison result of the Nusselt number for the suction case via bvp4c method and shooting method. An excellent comparison between two numerical techniques is obtained which certifies the present finding validity. Table 9 shows the comparison results of the heat transfer rate of the present work with already published results of Kashif et al. [35]. An astonishing relationship has been accomplished which certifies the validity of present results.
h | r | $ {\mathrm{\varphi }}_{\mathrm{s}1}={\mathrm{\varphi }}_{\mathrm{s}2} $ | S | $ {\mathrm{R}}_{\mathrm{e}} $ | $ {\mathrm{M}}_{\mathrm{*}} $ | $ {\mathrm{P}}_{\mathrm{r}} $ | $ {\mathrm{C}}_{\mathrm{f}-1} $ for contraction case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for contraction case | $ {\mathrm{C}}_{\mathrm{f}-1} $ for expansion case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for expansion case |
0.4 | 0.8 | 2% | 3 | -1 | 1 | 6.2 | 4.16126 | 0.391643 | 2.42591 | 0.00196 |
0.8 | 4.16126 | 0.426513 | 2.42591 | 0.00200 | ||||||
1.2 | 4.16126 | 0.43887 | 2.42591 | 0.00206 | ||||||
1.6 | 4.16126 | 0.4430 | 2.42591 | 0.00209 | ||||||
0.2 | 1 | 4.16126 | 0.377217 | 2.42591 | 0.0021 | |||||
1.2 | 4.16126 | 0.36550 | 2.42591 | 0.00194 | ||||||
1.4 | 4.16126 | 0.355864 | 2.42591 | 0.00183201 | ||||||
1.6 | 4.16126 | 0.34729 | 2.42591 | 0.001807 | ||||||
1.8 | 4.16126 | 0.339912 | 2.42591 | 0.001767 | ||||||
2 | 4.16126 | 0.333482 | 2.42591 | 0.001766 | ||||||
0.8 | 3% | 4.4447 | 0.417098 | 2.55701 | 0.00198 | |||||
4% | 4.69021 | 0.419584 | 2.63048 | 0.00218 | ||||||
5% | 5.09975 | 0.42962 | 2.70455 | 0.00244 | ||||||
6% | 5.39447 | 0.43225 | 2.82254 | 0.00249 | ||||||
2% | 5.7 | 4.16126 | 4.68091 | 2.42591 | 0.00193 | |||||
16 | 4.16126 | 4.48139 | 2.42691 | 0.00179 | ||||||
-2 | 1.9029 | 1.5682 | 1.16283 | 0.000052 | ||||||
-1.5 | 2.6488 | 0.09384 | 1.15799 | 0.00039 | ||||||
-1 | 4.1626 | 0.05089 | 2.42591 | 0.00916 | ||||||
1 | 4.8060 | 0.01254 | 3.3248 | 0.0175 | ||||||
2 | 5.8672 | 0.00243 | 3.0047 | 0.0232 | ||||||
-1 | 1 | 41612 | 0.391643 | 2.42591 | 0.00192 | |||||
3 | 5.0499 | 0.39928 | 2.84139 | 0.00202 | ||||||
9 | 5.5127 | 0.417178 | 3.896 | 0.00224 | ||||||
11 | 5.7993 | 0.42936 | 4.20132 | 0.002304 | ||||||
1 | 6.2 | 4.1612 | 0.392613 | 2.42591 | 0.00192 | |||||
5.5 | 4.16126 | 0.41001 | 2.42591 | 0.0039 | ||||||
5.2 | 4.16126 | 0.41806 | 2.42591 | 0.00529 | ||||||
4.5 | 4.16126 | 0.43727 | 2.42591 | 0.01064 |
Bvp4c results | Shooting method results | |
h | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for suction case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for suction case |
0.4 | 0.391635 | 0.391643 |
0.8 | 0.426509 | 0.426513 |
1.2 | 0.438828 | 0.43887 |
1.6 | 0.443035 | 0.4430 |
0.4 | 0.377209 | 0.377217 |
Kashif et al [35] | Present results | Kashif et al [35] | Present results | ||
$ \mathrm{\varphi } $ | $ {\mathrm{\varphi }}_{\mathrm{s}1} $ | $ \mathrm{\alpha } < 0 $ | $ \mathrm{\alpha } < 0 $ | $ \mathrm{\alpha } > 0 $ | $ \mathrm{\alpha } > 0 $ |
0% | 0% | 3.1664 | 3.166501 | 1.6794 | 1.67956 |
5% | 5% | 3.6112 | 3.6113 | 1.9174 | 1.91749 |
10% | 10% | 4.1606 | 4.160708 | 2.2135 | 2.21378 |
15% | 15% | 4.8430 | 4.84315 | 2.5839 | 2.58399 |
20% | 20% | 5.6988 | 5.69893 | 3.0519 | 3.051989 |
Figure 2 shows a comparison graph of ENTC and NENTC we observed that ENTC is able to determine the high TC of nanofluids as compared to NENTC of hybrid nanofluids. The reason is that NENTC does not include the influence of the radius of particles and nanolayer thickness. Figures 3 and 4 are established to signify the consequences of expansion/contraction parameter on radial and axial velocity field for fixed values $ \mathrm{h}=0.4, \; \; \; \; \mathrm{r}=0.8, {\mathrm{\varphi }}_{\mathrm{s}1}={\mathrm{\varphi }}_{\mathrm{s}2}=0.02, {\mathrm{R}}_{\mathrm{e}}=-2.5, {\mathrm{P}}_{\mathrm{r}}=6.2, {\mathrm{M}}_{\mathrm{*}}=1. $ It is observed that $ {\mathrm{\alpha }}_{\mathrm{*}} $ changes from contraction to expansion axial velocity increases, whereas the increment in radial velocity in the region between the disks and decrement near the disk.
Figure 5 elaborates on the thermal phenomenon against the Prandtl number. If the value of $ {\mathrm{P}}_{\mathrm{r}} $ is decreased, then the maximum temperature profile achieved for $ {\mathrm{P}}_{\mathrm{r}} $= 3 at the lower disk and for $ {\mathrm{P}}_{\mathrm{r}} $ = 6.2 for an upper disk. The reason is that the Prandtl number is the product of diffusive momentum to the inverse of thermal diffusivity, so increasing the $ {\mathrm{P}}_{\mathrm{r}} $ momentum increases diffusivity, which decreases the coefficient of heat flux. Figure 6 is plotted to show the behavior of the magnetic parameters onto the radial velocity profile. It is observed that by increasing the magnetic parameter radial velocity component decreases. This is because by enhancing the magnetic value, Lorentz forces are produced, decreasing the axial momentum of fluid particles. We can conclude from this argument that the transverse application magnetic field normalizes fluid velocity. The magnetic effect causes the particles within the fluid to vibrate, which is governed by the Lorentz force.
Figure 7 is sketched to illustrate the impact of volume fraction on axial profile. It is examined that as the volume fraction value is increasing the axial component of velocity rises. Figure 8 represents that when disks are expanding, and fluid is sucked if the NTP is increased then the temperature profile increase at the upper disk and decreased at the lower disk.
The contour of variable M's influence on radial velocity is shown in Figure 9. In Figure 9, contour lines depicting variants on the radial velocity are sketched, showing the optimal change in velocity against edges and zero change at the Centre. The variation of temperature against (M) is depicted in Figure 10 by contour lines. Contour lines are shown to be roughly fat around the problem's midpoint, with a minimal decreasing pattern along the problem's perimeter.
The impact of nanolayer on TC of HNF flow with the influence of shape and size via porous surfaces is presented in this paper. Polymeric and CNT nanocomposite properties are combined with hybrid nanofluids. In terms of SFC and Nusselt numbers, numerical and graphical results are achieved. The contour graph of temperature and velocity profiles is drawn in this paper.
● effective nanolayer thermal conductivity indicates better results as compared to non-effective nanolayer thermal conductivity
● the NTP (h) has a significant effect on ENTC and the heat transfer rate of hybrid nanofluids
● the Nusselt number is increase with increment in values of NTP, volume fraction, and magnetic field parameter but decreases with the increase in radius of particles, S, $ {\mathrm{\alpha }}_{\bf{*}} $, $ {\mathrm{P}}_{\mathrm{r}} $ for suction case
● SFC rises with the increase in volume fraction, and magnetic field parameter and decreases against the value of $ {\mathrm{\alpha }}_{\bf{*}} $ for suction case
● the Nusselt number is rise with increment in values of NTP, volume fraction, magnetic field parameter, $ {\mathrm{P}}_{\mathrm{r}} $ but decrease with the increase in radius of particles, S, $ {\mathrm{R}}_{\mathrm{e}} $ for contraction
● SFC increases with the increase in $ {\mathrm{R}}_{\mathrm{e}} $, volume fraction, and magnetic field parameter for contraction
● the contrary effect of $ {\mathrm{R}}_{\mathrm{e}} $ in expansion case as compared contraction case to except NTP, S, r is seen. The effect of NTP, S, and r on Nusselt number and SFC are the same in both cases.
This work has been done for Newtonian hybrid nanofluid. In the future similar work can be done for non-Newtonian hybrid nanofluid and second-grade hybrid nanofluid.
This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, (grant number B05F650018).
The authors declare no conflict of interest.
