[1]
|
J. Benali, M. Sayadi, F. Fnaiech, B. Morello, N. Zerhouni, Importance of the fourth and fifth intrinsic mode functions for bearing fault diagnosis, 14th international conference on Sciences and Techniques of Automatic control & computer engineering-STA'2013, 2013 (2013), 259-264.
|
[2]
|
J. Yu, Z. Guo, J. Zhao, Remaining useful life pre-diction of planet bearings based on conditional deep recurrent generative adversarial network and action discovery, J. Mech. Sci. Technol., 2020 (2020),1-9.
|
[3]
|
S. Nandi, H. A. Toliyat, X. Li, Condition monitoring and fault diagnosis of electrical motors-a review, IEEE T. Energy. Conver., 20 (2005), 719-729.
|
[4]
|
H. Zhao, H. Liu, J. Xu, W. Deng, Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine, IEEE T. Instrum. Meas., 69 (2020), 4165-4172.
|
[5]
|
T. Li, J. Shi, X. Li, J. Wu, F. Pan, Image encryption based on pixel-level diffusion with dynamic filtering and DNA-level permutation with 3D Latin cubes, Entropy, 21 (2019), 1-21.
|
[6]
|
Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, X. Zhang, Enhanced Moth-flame optimizer with mutation strategy for global optimization, Inform. Sciences, 492 (2019), 181-203.
|
[7]
|
H. Zhao, J. Zheng, J. Xu, W. Deng, Fault diagnosis method based on principal component analysis and broad learning system, IEEE Access, 7 (2019), 99263-99272.
|
[8]
|
R. Chen, S. K. Guo, X. Z. Wang, T. Zhang, Fusion of multi-RSMOTE with fuzzy integral to classify bug reports with an imbalanced distribution, IEEE T. Fuzzy Syst., 27 (2019), 2406-2420.
|
[9]
|
H. Zhao, S. Zuo, M. Hou, W. Liu, L. Yu, A novel adaptive signal processing method based on enhanced empirical wavelet transform technology, Sensors, 18 (2018), 1-17.
|
[10]
|
Y. Liu, X. Wang, Z. Zhai, R. Chen, Y. Jiang, Timely daily activity recognition from headmost sensor events, ISA T., 94 (2019), 379-390.
|
[11]
|
H. Zhao, J. Zheng, W. Deng, Y. Song, Semi-supervised broad learning system based on manifold regularization and broad network, IEEE T. Circuits-I., 67 (2020), 983-994.
|
[12]
|
A. Rai, S. H. Upadhyay, A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings, Tribol. Int., 96 (2016), 289-306.
|
[13]
|
J. H. Shin, H. B. Jun, On condition based maintenance policy, J. Comput. Des. Eng., (2015), 119-127.
|
[14]
|
T. Li, Z. Qian, T. He, Short-term load forecasting with improved CEEMDAN and GWO-based multiple kernel ELM, Complexity, 2020 (2020), 1-20.
|
[15]
|
W. Deng, H. Liu, J. Xu, H. Zhao, Y. Song, An improved quantum-inspired differential evolution algorithm for deep belief network, IEEE T. Instrum. Meas., 2020 (2020), 1-8.
|
[16]
|
D. Iatsenko, P. V. E. Mcclintock, A. Stefanovska, Extraction of instantaneous frequencies from ridges in time-frequency representations of signals, Signal Process., 125 (2016), 290-303.
|
[17]
|
B. Yu, Z. Yao, On Compution of the Instaneous Frequency of Complicated Signals, J. Southwest Uni. (Nat. Sci.), 34 (2012), 108-111.
|
[18]
|
M. Kowalski, A. Meynard, H. T. Wu, Convex Optimization approach to signals with fast varying instantaneous frequency, Appl. Comput. Harmon. A., 9 (2015), 1260-1267.
|
[19]
|
S. Lu, Q. He, J. Wang, A review of stochastic resonance in rotating machine fault detection, Mech. Syst. Signal Pr., 116 (2019), 230-260.
|
[20]
|
H. Zhao, D. Li, W. Deng, Research on vibration suppression method of alternating current motor based on fractional order control strategy, P. I. Mech. Eng. E-J. Pro., 231 (2017), 786-799.
|
[21]
|
W. Deng, J. Xu, Y. Song, H. Zhao, An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application, Int. J. Bio-Inspired Comput., 2020 (2020),1-10.
|
[22]
|
J. Li, L. Li, G.Q. Zhao, Y. Pan, Instantaneous frequency estimation of nonlinear frequency-modulated signals under strong noise environment, Circ. Syst. Signal. Pr., 35 (2016)), 3734-3744.
|
[23]
|
K. Czarnecki, The instantaneous frequency rate spectrogram. Mech. Syst. Signal Pr., 66-67 (2016), 361-373.
|
[24]
|
H. Shao, J. Cheng, H. Jiang, Y. Yang, Z. Wu, Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing, Knowl-Based Syst., 188 (2020), 1-14.
|
[25]
|
H. Chen, Q. Zhang, J. Luo, Y. Xu, X. Zhang, An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine, Appl. Soft Comput., 86 (2020), 1-24.