[1] | Fox M (2010) Optical Properties of Solids, New York, NY: Oxford University Press. |
[2] |
Geller S (1967) Crystal chemistry of the garnets. Z Kristallogr 125: 1-47. doi: 10.1524/zkri.1967.125.125.1
![]() |
[3] |
Ashurov MKh, Rakov AF, Erzin RA (2001) Luminescence of defect centers in yttrium-aluminum garnet crystals. Solid State Commun 120: 491-494. doi: 10.1016/S0038-1098(01)00434-3
![]() |
[4] |
Bagdasarov KhS, Pasternak LB, Sevast'yanov BK (1977) Radiation color centers in Y3Al5O12:Cr3+ crystals. Sov J Quantum Elecron 7: 965-968. doi: 10.1070/QE1977v007n08ABEH012694
![]() |
[5] |
Bass M, Paladino AE (1967) Color centers in Yttrium Gallium Garnet and Yttrium Aluminum Garnet. J Appl Phys 38: 2706-2707. doi: 10.1063/1.1709988
![]() |
[6] |
Bernhard HJ (1978) Bound polarons in YAG crystals. Phys Status Solidi B 87: 213-219. doi: 10.1002/pssb.2220870125
![]() |
[7] |
Bunch JM (1977) Mollwo-Ivey relation between peak color-center absorption energy and average oxygen ion spacing in several oxides of group-II and -III metals. Phys Rev B 16: 724-725. doi: 10.1103/PhysRevB.16.724
![]() |
[8] |
Chakrabarti K (1988) Photobleaching and photoluminescence in neutron-irradiated YAG. J Phys Chem Solids 49: 1009-1011 doi: 10.1016/0022-3697(88)90146-1
![]() |
[9] | Kaczmarek SM (1999) Role of the type of impurity in radiation influence on oxide compounds. Cryst Res Technol 34: 737-743. |
[10] |
Kovaleva NS, Ivanov AO, Dubrovina ÉP (1981) Relationship between formation of radiation color centers and growth defects in YAG:Nd crystals. Sov J Quantum Electron 11: 1485-1488 doi: 10.1070/QE1981v011n11ABEH008633
![]() |
[11] |
Masumoto T, Kuwano Y (1985) Effects of oxygen pressure on optical absorption of YAG. Jpn J Appl Phys 24: 546-551. doi: 10.1143/JJAP.24.546
![]() |
[12] |
Mori K (1977) Transient colour centres caused by UV light irradiation in yttrium aluminium garnet crystals. Phys Status Solidi A 42: 375-384. doi: 10.1002/pssa.2210420142
![]() |
[13] |
Pujats A, Springis M (2001) The F-type centers in YAG crystals. Radiat Eff Defects Solids 155: 65-69. doi: 10.1080/10420150108214094
![]() |
[14] | Zorenko Y, Zorenko T, Voznyak T, et al. (2010) Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds. IOP Conf Ser Mater Sci Eng 15: 012060 |
[15] |
Lu L, Chen J, Wang W (2013) Wide bandgap Zn2GeO4 nanowires as photoanode for quantum dot sensitized solar cells. Appl Phys Lett 103: 123902. doi: 10.1063/1.4821541
![]() |
[16] | Batygov SKh, Voron'ko YuK, Denker BI, et al. (1972) Color centers in Y3Al5O12 crystals. Sov Phy Solid State 14: 839-841. |
[17] |
Varney CR, Mackay DT, Reda SM, et al. (2012) On the optical properties of undoped and rare-earth-doped yttrium aluminum garnet single crystals. J Phys D Appl Phys 45: 015103. doi: 10.1088/0022-3727/45/1/015103
![]() |
[18] |
Varney CR, Reda SM, Mackay DT, et al. (2011) Strong visible and near infrared luminescence in undoped YAG single crystals. AIP Advances 1: 042170. doi: 10.1063/1.3671646
![]() |
[19] | Varney CR (2012) Studies of trapping and luminescence phenomena in yttrium aluminum garnets [dissertation]. [Pullman (WA)]: Washington State University. |
[20] | Reda SM, Varney CR, Selim FA (2012) Radio-luminescence and absence of trapping defects in Nd-doped YAG single crystals, Results in Physics 2, 123-126. |
[21] | Fredrich-Thornton ST (2010) Nonlinear losses in single crystalline and ceramic Yb:YAG thin-disk lasers [dissertation]. [Hamburg (GER)]: University of Hamburg. |
[22] |
Guerassimova N, Dujardin C, Garnier N, et al. (2002) Charge-transfer luminescence and spectroscopic properties of Yb3+ in aluminum and gallium garnets. Nucl Instrum Methods Phys Res Sect A 486: 278-282. doi: 10.1016/S0168-9002(02)00718-0
![]() |
[23] |
Kamenskikh I, Dujardin C, Garnier N, et al. (2005) Temperature dependence of charge transfer and f-f luminescence of Yb3+ in garnets and YAP. J Phys Condens Matter 17: 5587-5594. doi: 10.1088/0953-8984/17/36/014
![]() |
[24] |
van Pieterson L, Heeroma M, de Heer E, et al. (2000) Charge transfer luminescence of Yb3+. J Lumin 91: 177-193. doi: 10.1016/S0022-2313(00)00214-3
![]() |
[25] |
Mackay DT, Varney CR, Buscher J, et al. (2012) Study of exciton dynamics in garnets by low temperature thermo-luminescence. J Appl Phys 112: 023522. doi: 10.1063/1.4739722
![]() |
[26] |
Selim FA, Varney CR, Tarun MC, et al. (2013) Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets. Phys Rev B 88: 174102. doi: 10.1103/PhysRevB.88.174102
![]() |
[27] |
Varney CR, Mackay DT, Pratt A, et al. (2012) Energy levels of exciton traps in yttrium aluminum garnet single crystals. J Appl Phys 111: 063505. doi: 10.1063/1.3693581
![]() |
[28] |
Varney CR, Selim FA (2014) Positron Lifetime Measurements of Vacancy Defects in Complex Oxides. Acta Phys Pol A 125: 764-766. doi: 10.12693/APhysPolA.125.764
![]() |
[29] | Kuklja MM Pandey R (1999) Atomistic modeling of point defects in yttrium aluminum garnet crystals. J Am Ceram Soc 82: 2881-2886. |
[30] |
Kuklja MM (2000) Defects in yttrium aluminum perovskite and garnet crystals: atomistic study. J Phys Condens Matter 12: 2953-2967. doi: 10.1088/0953-8984/12/13/307
![]() |
[31] |
Zorenko Yu, Voloshinovskii A, Savchyn V, et al. (2007) Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets. Phys Status Solidi B 244: 2180-2189. doi: 10.1002/pssb.200642431
![]() |
[32] |
Varney CR, Khamehchi MA, Ji J, et al. (2012) X-ray luminescence based spectrometer for investigation of scintillation properties. Rev Sci Instrum 83: 103112-103116. doi: 10.1063/1.4764772
![]() |
1. | Fatima Zohra Zaoui, Djamel Ouinas, Belkacem Achour, Mabrouk Touahmia, Mustapha Boukendakdji, Enamur R. Latifee, Ahmed A. Alawi Al-Naghi, Jaime Aurelio Viña Olay, Mathematical Approach for Mechanical Behaviour Analysis of FGM Plates on Elastic Foundation, 2022, 10, 2227-7390, 4764, 10.3390/math10244764 | |
2. | Mahnoor Sarfraz, Masood Khan, Thermodynamic irreversibility analysis of water conveying argentum and titania nanoparticles subject to inclined stretching surface, 2023, 98, 0031-8949, 025205, 10.1088/1402-4896/acab92 | |
3. | I. Rashid, T. Zubair, M. I. Asjad, S. Irshad, S. M. Eldin, The MHD graphene−CMC−water nanofluid past a stretchable wall with Joule heating and velocity slip impact: Coolant application, 2023, 10, 2296-424X, 10.3389/fphy.2022.1065982 | |
4. | Amjad Ali, Zainab Bukhari, Muhammad Amjad, Sohail Ahmad, Wasim Jamshed, Sayed M. El Din, Heat transfer analysis of the MHD stagnation-point flow of third-grade fluid over a porous sheet with thermal radiation effect: An algorithmic approach, 2023, 21, 2391-5471, 10.1515/phys-2022-0227 | |
5. | Muhammad Amin Sadiq Murad, Faraidun Kadir Hamasalh, Hajar F. Ismael, Numerical study of stagnation point flow of Casson-Carreau fluid over a continuous moving sheet, 2023, 8, 2473-6988, 7005, 10.3934/math.2023353 | |
6. | S.A. Abdollahi, P. Jalili, B. Jalili, H. Nourozpour, Y. Safari, P. Pasha, D.D. Ganji, Computer simulation of Cu: AlOOH/water in a microchannel heat sink using a porous media technique and solved by numerical analysis AGM and FEM, 2023, 20950349, 100432, 10.1016/j.taml.2023.100432 | |
7. | Yihao Shao, Huai Yang, Xiuya Guo, Huili Wang, Limei Zhu, Xuan Ma, Ruijuan Chen, Shufen Ruan, Lulu Ren, Qian Zheng, Thermal Conductivity Model of Porous Media Embedded with a Damaged Tree-like Branching Network Considering the Influence of Roughness, 2022, 7, 2504-3110, 5, 10.3390/fractalfract7010005 | |
8. | Yasir Nawaz, Muhammad Shoaib Arif, Kamaleldin Abodayeh, Muavia Mansoor, Finite difference schemes for MHD mixed convective Darcy–forchheimer flow of Non-Newtonian fluid over oscillatory sheet: A computational study, 2023, 11, 2296-424X, 10.3389/fphy.2023.1072296 | |
9. | Aziz Ur Rehman, Muhammad Bilal Riaz, Ilyas Khan, Abdullah Mohamed, Time fractional analysis of Casson fluid with application of novel hybrid fractional derivative operator, 2023, 8, 2473-6988, 8185, 10.3934/math.2023414 | |
10. | Mohamed Boujelbene, Sohail Rehman, Sultan Alqahtani, Sultan Alshehery, Sayed M. Eldin, Thermal transport and magnetohydrodynamics flow of generalized Newtonian nanofluid with inherent irreversibility between conduit with slip at the walls, 2023, 17, 1994-2060, 10.1080/19942060.2023.2182364 | |
11. | K Deka, G Sharma, R Paul, R Moulick, S Adhikari, S S Kausik, B K Saikia, Study of plasma sheath in the presence of dust particles in a magnetic mirror-like field configuration, 2023, 98, 0031-8949, 045608, 10.1088/1402-4896/acc0b4 | |
12. | Bing Zhang, Liqin Tang, Hongwei Zhang, Bagh Ali, Nehad Ali Shah, Yongseok Jeon, Finite element study of nanoparticles spacing and radius on dynamics of water fluid subject to microgravity environment, 2023, 47, 22113797, 106355, 10.1016/j.rinp.2023.106355 | |
13. | M. Bilal, M. Safdar, S. Ahmed, R. Ahmad Khan, Analytic similarity solutions for fully resolved unsteady laminar boundary layer flow and heat transfer in the presence of radiation, 2023, 9, 24058440, e14765, 10.1016/j.heliyon.2023.e14765 | |
14. | Kamran Ahmed, Tanvir Akbar, Iftikhar Ahmed, Taseer Muhammad, Muhammad Amjad, Mixed convective MHD flow of Williamson fluid over a nonlinear stretching curved surface with variable thermal conductivity and activation energy, 2023, 1040-7782, 1, 10.1080/10407782.2023.2194689 | |
15. | Sufian Munawar, Najma Saleem, Dharmendra Tripathi, Cilia and electroosmosis induced double diffusive transport of hybrid nanofluids through microchannel and entropy analysis, 2023, 12, 2192-8029, 10.1515/nleng-2022-0287 | |
16. | Qadeer Raza, M Zubair Akbar Qureshi, Shalan Alkarni, Bagh Ali, Ali Zain, Kanayo Kenneth Asogwa, Nehad Ali Shah, Se-Jin Yook, Significance of viscous dissipation, nanoparticles, and Joule heat on the dynamics of water: The case of two porous orthogonal disk, 2023, 2214157X, 103008, 10.1016/j.csite.2023.103008 | |
17. | Sumera Dero, Mustafa Abbas Fadhel, Liaquat Ali Lund, Nehad Ali Shah, Multiple solutions of unsteady flow of CNTs nanofluid over permeable shrinking surface with effects of dissipation and slip conditions, 2024, 38, 0217-9849, 10.1142/S0217984924501203 | |
18. | Umer Farooq, Musawara Safeer, Jifeng Cui, Muzamil Hussain, Nitasha Naheed, Forced convection analysis of Williamson-based magnetized hybrid nanofluid flow through a porous medium: Nonsimilar modeling, 2024, 1040-7790, 1, 10.1080/10407790.2023.2300704 | |
19. | Yasir Nawaz, Muhammad Shoaib Arif, Amna Nazeer, Javeria Nawaz Abbasi, Kamaleldin Abodayeh, A two‐stage reliable computational scheme for stochastic unsteady mixed convection flow of Casson nanofluid, 2024, 96, 0271-2091, 719, 10.1002/fld.5264 | |
20. | Talha Anwar, Poom Kumam, Essam R. El-Zahar, Kanokwan Sitthithakerngkiet, Shah Muhammad, Comparative thermal analysis of Nickel and Tantalum based hybrid nanofluid using constant proportional Caputo and Atangana–Baleanu operators with time-controlled condition, 2023, 49, 2214157X, 103202, 10.1016/j.csite.2023.103202 | |
21. | Moh Yaseen, Sawan Kumar Rawat, Umair Khan, Ioannis E Sarris, Humera Khan, Anup Singh Negi, Arshad Khan, El-Sayed M Sherif, Ahmed M Hassan, Aurang Zaib, Numerical analysis of magnetohydrodynamics in an Eyring–Powell hybrid nanofluid flow on wall jet heat and mass transfer, 2023, 34, 0957-4484, 485405, 10.1088/1361-6528/acf3f6 | |
22. | Samah Maatoug, Kamel Al-Khaled, Ali Raza, Taher Labidi, Lioua Kolsi, Wathek Chammam, Muqrin Almuqrin, Sami Ullah Khan, Fractional computations for free convective flow of Casson-hybrid nanofluid flow with sodium alginate and water as based materials, 2024, 38, 0217-9792, 10.1142/S0217979224502400 | |
23. | Ikram Ullah, Saira Shukat, Ashwag Albakri, Hamid Khan, Ahmed M. Galal, Wasim Jamshed, Thermal performance of aqueous alumina–titania hybrid nanomaterials dispersed in rotating channel, 2023, 37, 0217-9792, 10.1142/S0217979223502375 | |
24. | Xiaomang Miao, Fahid Riaz, Badr Alotaibi, Manoj Kumar Agrawal, Mohammed Abuhussain, Theyab R. Alsenani, Mansoureh Alizadeh Balderlou, Qing Lin, Performance enhancement of latent heat thermal energy storage system by using spiral fins in phase change material solidification process, 2023, 176, 09575820, 568, 10.1016/j.psep.2023.05.102 | |
25. | Seyed Esmail Razavi, Tohid Adibi, Shams Forruque Ahmed, Suvash C. Saha, Semi-analytical solution of nanofluid flow with convective and radiative heat transfer, 2024, 38, 0217-9792, 10.1142/S0217979224503454 | |
26. | Humaira Yasmin, Azzh Saad Alshehry, Abdul Hamid Ghanie, Rasool Shah, Stability of non-Newtonian nanofluid movement with heat/mass transportation passed through a hydro magnetic elongating/contracting sheet: multiple branches solutions, 2023, 13, 2045-2322, 10.1038/s41598-023-44640-3 | |
27. | F. Ali, A. Zaib, M. Faizan, S.S. Zafar, Shalan Alkarni, Nehad Ali Shah, Jae Dong Chung, Heat and mass exchanger analysis for Ree-Eyring hybrid nanofluid through a stretching sheet utilizing the homotopy perturbation method, 2024, 54, 2214157X, 104014, 10.1016/j.csite.2024.104014 | |
28. | Kanwal Jabeen, Bioconvective Carreau nanofluid flow with magnetic dipole, viscous, and ohmic dissipation effects subject to Arrhenius activation energy, 2024, 85, 1040-7782, 2341, 10.1080/10407782.2023.2221005 | |
29. | Danial Habib, Nadeem Salamat, Sajjad Hussain, Sohaib Abdal, Ahmed Kadhim Hussein, Bagh Ali, Variable viscosity effects on dynamic of non-Newtonian fluid nanofluid over a paraboloid of revolution via Keller box method, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05242-8 | |
30. | Dania Qaiser, Naseer M. Khan, Optimizing entropy in mixed convective MHD dissipative nanofluid with cross-diffusion and nonlinear velocity slip, 2024, 1040-7782, 1, 10.1080/10407782.2024.2345865 | |
31. | Prabhat Patel, Ravindra Pathak, Experimental analysis and comparison of thermophysical properties of the three different hybrid nano-catalyst blended diesel fuels, 2024, 1448-4846, 1, 10.1080/14484846.2024.2383041 | |
32. | Qadeer Raza, Xiaodong Wang, Bagh Ali, M. Zubair Akbar Qureshi, Ali J. Chamkha, Heat and mass transfer phenomenon and aligned entropy generation with simultaneous effect for magnetized ternary nanoparticles induced by ferro and nano-layer fluid flow of porous disk subject to motile microorganisms, 2023, 1040-7782, 1, 10.1080/10407782.2023.2292767 | |
33. | Soniya Hegde, N Srikantha, Ahmed Kadhim Hussein, Optimisation of time-dependent Sisko flow in a wire coating process using response surface methodology, 2024, 98, 0973-7111, 10.1007/s12043-024-02761-y | |
34. | B. Lavanya, J. Girish Kumar, M. Jayachandra Babu, C.S.K. Raju, Bander Almutairi, Nehad Ali Shah, Entropy generation minimization in the Carreau nanofluid flow over a convectively heated inclined plate with quadratic thermal radiation and chemical reaction: A Stefan blowing application, 2024, 13, 2212540X, 233, 10.1016/j.jppr.2024.04.004 | |
35. | H. Ashraf, Sadia Sabir, A.M. Siddiqui, Hamood Ur Rehman, Bander Almutairi, Nehad Ali Shah, Heat transfer analysis of temperature dependent viscosity Johnson–Segalman fluid film flow on a vertical heated belt, 2023, 49, 2214157X, 103362, 10.1016/j.csite.2023.103362 | |
36. | Fehmi Gamaoun, B. M. Shankaralingappa, K. Thanesh Kumar, B. Shanker, Raman Kumar, R. J. Punith Gowda, Consequence of the direction of uniform horizontal magnetic field on nanolubricant flow over a permeable rotating disk, 2024, 38, 0217-9849, 10.1142/S0217984924501732 | |
37. | Humaira Yasmin, Showkat Ahmad Lone, Hussam Alrabaiah, Zehba Raizah, Anwar Saeed, A numerical investigation of the two-dimensional magnetohydrodynamic water-based hybrid nanofluid flow composed of Fe3O4 and Au nanoparticles over a heated surface, 2024, 13, 2191-9097, 10.1515/ntrev-2024-0010 | |
38. | Sanatan Das, Tilak Kumar Pal, Rabindra Nath Jana, Thermal flow of dust particulates-laden fluid in a slanted channel subject to magnetic force, radiant heat flux, and slip and periodic thermal conditions, 2024, 2196-4378, 10.1007/s40571-024-00761-8 | |
39. | Mahi Jaiswal, B. N. Hanumagowda, P V Ananth Subray, S. V. K. Varma, Umair Khan, Ioannis E. Sarris, El-Sayed M. Sherif, Thermal scrutinization of a triangular porous fin induced by linear and nonlinear temperature-dependent heat generation and magnetic field effect: the case of Darcy model, 2024, 1951-6355, 10.1140/epjs/s11734-024-01114-5 | |
40. | Kefeng He, Jiale Chen, Jinying Yu, Lizhe Liang, Zhi Qun Tian, The mechanism of boiling heat transfer of polycarboxylate superplasticizer modified stereotaxically constructed graphene water-based nanofluid: Experiment and molecular dynamics simulation, 2024, 246, 13594311, 122956, 10.1016/j.applthermaleng.2024.122956 | |
41. | Z. Abbas, T. Rahim, J. Hasnain, N. Abid, Z.M. Shah, Entropy generation analysis of multi-mass diffusion in a nanofluid-interfaced three-phase viscous fluid in an inclined channel, 2023, 49, 2214157X, 103368, 10.1016/j.csite.2023.103368 | |
42. | Humaira Sharif, Bagh Ali, Iqra Saman, Nehad Ali Shah, Magda Abd El‐Rahman, Significance of tri‐hybrid nanoparticles on the dynamics of Ellis rotating nanofluid with thermal stratification, 2024, 104, 0044-2267, 10.1002/zamm.202300932 | |
43. | Kezheng Zhang, C.S.K. Raju, Kiran Sajjan, Bander Almutairi, Nehad Ali Shah, Sayed M. Eldin, Nonlinear free convective with longitudinal slits in the presence of super-hydrophobic and non-hydrophobic microchannels in a suspension of nanoparticles: Multi-Linear Regression Analysis, 2023, 49, 2214157X, 103138, 10.1016/j.csite.2023.103138 | |
44. | Jian Wang, Nehad Ali Shah, Bander Almutairi, Oh Kyung Kwon, Jae Dong Chung, Bvp4c approach and duality of hybrid nanofluid over extending and contracting sheet with chemical reaction and cross-diffusion effects, 2024, 57, 22113797, 107362, 10.1016/j.rinp.2024.107362 | |
45. | Shilpa B., Pudhari Srilatha, Umair Khan, Naveen Kumar R., Samia Ben Ahmed, Raman Kumar, Numerical study of thermal and solutal advancements in ZnO–SAE50 nanolubricant flow past a convergent/divergent channel with the effects of thermophoretic particle deposition, 2023, 5, 2516-0230, 6647, 10.1039/D3NA00816A | |
46. | Madhu J, Shreedevi Kalyan, Yamanappa Gudagi, Varun Kumar R S, Raman Kumar, S. Sureshkumar, Fluid sustainability by the effect of microrotational flow and chemical reactions in a vertical channel, 2024, 0228-6203, 1, 10.1080/02286203.2024.2319008 | |
47. | Zakir Hussain, Asad UR Rehman, Sergei Zuev, Kaouther Ghachem, Khurram Javid, Lioua Kolsi, Sami Ullah Khan, Hydrodynamic instability of graphene oxide-water (GO/H2O) suspension with thermo-capillary layers of shear-thinning fluid, 2024, 38, 0217-9792, 10.1142/S0217979224501650 | |
48. | Sun Yi, Azher M. Abed, Ahmed Deifalla, M. Riaz, Theyab R. Alsenani, Samia Elattar, Chun Yulei, Saleh Al Sulaie, Exergoeconomic evaluation of a novel multigeneration process using solar driven Kalina cycle integrated with gas turbine cycle, double-effect absorption chiller, and liquefied natural gas cold energy recovery, 2023, 176, 09575820, 271, 10.1016/j.psep.2023.05.077 | |
49. | Abdul Rauf, Hafiza Khadija Khan, Nehad Ali Shah, Exploring the influence of morphology on magnetized Ree–Eyring tri‐hybrid nanofluid flow between orthogonally moving coaxial disks using artificial neural networks with Levenberg–Marquardt scheme, 2024, 104, 0044-2267, 10.1002/zamm.202400147 | |
50. | Liaqat Ali, Pardeep Kumar, Hemant Poonia, Sujesh Areekara, Retna Apsari, The significant role of Darcy–Forchheimer and thermal radiation on Casson fluid flow subject to stretching surface: A case study of dusty fluid, 2024, 38, 0217-9849, 10.1142/S0217984923502159 | |
51. | J.K. Madhukesh, G.K. Ramesh, Krishna B. Chavaraddi, Emad H. Aly, Bander Almutairi, Nehad Ali Shah, Impact of active and passive control of nanoparticles in ternary nanofluids across a rotating sphere, 2023, 54, 22113797, 107069, 10.1016/j.rinp.2023.107069 | |
52. | Yasir Nawaz, Muhammad Shoaib Arif, Kamaleldin Abodayeh, Atif Hassan Soori, Umer Javed, A modification of explicit time integrator scheme for unsteady power-law nanofluid flow over the moving sheets, 2024, 12, 2296-598X, 10.3389/fenrg.2024.1335642 | |
53. | Heng Chen, Ibrahim B. Mansir, Bhupendra Singh Chauhan, Ahmed Al-Zahrani, Ahmed Deifalla, Yinhai Hua, Fan Peng, A comprehensive numerical study on the effectiveness of a rotational-based PTC collector integrated porous foam and PV module, 2023, 215, 09601481, 118869, 10.1016/j.renene.2023.05.127 | |
54. | Paresh Vyas, , Darcy-Forchhiemer thermofluidics of Micropolar-Casson fluid adjacent to a non-isothermal vertical plate with velocity slip using homotopy analysis method: Cattaneo-Christov flux, 2023, 1040-7790, 1, 10.1080/10407790.2023.2296075 | |
55. | Abdul Rauf, Fiaz Ahmad, Nehad Ali Shah, Exploring the influence of nanolayer morphology on magnetized tri-hybrid nanofluid flow using artificial neural networks and Levenberg–Marquardt optimization, 2024, 1040-7790, 1, 10.1080/10407790.2024.2346922 | |
56. | Thimlapura Nagaraju Tanuja, Linganna Kavitha, Pudhari Srilatha, Umair Khan, Sibyala Vijaykumar Varma, Rangaswamy Naveen Kumar, Amal Abdulrahman, Mohammed Modather Mohammed Abdou, Effects of dissipation and radiation on the Jeffrey fluid flow in between nano and hybrid nanofluid subject to porous medium, 2024, 104, 0044-2267, 10.1002/zamm.202300852 | |
57. | E. O. Titiloye, A. T. Adeosun, Mojeed T. Akolade, Y. O. Tijani, J. O. Olabode, THERMAL CRITICALITY OF ELECTROMAGNETOHYDRODYNAMIC REACTIVE SQUEEZED CASSON MATERIAL IN A COMBUSTIBLE CHANNEL: A SPECTRAL APPROACH , 2023, 15, 1940-2503, 69, 10.1615/ComputThermalScien.2023043611 | |
58. | Yi Liang, Cheng Wang, Pengtao Sun, An Interface-Fitted Fictitious Domain Finite Element Method for the Simulation of Neutrally Buoyant Particles in Plane Shear Flow, 2023, 8, 2311-5521, 229, 10.3390/fluids8080229 | |
59. | Saquib Ul Zaman, Muhammad Nauman Aslam, Mathematical analysis of Williamson nanofluid flow under radiation effects through slender cylinder, 2023, 0228-6203, 1, 10.1080/02286203.2023.2296635 | |
60. | Basma Souayeh, Zulqurnain Sabir, Designing Hyperbolic Tangent Sigmoid Function for Solving the Williamson Nanofluid Model, 2023, 7, 2504-3110, 350, 10.3390/fractalfract7050350 | |
61. | Kashif Ali, Sohail Ahmad, Shabbir Ahmad, Wasim Jamshed, Vineet Tirth, Ali Algahtani, Tawfiq Al-Mughanam, Kashif Irshad, Haifa Alqahtani, Sayed M. El Din, Insights into the thermal attributes of sodium alginate (NaCHO) based nanofluids in a three-dimensional rotating frame: A comparative case study, 2023, 49, 2214157X, 103211, 10.1016/j.csite.2023.103211 | |
62. | J. Madhu, J.K. Madhukesh, I. Sarris, B.C. Prasannakumara, G.K. Ramesh, Nehad Ali Shah, Bagh Ali, C.S.K. Raju, Abderrahim Wakif, Noor Muhammad, H. Ashraf, Influence of quadratic thermal radiation and activation energy impacts over oblique stagnation point hybrid nanofluid flow across a cylinder, 2024, 60, 2214157X, 104624, 10.1016/j.csite.2024.104624 | |
63. | P. Priyadharshini, M. Vanitha Archana, Nehad Ali Shah, Mansoor H. Alshehri, Ternary Hybrid Nanofluid Flow Emerging on a Symmetrically Stretching Sheet Optimization with Machine Learning Prediction Scheme, 2023, 15, 2073-8994, 1225, 10.3390/sym15061225 | |
64. | Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui, Numerical simulation of hybrid nanofluid flow consisting of polymer–CNT matrix nanocomposites subject to Lorentz force and heat source/sink across coaxial cylinders, 2024, 0217-9849, 10.1142/S021798492450386X | |
65. | Wenjie Lu, Umar Farooq, Muhammad Imran, Wathek Chammam, Sayed M. El Din, Ali Akgül, Comparative investigations of Ag/H2O nanofluid and Ag-CuO/H2O hybrid nanofluid with Darcy-Forchheimer flow over a curved surface, 2023, 12, 2191-9097, 10.1515/ntrev-2023-0136 | |
66. | Mohamed Boujelbene, Essam R. El-Zahar, Laila F. Seddek, Zia Ullah, O. D. Makinde, Viscous dissipation and variable viscosity impacts on oscillatory heat and mass transfer of gravity-driven reactive flow along heated plate, 2023, 35, 1070-6631, 10.1063/5.0157974 | |
67. | P. Sudarsana Reddy, P. Sreedevi, Unsteady gyrotactic microorganisms and magnetic nanofluid heat and mass transfer analysis inside a chamber with thermal radiation, 2024, 45, 0143-0750, 10.1080/01430750.2023.2277301 | |
68. | Amjad Salamah M Aljaloud, Physical interference of magnetic dipole for retardation type nanofluid with bioconvection phenomenon, 2023, 37, 0217-9792, 10.1142/S0217979223503101 | |
69. | Maddina Dinesh Kumar, Chakravarthula Siva Krishnam Raju, Essam R. El‐Zahar, Nehad Ali Shah, Se‐Jin Yook, Artificial neural network of thermal Buoyancy and Fourier flux impact on suction/injection‐based Darcy medium surface filled with hybrid and ternary nanoparticles, 2024, 104, 0044-2267, 10.1002/zamm.202300618 | |
70. | Lioua Kolsi, Ahmed Mir, Taseer Muhammad, Muhammad Bilal, Zubair Ahmad, Numerical simulation of heat and mass transfer through hybrid nanofluid flow consists of polymer/CNT matrix nanocomposites across parallel sheets, 2024, 108, 11100168, 319, 10.1016/j.aej.2024.07.084 | |
71. | Talha Anwar, Poom Kumam, Essam R. El-Zahar, Shah Muhammad, Laila F. Seddek, Thermal analysis of mineral oil-based hybrid nanofluid subject to time-dependent energy and flow conditions and multishaped nanoparticles, 2024, 149, 1388-6150, 6813, 10.1007/s10973-023-12622-2 | |
72. | Xianglong Liu, Zhaohui Wang, Quanjie Gao, Xiao Sun, Qianwen Yang, Haonan Yang, Field synergy analysis of heat transfer characteristics of mixed nanofluid flow in self-excited oscillating heat exchanger tubes, 2024, 149, 1388-6150, 4893, 10.1007/s10973-024-13032-8 | |
73. | Naveed Imran, Maryiam Javed, Muhammad Sohail, Mubashir Qayyum, Raja Mehmood Khan, Multi-objective study using entropy generation for Ellis fluid with slip conditions in a flexible channel, 2023, 37, 0217-9792, 10.1142/S0217979223503162 | |
74. | Sana Ullah Saqib, Umar Farooq, Nahid Fatima, Yin-Tzer Shih, Ahmed Mir, Lioua Kolsi, Novel Recurrent Neural Networks for Efficient Heat Transfer Analysis in Radiative Moving Porous Triangular Fin with Heat Generation, 2024, 2214157X, 105516, 10.1016/j.csite.2024.105516 | |
75. | S. Bilal, M.Z.A. Qureshi, M. Awais, Muhammad Farooq, Evaluating Formation of Interfacial Nanolayer of Au/Cu with Graphene Nanoparticles along with Magnetic-Morphologies by Considering Cattaneo-Christov heat flux Dynamics, 2024, 26668181, 101020, 10.1016/j.padiff.2024.101020 | |
76. | Sharanayya Swami, Suresh Biradar, Mohammed Qader Gubari, S. P. Samrat, Jagadish V. Tawade, Nitiraj Kulkarni, Mohammed Jameel, Dilsora Abduvalieva, R. Naveen Kumar, M. Ijaz Khan, Heat transfer mechanism for Newtonian and non-Newtonian casson hybrid nanofluid subject to thermophoresis and Brownian motion over a movable wedge surface, 2025, 8, 2520-8160, 10.1007/s41939-024-00704-z | |
77. | Yoon-Ji Yim, Young-Hoon Yoon, Seong-Hwang Kim, Jeong-Hoon Lee, Dong-Chul Chung, Byung-Joo Kim, Carbon Nanotube/Polymer Composites for Functional Applications, 2025, 17, 2073-4360, 119, 10.3390/polym17010119 | |
78. | Muhammad Faisal, Muhammad Zubair Akbar Qureshi, Nehad Ali Shah, Thermal performance of DispersedInorganic magnetic hybrid nanomaterials into mixed convective flow through flexible porous disks, 2025, 105, 0044-2267, 10.1002/zamm.202301049 | |
79. | Aroosa Ramzan, Moeed Ahmad, Waseem Abbas, Exploring the impact of morphological nanolayers on mixed convection in MHD nanofluids through a neurocomputational approach, 2025, 0961-5539, 10.1108/HFF-11-2024-0833 | |
80. | Sakeena Bibi, Taoufik Saidani, Aaqib Majeed, Nouman Ijaz, Thermal energy of paraffin based MHD rotating flow with molybdenum oxide and silver nanoparticles: applications in renewable energy systems, 2025, 8, 2520-8160, 10.1007/s41939-025-00777-4 | |
81. | Hafiz Muhammad Shahbaz, Iftikhar Ahmad, Intelligent predictive networks for MHD nanofluid with carbon nanotubes and thermal conductivity along a porous medium, 2025, 22113797, 108175, 10.1016/j.rinp.2025.108175 | |
82. | Qadeer Raza, Xiaodong Wang, Tahir Mushtaq, Bagh Ali, Nehad Ali Shah, Finite element analysis of nanolayer thermal conductivity in Boger nanofluid flow with radius of nanoparticle and motile microorganisms under time-dependent conditions, 2025, 194, 09600779, 116205, 10.1016/j.chaos.2025.116205 | |
83. | Thirupathi Thumma, Surender Ontela, Devarsu Radha Pyari, S.R. Mishra, Subhajit Panda, Heat Transfer Optimization in Magnetohydrodynamic Buoyancy-Driven Convective Hybrid Nanofluid with Carbon Nanotubes over a Slippery Rotating Porous Surface, 2025, 2666934X, 100132, 10.1016/j.jciso.2025.100132 | |
84. | Sharanayya Swami, Suresh Biradar, Jagadish V Tawade, Vediyappan Govindan, Haewon Byeon, Busayamas Pimpunchat, Brownian motion effects and thermophoresis on heat transmission mechanism of hybrid nano liquid flow over a stretched wedge surface, 2025, 14, 26668181, 101157, 10.1016/j.padiff.2025.101157 | |
85. | P. K. Ratha, S. R. Mishra, Subhajit Panda, Kottakkaran Sooppy Nisar, Time-dependent squeezing flow analysis of trihybrid nanofluid within two parallel plates: Targeted drug delivery system, 2025, 1388-6150, 10.1007/s10973-025-14190-z | |
86. | Kainat Yasin, M. Zubair Akbar Qureshi, Ali Ovais, Muhammad Waheed Rasheed, Abdu Alameri, Modeling magnetohydrodynamic ternary nanofluid flow over rotating porous discs with interfacial morphology effects, 2025, 7, 3004-9261, 10.1007/s42452-025-06862-0 | |
87. | S. Manjunath, T. N. Tanuja, M. Ijaz Khan, Barno Abdullaeva, Manish Gupta, Numerical and ANN analysis of MWCNT–CuO–Fe₃O₄–H₂O nanofluid flow under magnetic dipole influence, 2025, 1388-6150, 10.1007/s10973-025-14296-4 |
For nanofluid | For HNF |
$ {\mathrm{\rho }}_{\mathrm{n}\mathrm{f}}=\left(1-\mathrm{\varphi }\right){\mathrm{\rho }}_{\mathrm{f}}+\mathrm{\varphi }{\mathrm{\rho }}_{\mathrm{s}1} $, | $ {\mathrm{\rho }}_{\mathrm{h}\mathrm{n}\mathrm{f}}=\left(1-{\mathrm{\varphi }}_{\mathrm{s}1}-{\mathrm{\varphi }}_{\mathrm{s}2}\right){\mathrm{\rho }}_{\mathrm{f}}+{\mathrm{\varphi }}_{\mathrm{s}1}{\mathrm{\rho }}_{\mathrm{s}1}+{\mathrm{\varphi }}_{2}{\mathrm{\rho }}_{\mathrm{s}2} $, |
$ {\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{n}\mathrm{f}}=\left(1-\mathrm{\varphi }\right){\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{f}}+\mathrm{\varphi }{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{s}1}, $ | $ {\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{h}\mathrm{n}\mathrm{f}}=\left(1-{\mathrm{\varphi }}_{\mathrm{s}1}-{\mathrm{\varphi }}_{\mathrm{s}2}\right){\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{f}}+{\mathrm{\varphi }}_{\mathrm{s}1}{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{s}1}+{\mathrm{\varphi }}_{2}{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{s}2} $, |
$ {\mathrm{\mu }}_{\mathrm{n}\mathrm{f}}=\frac{{\mathrm{\mu }}_{\mathrm{f}}}{{\left(1-\mathrm{\varphi }\right)}^{2.5}} $, | $ {\mathrm{\mu }}_{\mathrm{h}\mathrm{n}\mathrm{f}}=\frac{{\mathrm{\mu }}_{\mathrm{f}}}{{\left(1-{\mathrm{\varphi }}_{1}-{\mathrm{\varphi }}_{2}\right)}^{2.5}} $, |
$ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}\mathrm{l}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\mathrm{\varphi }}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\mathrm{\varphi }}\right] $, where $ {\mathrm{k}}_{\mathrm{p}\mathrm{e}}=\frac{\left[2\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)\right]\mathrm{\lambda }}{-\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)}{\mathrm{k}}_{\mathrm{s}} $, |
$ \frac{{\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}\mathrm{l}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}\,\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}2}}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}\,\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}2}}\right] $, where $ \frac{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\,right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\,\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}\right] $, where $ {\mathrm{k}}_{\mathrm{p}\mathrm{e}1}=\frac{\left[2\left(1-{\mathrm{\lambda }}_{1}\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2{\mathrm{\lambda }}_{1}\right)\right]{\mathrm{\lambda }}_{1}}{-\left(1-{\mathrm{\lambda }}_{1}\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2{\mathrm{\lambda }}_{1}\right)}{\mathrm{k}}_{\mathrm{s}1} $, $ {\mathrm{k}}_{\mathrm{p}\mathrm{e}2}=\frac{\left[2\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)\right]\mathrm{\lambda }}{-\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)}{\mathrm{k}}_{\mathrm{s}2} $, |
$ \frac{{\sigma }_{nf}}{{\sigma }_{f}}=\frac{{\sigma }_{s1}+2{\sigma }_{f}-2{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})}{{\sigma }_{s1}+2{\sigma }_{f}+{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})} $. | $ \frac{{\sigma }_{hnf}}{{\sigma }_{bf}}=\frac{{\sigma }_{s2}+2{\sigma }_{bf}-2{\mathrm{\varphi }}_{2}({\sigma }_{bf}-{\sigma }_{s2})}{{\sigma }_{s2}+2{\sigma }_{bf}+{\mathrm{\varphi }}_{2}({\sigma }_{bf}-{\sigma }_{s2})} $, where $ \frac{{\sigma }_{bf}}{{\sigma }_{f}}=\frac{{\sigma }_{s1}+2{\sigma }_{f}-2{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})}{{\sigma }_{s1}+2{\sigma }_{f}+{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})} $. |
Physical properties | Base fluid | Nanoparticles | |
Water (H2O) | PTFE | SWCNT | |
$ {\mathrm{C}}_{\mathrm{P}}(\mathrm{j}/\mathrm{k}\mathrm{g}\; \mathrm{K}) $ | 4179 | 970 | 425 |
$ \mathrm{\rho }(\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3}) $ | 997 | 2200 | 2600 |
$ \mathrm{K}(\mathrm{W}/\mathrm{m}\mathrm{K}) $ | 0.608 | 0.25 | 6600 |
Maxwell model | Hamilton and Crosser (H-C) model | Xue model |
$ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\frac{{\mathrm{k}}_{\mathrm{s}}+2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}-2\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})}{{\mathrm{k}}_{\mathrm{s}}+2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})} $ | $ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\frac{{\mathrm{k}}_{\mathrm{s}}+(\mathrm{S}-1){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-(\mathrm{S}-1)\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})}{{\mathrm{k}}_{\mathrm{s}}+(\mathrm{S}-1){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})} $ | $ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\frac{1-\mathrm{\varphi }+2\mathrm{\varphi }\left[\frac{{\mathrm{k}}_{\mathrm{s}}}{\left({\mathrm{k}}_{\mathrm{s}}-{\mathrm{k}}_{\mathrm{b}\mathrm{f}}\right)}\right]\mathrm{I}\mathrm{n}\left[\frac{{\mathrm{k}}_{\mathrm{s}}+{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}\right]}{1-\mathrm{\varphi }+2\mathrm{\varphi }\left[\frac{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{\left({\mathrm{k}}_{\mathrm{s}}-{\mathrm{k}}_{\mathrm{b}\mathrm{f}}\right)}\right]\mathrm{I}\mathrm{n}\left[\frac{{\mathrm{k}}_{\mathrm{s}}+{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}\right]} $ |
$ \mathrm{\eta } $ | $ \mathrm{f}\left(\mathrm{\eta }\right) $ | $ \mathrm{f}\mathrm{\text{'}}\left(\mathrm{\eta }\right) $ | $ \mathrm{f}\mathrm{\text{'}}\mathrm{\text{'}}\left(\mathrm{\eta }\right) $ |
-1 | -1 | 0 | 1.23169 |
-0.8 | -0.971619 | 0.303868 | 1.83141 |
-0.6 | -0.869844 | 0.734952 | 2.45554 |
-0.4 | -0.671254 | 1.25769 | 2.64651 |
-0.2 | -0.370295 | 1.72443 | 1.82153 |
0 | 4.8871×10(-8) | 1.91717 | -5.09381×10(-8) |
0.2 | 0.370295 | 1.72443 | -1.82153 |
0.4 | 0.671254 | 1.25769 | -2.64651 |
0.6 | 0.869844 | 0.734952 | -2.45554 |
0.8 | 0.971619 | 0.303868 | -1.83141 |
1 | 1 | 0 | -1.23169 |
h | r | $ {\mathrm{\varphi }}_{\mathrm{s}1}={\mathrm{\varphi }}_{\mathrm{s}2} $ | S | $ {\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}\mathrm{l}} $ | $ {\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}} $ |
0.4 | 0.8 | 2% | 3 | 1.25951 | 1.04573 |
0.6 | 1.39172 | 1.04573 | |||
0.8 | 1.4749 | 1.04573 | |||
1 | 1.52875 | 1.04573 | |||
1.2 | 1.56473 | 1.04573 | |||
1.4 | 1.58951 | 1.04573 | |||
1.6 | 1.60707 | 1.04573 | |||
0.4 | 1 | 2% | 3 | 1.25951 | 1.04573 |
1.2 | 1.18620 | 1.04573 | |||
1.4 | 1.08329 | 1.04573 | |||
1.6 | 1.04631 | 1.04573 | |||
1.8 | 1.01581 | 1.04573 | |||
2 | 0.990267 | 1.04573 | |||
0.4 | 0.8 | 3% | 3 | 1.29148 | 1.06891 |
4% | 1.32414 | 1.09232 | |||
5% | 1.35752 | 1.11595 | |||
6% | 1.39162 | 1.13982 | |||
7% | 1.42647 | 1.16394 | |||
8% | 1.46208 | 1.18831 | |||
0.2 | 0.8 | 2% | 3 | 1.25951 | $ 1.04573 $ |
5.7 | $ 1.23202 $ | $ 1.01163 $ | |||
16 | $ 1.18829 $ | $ 1.00984 $ |
h | r | $ {\mathrm{\varphi }}_{\mathrm{s}1}={\mathrm{\varphi }}_{\mathrm{s}2} $ | S | $ {\mathrm{\alpha }}_{\mathrm{*}} $ | $ {\mathrm{M}}_{\mathrm{*}} $ | $ {\mathrm{P}}_{\mathrm{r}} $ | $ {\mathrm{C}}_{\mathrm{f}-1} $ for suction case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for suction case | $ {\mathrm{C}}_{\mathrm{f}-1} $ for injection case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for injection case |
0.4 | 0.8 | 2% | 3 | -1 | 1 | 6.2 | 4.1612 | 0.391643 | 5.15113 | 6.38635 |
0.8 | 4.1612 | 0.426513 | 5.15113 | 6.97705 | ||||||
1.2 | 4.1612 | 0.43887 | 5.15113 | 7.27113 | ||||||
1.6 | 4.1612 | 0.4430 | 5.15113 | 7.36504 | ||||||
0.2 | 1 | 2% | 4.1612 | 0.377217 | 5.15113 | 6.11274 | ||||
1.2 | 4.1612 | 0.36550 | 5.15113 | 5.91552 | ||||||
1.4 | 4.1612 | 0.355864 | 5.15113 | 5.73457 | ||||||
1.6 | 4.1612 | 0.34729 | 5.15113 | 5.5923 | ||||||
1.8 | 4.1612 | 0.339912 | 5.15113 | 5.44889 | ||||||
2 | 4.1612 | 0.333482 | 5.15113 | 5.34295 | ||||||
0.8 | 3% | 4.4447 | 0.417098 | 5.99246 | 5.22673 | |||||
4% | 4.6902 | 0.419584 | 6.10532 | 5.37543 | ||||||
5% | 5.09975 | 0.42962 | 6.45018 | 5.40737 | ||||||
6% | 5.39447 | 0.43225 | 7.33692 | 5.52024 | ||||||
2% | 5.7 | 4.16126 | 4.68091 | 5.15113 | 4.68091 | |||||
16 | 4.16126 | 4.48139 | 5.15113 | 4.48139 | ||||||
-2 | 5.6884 | 1.5682 | 7.4958 | 6.0701 | ||||||
-1 | 4.8060 | 0.5089 | 7.4885 | 4.01579 | ||||||
0 | 3.0190 | 0.11391 | 4.6616 | 2.07580 | ||||||
1 | 1.6621 | 0.02079 | 1.69420 | 0.83367 | ||||||
2 | 0.7781 | 0.0034132 | -1.6029 | 0.287673 | ||||||
-1 | 1 | 4.63161 | 0.434089 | 5.70674 | 4.88936 | |||||
3 | 5.58803 | 0.44855 | 6.45215 | 4.57098 | ||||||
9 | 5.87033 | 0.46987 | 6.9390 | 3.86002 | ||||||
11 | 6.8723 | 0.473094 | 7.2379 | 3.85519 | ||||||
1 | 6.2 | 4.26126 | 0.41097 | 5.49747 | 5.54713 | |||||
5.5 | 4.26126 | 0.42796 | 5.49747 | 4.89344 | ||||||
5.2 | 4.26126 | 0.435245 | 5.49747 | 4.58897 | ||||||
4.5 | 4.26126 | 0.452571 | 5.49747 | 3.8860 |
h | r | $ {\mathrm{\varphi }}_{\mathrm{s}1}={\mathrm{\varphi }}_{\mathrm{s}2} $ | S | $ {\mathrm{R}}_{\mathrm{e}} $ | $ {\mathrm{M}}_{\mathrm{*}} $ | $ {\mathrm{P}}_{\mathrm{r}} $ | $ {\mathrm{C}}_{\mathrm{f}-1} $ for contraction case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for contraction case | $ {\mathrm{C}}_{\mathrm{f}-1} $ for expansion case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for expansion case |
0.4 | 0.8 | 2% | 3 | -1 | 1 | 6.2 | 4.16126 | 0.391643 | 2.42591 | 0.00196 |
0.8 | 4.16126 | 0.426513 | 2.42591 | 0.00200 | ||||||
1.2 | 4.16126 | 0.43887 | 2.42591 | 0.00206 | ||||||
1.6 | 4.16126 | 0.4430 | 2.42591 | 0.00209 | ||||||
0.2 | 1 | 4.16126 | 0.377217 | 2.42591 | 0.0021 | |||||
1.2 | 4.16126 | 0.36550 | 2.42591 | 0.00194 | ||||||
1.4 | 4.16126 | 0.355864 | 2.42591 | 0.00183201 | ||||||
1.6 | 4.16126 | 0.34729 | 2.42591 | 0.001807 | ||||||
1.8 | 4.16126 | 0.339912 | 2.42591 | 0.001767 | ||||||
2 | 4.16126 | 0.333482 | 2.42591 | 0.001766 | ||||||
0.8 | 3% | 4.4447 | 0.417098 | 2.55701 | 0.00198 | |||||
4% | 4.69021 | 0.419584 | 2.63048 | 0.00218 | ||||||
5% | 5.09975 | 0.42962 | 2.70455 | 0.00244 | ||||||
6% | 5.39447 | 0.43225 | 2.82254 | 0.00249 | ||||||
2% | 5.7 | 4.16126 | 4.68091 | 2.42591 | 0.00193 | |||||
16 | 4.16126 | 4.48139 | 2.42691 | 0.00179 | ||||||
-2 | 1.9029 | 1.5682 | 1.16283 | 0.000052 | ||||||
-1.5 | 2.6488 | 0.09384 | 1.15799 | 0.00039 | ||||||
-1 | 4.1626 | 0.05089 | 2.42591 | 0.00916 | ||||||
1 | 4.8060 | 0.01254 | 3.3248 | 0.0175 | ||||||
2 | 5.8672 | 0.00243 | 3.0047 | 0.0232 | ||||||
-1 | 1 | 41612 | 0.391643 | 2.42591 | 0.00192 | |||||
3 | 5.0499 | 0.39928 | 2.84139 | 0.00202 | ||||||
9 | 5.5127 | 0.417178 | 3.896 | 0.00224 | ||||||
11 | 5.7993 | 0.42936 | 4.20132 | 0.002304 | ||||||
1 | 6.2 | 4.1612 | 0.392613 | 2.42591 | 0.00192 | |||||
5.5 | 4.16126 | 0.41001 | 2.42591 | 0.0039 | ||||||
5.2 | 4.16126 | 0.41806 | 2.42591 | 0.00529 | ||||||
4.5 | 4.16126 | 0.43727 | 2.42591 | 0.01064 |
Bvp4c results | Shooting method results | |
h | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for suction case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for suction case |
0.4 | 0.391635 | 0.391643 |
0.8 | 0.426509 | 0.426513 |
1.2 | 0.438828 | 0.43887 |
1.6 | 0.443035 | 0.4430 |
0.4 | 0.377209 | 0.377217 |
Kashif et al [35] | Present results | Kashif et al [35] | Present results | ||
$ \mathrm{\varphi } $ | $ {\mathrm{\varphi }}_{\mathrm{s}1} $ | $ \mathrm{\alpha } < 0 $ | $ \mathrm{\alpha } < 0 $ | $ \mathrm{\alpha } > 0 $ | $ \mathrm{\alpha } > 0 $ |
0% | 0% | 3.1664 | 3.166501 | 1.6794 | 1.67956 |
5% | 5% | 3.6112 | 3.6113 | 1.9174 | 1.91749 |
10% | 10% | 4.1606 | 4.160708 | 2.2135 | 2.21378 |
15% | 15% | 4.8430 | 4.84315 | 2.5839 | 2.58399 |
20% | 20% | 5.6988 | 5.69893 | 3.0519 | 3.051989 |
For nanofluid | For HNF |
$ {\mathrm{\rho }}_{\mathrm{n}\mathrm{f}}=\left(1-\mathrm{\varphi }\right){\mathrm{\rho }}_{\mathrm{f}}+\mathrm{\varphi }{\mathrm{\rho }}_{\mathrm{s}1} $, | $ {\mathrm{\rho }}_{\mathrm{h}\mathrm{n}\mathrm{f}}=\left(1-{\mathrm{\varphi }}_{\mathrm{s}1}-{\mathrm{\varphi }}_{\mathrm{s}2}\right){\mathrm{\rho }}_{\mathrm{f}}+{\mathrm{\varphi }}_{\mathrm{s}1}{\mathrm{\rho }}_{\mathrm{s}1}+{\mathrm{\varphi }}_{2}{\mathrm{\rho }}_{\mathrm{s}2} $, |
$ {\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{n}\mathrm{f}}=\left(1-\mathrm{\varphi }\right){\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{f}}+\mathrm{\varphi }{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{s}1}, $ | $ {\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{h}\mathrm{n}\mathrm{f}}=\left(1-{\mathrm{\varphi }}_{\mathrm{s}1}-{\mathrm{\varphi }}_{\mathrm{s}2}\right){\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{f}}+{\mathrm{\varphi }}_{\mathrm{s}1}{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{s}1}+{\mathrm{\varphi }}_{2}{\left(\mathrm{\rho }{\mathrm{C}}_{\mathrm{p}}\right)}_{\mathrm{s}2} $, |
$ {\mathrm{\mu }}_{\mathrm{n}\mathrm{f}}=\frac{{\mathrm{\mu }}_{\mathrm{f}}}{{\left(1-\mathrm{\varphi }\right)}^{2.5}} $, | $ {\mathrm{\mu }}_{\mathrm{h}\mathrm{n}\mathrm{f}}=\frac{{\mathrm{\mu }}_{\mathrm{f}}}{{\left(1-{\mathrm{\varphi }}_{1}-{\mathrm{\varphi }}_{2}\right)}^{2.5}} $, |
$ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}\mathrm{l}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\mathrm{\varphi }}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}}\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\mathrm{\varphi }}\right] $, where $ {\mathrm{k}}_{\mathrm{p}\mathrm{e}}=\frac{\left[2\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)\right]\mathrm{\lambda }}{-\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)}{\mathrm{k}}_{\mathrm{s}} $, |
$ \frac{{\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}\mathrm{l}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}\,\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}2}}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}2}\,\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}2}}\right] $, where $ \frac{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\,right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\,\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}\right] $, where $ {\mathrm{k}}_{\mathrm{p}\mathrm{e}1}=\frac{\left[2\left(1-{\mathrm{\lambda }}_{1}\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2{\mathrm{\lambda }}_{1}\right)\right]{\mathrm{\lambda }}_{1}}{-\left(1-{\mathrm{\lambda }}_{1}\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2{\mathrm{\lambda }}_{1}\right)}{\mathrm{k}}_{\mathrm{s}1} $, $ {\mathrm{k}}_{\mathrm{p}\mathrm{e}2}=\frac{\left[2\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)\right]\mathrm{\lambda }}{-\left(1-\mathrm{\lambda }\right)+{\left(1+{\mathrm{\beta }}_{1}\right)}^{3}\left(1+2\mathrm{\lambda }\right)}{\mathrm{k}}_{\mathrm{s}2} $, |
$ \frac{{\sigma }_{nf}}{{\sigma }_{f}}=\frac{{\sigma }_{s1}+2{\sigma }_{f}-2{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})}{{\sigma }_{s1}+2{\sigma }_{f}+{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})} $. | $ \frac{{\sigma }_{hnf}}{{\sigma }_{bf}}=\frac{{\sigma }_{s2}+2{\sigma }_{bf}-2{\mathrm{\varphi }}_{2}({\sigma }_{bf}-{\sigma }_{s2})}{{\sigma }_{s2}+2{\sigma }_{bf}+{\mathrm{\varphi }}_{2}({\sigma }_{bf}-{\sigma }_{s2})} $, where $ \frac{{\sigma }_{bf}}{{\sigma }_{f}}=\frac{{\sigma }_{s1}+2{\sigma }_{f}-2{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})}{{\sigma }_{s1}+2{\sigma }_{f}+{\mathrm{\varphi }}_{1}({\sigma }_{f}-{\sigma }_{s1})} $. |
Physical properties | Base fluid | Nanoparticles | |
Water (H2O) | PTFE | SWCNT | |
$ {\mathrm{C}}_{\mathrm{P}}(\mathrm{j}/\mathrm{k}\mathrm{g}\; \mathrm{K}) $ | 4179 | 970 | 425 |
$ \mathrm{\rho }(\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3}) $ | 997 | 2200 | 2600 |
$ \mathrm{K}(\mathrm{W}/\mathrm{m}\mathrm{K}) $ | 0.608 | 0.25 | 6600 |
Maxwell model | Hamilton and Crosser (H-C) model | Xue model |
$ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\frac{{\mathrm{k}}_{\mathrm{s}}+2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}-2\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})}{{\mathrm{k}}_{\mathrm{s}}+2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})} $ | $ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\frac{{\mathrm{k}}_{\mathrm{s}}+(\mathrm{S}-1){\mathrm{k}}_{\mathrm{b}\mathrm{f}}-(\mathrm{S}-1)\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})}{{\mathrm{k}}_{\mathrm{s}}+(\mathrm{S}-1){\mathrm{k}}_{\mathrm{b}\mathrm{f}}+\mathrm{\varphi }({\mathrm{k}}_{\mathrm{b}\mathrm{f}}-{\mathrm{k}}_{\mathrm{s}})} $ | $ \frac{{\mathrm{k}}_{\mathrm{n}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}=\frac{1-\mathrm{\varphi }+2\mathrm{\varphi }\left[\frac{{\mathrm{k}}_{\mathrm{s}}}{\left({\mathrm{k}}_{\mathrm{s}}-{\mathrm{k}}_{\mathrm{b}\mathrm{f}}\right)}\right]\mathrm{I}\mathrm{n}\left[\frac{{\mathrm{k}}_{\mathrm{s}}+{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}\right]}{1-\mathrm{\varphi }+2\mathrm{\varphi }\left[\frac{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{\left({\mathrm{k}}_{\mathrm{s}}-{\mathrm{k}}_{\mathrm{b}\mathrm{f}}\right)}\right]\mathrm{I}\mathrm{n}\left[\frac{{\mathrm{k}}_{\mathrm{s}}+{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{2{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}\right]} $ |
$ \mathrm{\eta } $ | $ \mathrm{f}\left(\mathrm{\eta }\right) $ | $ \mathrm{f}\mathrm{\text{'}}\left(\mathrm{\eta }\right) $ | $ \mathrm{f}\mathrm{\text{'}}\mathrm{\text{'}}\left(\mathrm{\eta }\right) $ |
-1 | -1 | 0 | 1.23169 |
-0.8 | -0.971619 | 0.303868 | 1.83141 |
-0.6 | -0.869844 | 0.734952 | 2.45554 |
-0.4 | -0.671254 | 1.25769 | 2.64651 |
-0.2 | -0.370295 | 1.72443 | 1.82153 |
0 | 4.8871×10(-8) | 1.91717 | -5.09381×10(-8) |
0.2 | 0.370295 | 1.72443 | -1.82153 |
0.4 | 0.671254 | 1.25769 | -2.64651 |
0.6 | 0.869844 | 0.734952 | -2.45554 |
0.8 | 0.971619 | 0.303868 | -1.83141 |
1 | 1 | 0 | -1.23169 |
h | r | $ {\mathrm{\varphi }}_{\mathrm{s}1}={\mathrm{\varphi }}_{\mathrm{s}2} $ | S | $ {\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}\mathrm{l}} $ | $ {\mathrm{k}}_{\mathrm{h}\mathrm{n}\mathrm{f}} $ |
0.4 | 0.8 | 2% | 3 | 1.25951 | 1.04573 |
0.6 | 1.39172 | 1.04573 | |||
0.8 | 1.4749 | 1.04573 | |||
1 | 1.52875 | 1.04573 | |||
1.2 | 1.56473 | 1.04573 | |||
1.4 | 1.58951 | 1.04573 | |||
1.6 | 1.60707 | 1.04573 | |||
0.4 | 1 | 2% | 3 | 1.25951 | 1.04573 |
1.2 | 1.18620 | 1.04573 | |||
1.4 | 1.08329 | 1.04573 | |||
1.6 | 1.04631 | 1.04573 | |||
1.8 | 1.01581 | 1.04573 | |||
2 | 0.990267 | 1.04573 | |||
0.4 | 0.8 | 3% | 3 | 1.29148 | 1.06891 |
4% | 1.32414 | 1.09232 | |||
5% | 1.35752 | 1.11595 | |||
6% | 1.39162 | 1.13982 | |||
7% | 1.42647 | 1.16394 | |||
8% | 1.46208 | 1.18831 | |||
0.2 | 0.8 | 2% | 3 | 1.25951 | $ 1.04573 $ |
5.7 | $ 1.23202 $ | $ 1.01163 $ | |||
16 | $ 1.18829 $ | $ 1.00984 $ |
h | r | $ {\mathrm{\varphi }}_{\mathrm{s}1}={\mathrm{\varphi }}_{\mathrm{s}2} $ | S | $ {\mathrm{\alpha }}_{\mathrm{*}} $ | $ {\mathrm{M}}_{\mathrm{*}} $ | $ {\mathrm{P}}_{\mathrm{r}} $ | $ {\mathrm{C}}_{\mathrm{f}-1} $ for suction case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for suction case | $ {\mathrm{C}}_{\mathrm{f}-1} $ for injection case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for injection case |
0.4 | 0.8 | 2% | 3 | -1 | 1 | 6.2 | 4.1612 | 0.391643 | 5.15113 | 6.38635 |
0.8 | 4.1612 | 0.426513 | 5.15113 | 6.97705 | ||||||
1.2 | 4.1612 | 0.43887 | 5.15113 | 7.27113 | ||||||
1.6 | 4.1612 | 0.4430 | 5.15113 | 7.36504 | ||||||
0.2 | 1 | 2% | 4.1612 | 0.377217 | 5.15113 | 6.11274 | ||||
1.2 | 4.1612 | 0.36550 | 5.15113 | 5.91552 | ||||||
1.4 | 4.1612 | 0.355864 | 5.15113 | 5.73457 | ||||||
1.6 | 4.1612 | 0.34729 | 5.15113 | 5.5923 | ||||||
1.8 | 4.1612 | 0.339912 | 5.15113 | 5.44889 | ||||||
2 | 4.1612 | 0.333482 | 5.15113 | 5.34295 | ||||||
0.8 | 3% | 4.4447 | 0.417098 | 5.99246 | 5.22673 | |||||
4% | 4.6902 | 0.419584 | 6.10532 | 5.37543 | ||||||
5% | 5.09975 | 0.42962 | 6.45018 | 5.40737 | ||||||
6% | 5.39447 | 0.43225 | 7.33692 | 5.52024 | ||||||
2% | 5.7 | 4.16126 | 4.68091 | 5.15113 | 4.68091 | |||||
16 | 4.16126 | 4.48139 | 5.15113 | 4.48139 | ||||||
-2 | 5.6884 | 1.5682 | 7.4958 | 6.0701 | ||||||
-1 | 4.8060 | 0.5089 | 7.4885 | 4.01579 | ||||||
0 | 3.0190 | 0.11391 | 4.6616 | 2.07580 | ||||||
1 | 1.6621 | 0.02079 | 1.69420 | 0.83367 | ||||||
2 | 0.7781 | 0.0034132 | -1.6029 | 0.287673 | ||||||
-1 | 1 | 4.63161 | 0.434089 | 5.70674 | 4.88936 | |||||
3 | 5.58803 | 0.44855 | 6.45215 | 4.57098 | ||||||
9 | 5.87033 | 0.46987 | 6.9390 | 3.86002 | ||||||
11 | 6.8723 | 0.473094 | 7.2379 | 3.85519 | ||||||
1 | 6.2 | 4.26126 | 0.41097 | 5.49747 | 5.54713 | |||||
5.5 | 4.26126 | 0.42796 | 5.49747 | 4.89344 | ||||||
5.2 | 4.26126 | 0.435245 | 5.49747 | 4.58897 | ||||||
4.5 | 4.26126 | 0.452571 | 5.49747 | 3.8860 |
h | r | $ {\mathrm{\varphi }}_{\mathrm{s}1}={\mathrm{\varphi }}_{\mathrm{s}2} $ | S | $ {\mathrm{R}}_{\mathrm{e}} $ | $ {\mathrm{M}}_{\mathrm{*}} $ | $ {\mathrm{P}}_{\mathrm{r}} $ | $ {\mathrm{C}}_{\mathrm{f}-1} $ for contraction case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for contraction case | $ {\mathrm{C}}_{\mathrm{f}-1} $ for expansion case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for expansion case |
0.4 | 0.8 | 2% | 3 | -1 | 1 | 6.2 | 4.16126 | 0.391643 | 2.42591 | 0.00196 |
0.8 | 4.16126 | 0.426513 | 2.42591 | 0.00200 | ||||||
1.2 | 4.16126 | 0.43887 | 2.42591 | 0.00206 | ||||||
1.6 | 4.16126 | 0.4430 | 2.42591 | 0.00209 | ||||||
0.2 | 1 | 4.16126 | 0.377217 | 2.42591 | 0.0021 | |||||
1.2 | 4.16126 | 0.36550 | 2.42591 | 0.00194 | ||||||
1.4 | 4.16126 | 0.355864 | 2.42591 | 0.00183201 | ||||||
1.6 | 4.16126 | 0.34729 | 2.42591 | 0.001807 | ||||||
1.8 | 4.16126 | 0.339912 | 2.42591 | 0.001767 | ||||||
2 | 4.16126 | 0.333482 | 2.42591 | 0.001766 | ||||||
0.8 | 3% | 4.4447 | 0.417098 | 2.55701 | 0.00198 | |||||
4% | 4.69021 | 0.419584 | 2.63048 | 0.00218 | ||||||
5% | 5.09975 | 0.42962 | 2.70455 | 0.00244 | ||||||
6% | 5.39447 | 0.43225 | 2.82254 | 0.00249 | ||||||
2% | 5.7 | 4.16126 | 4.68091 | 2.42591 | 0.00193 | |||||
16 | 4.16126 | 4.48139 | 2.42691 | 0.00179 | ||||||
-2 | 1.9029 | 1.5682 | 1.16283 | 0.000052 | ||||||
-1.5 | 2.6488 | 0.09384 | 1.15799 | 0.00039 | ||||||
-1 | 4.1626 | 0.05089 | 2.42591 | 0.00916 | ||||||
1 | 4.8060 | 0.01254 | 3.3248 | 0.0175 | ||||||
2 | 5.8672 | 0.00243 | 3.0047 | 0.0232 | ||||||
-1 | 1 | 41612 | 0.391643 | 2.42591 | 0.00192 | |||||
3 | 5.0499 | 0.39928 | 2.84139 | 0.00202 | ||||||
9 | 5.5127 | 0.417178 | 3.896 | 0.00224 | ||||||
11 | 5.7993 | 0.42936 | 4.20132 | 0.002304 | ||||||
1 | 6.2 | 4.1612 | 0.392613 | 2.42591 | 0.00192 | |||||
5.5 | 4.16126 | 0.41001 | 2.42591 | 0.0039 | ||||||
5.2 | 4.16126 | 0.41806 | 2.42591 | 0.00529 | ||||||
4.5 | 4.16126 | 0.43727 | 2.42591 | 0.01064 |
Bvp4c results | Shooting method results | |
h | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for suction case | $ {\mathrm{N}}_{\mathrm{u}}{\mathrm{ǀ}}_{\mathrm{\eta }=-1} $ for suction case |
0.4 | 0.391635 | 0.391643 |
0.8 | 0.426509 | 0.426513 |
1.2 | 0.438828 | 0.43887 |
1.6 | 0.443035 | 0.4430 |
0.4 | 0.377209 | 0.377217 |
Kashif et al [35] | Present results | Kashif et al [35] | Present results | ||
$ \mathrm{\varphi } $ | $ {\mathrm{\varphi }}_{\mathrm{s}1} $ | $ \mathrm{\alpha } < 0 $ | $ \mathrm{\alpha } < 0 $ | $ \mathrm{\alpha } > 0 $ | $ \mathrm{\alpha } > 0 $ |
0% | 0% | 3.1664 | 3.166501 | 1.6794 | 1.67956 |
5% | 5% | 3.6112 | 3.6113 | 1.9174 | 1.91749 |
10% | 10% | 4.1606 | 4.160708 | 2.2135 | 2.21378 |
15% | 15% | 4.8430 | 4.84315 | 2.5839 | 2.58399 |
20% | 20% | 5.6988 | 5.69893 | 3.0519 | 3.051989 |