|
[26]
|
W. Deng, J. Xu, H. Zhao, An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem, IEEE Access, 7 (2019), 20281-20292.
|
[27]
|
C. K. Chui, M. D. van der Walt, Signal analysis via instantaneous frequency estimation of signal components, GEM, 6 (2015), 1-42.
|
[28]
|
M. J. Afroni, D. Sutanto, D. Stirling, Analysis of nonstationary power-quality waveforms using iterative Hilbert Huang transform and SAX algorithm, IEEE T. Power Deliver., 28 (2013), 2134-2144.
|
[29]
|
Y. Liu, Y. Mu, K. Chen, Y. Li, J. Guo, Daily activity feature selection in smart homes based on pearson correlation coefficient, Neural Process. Lett., 51 (2020), 1771-1787.
|
[30]
|
Z. He, H. Shao, X. Zhang, J. Cheng, Y. Yang, Improved deep transfer auto-encoder for fault diagnosis of gearbox under variable working conditions with small training samples, IEEE Access, 7 (2019), 115368-115377.
|
[31]
|
W. Deng, W. Li, X. Yang, A novel hybrid optimization algorithm of computational intelligence techniques for highway passenger volume prediction, Expert Syst. Appl., 38 (2011), 4198-4205.
|
[32]
|
A. Baccigalupi, A. Liccardo, The Huang Hilbert transform for evaluating the instantaneous frequency evolution of transient signals in non-linear systems, Measurement, 86 (2016), 1-13.
|
[33]
|
A. Abutaleb, Instantaneous frequency estimation using stochastic calculus and bootstrapping, EURASIP J. Adv. Sig. Pr., 12 (2005), 1886-1901.
|
[34]
|
J. Zheng, Z. Dong, H. Pan, Q. Ni, J. Zhang, Composite multi-scale weighted permutation entropy and extreme learning machine based intelligent fault diagnosis for rolling bearing, Measurement, 143 (2019), 69-80.
|
[35]
|
J. Zheng, H. Pan, S. Yang, J. Cheng, Adaptive parameterless empirical wavelet transform based time-frequency analysis method and its application to rotor rubbing fault diagnosis, Signal Process, 130 (2017), 305-314.
|
[36]
|
S. Krishnan, A new approach for estimation of instantaneous mean frequency of a time-varying signal, EURASIP J. Adv. Sig. Pr., 17 (2005), 2848-2855.
|
[37]
|
A. Soualhi, K. Medjaher, N. Zerhouni, Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression, IEEE T. Instrum. Meas., 64 (2014), 52-62.
|
[38]
|
J. Lerga, V. Sucic, B. Boashash, An efficient algorithm for instantaneous frequency estimation of nonstationary multicomponent signals in low SNR, EURASIP J. Adv. Sig. Pr., 2011 (2011), 1-16.
|
[39]
|
W. Deng, H. M. Zhao, L. Zou, G. Y. Li, X. H. Yang, D. Q. Wu, A novel collaborative optimization algorithm in solving complex optimization problems, Soft Comput., 21 (2017), 4387-4398.
|
[40]
|
N. E. Huang, Z. Wu, S. R. Long, On the frequency, Adv. Adapt. Data Anal., 1 (2009), 177-229.
|
[41]
|
J. D. Zheng, J. S. Cheng, Y. Yang, A new instantaneous frequency estimation approach-empirical envelope method, J. Sound Vib., 31 (2012), 86-90.
|
[42]
|
A. Cicone, J. F. Liu, H. M. Zhou, Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis, Appl. Comput. Harmon. A., 41 (2016), 384-411.
|
[43]
|
T. Y. Wu, C. H. Lai, D. C. Liu, Defect diagnostics of roller bearing using instantaneous frequency normalization under fluctuant rotating speed, J. Mech. Sci. Technol., 30 (2016), 1037-1048.
|
[44]
|
Z. Ji, Z. Wang, X. Deng, W. Huang, T. Wu, A new parallel algorithm to solve one classic water resources optimal allocation problem based on inspired computational model, Desalin. Water Treat., 160 (2019), 214-218.
|
[45]
|
W. Deng, R. Yao, H. M. Zhao, X. H. Yang, G.Y. Li, A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm, Soft Comput., 23 (2019), 2445-2462
|
[46]
|
Z. Wang, Z. Ji, X. Wang, T. Wu, W. Huang, A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model, BioSystems, 162 (2017), 59-65.
|
[47]
|
A. Cicone, H. M. Zhou, Multidimensional iterative filtering method for the decomposition of high-dimensional non-stationary signals, Numer. Math. Theory Me., 10 (2017), 278-298.
|
[48]
|
F. R. Sun, Y. D. Yao, G. Z. Li, W. Liu, Simulation of real gas mixture transport through aqueous nanopores during the depressurization process considering stress sensitivity, J. Petrol. Sci. Eng., 178 (2019), 829-837.
|
[49]
|
J. Yu, M. Bai, G. Wang, X. Shi, Fault diagnosis of planetary gearbox with incomplete information using assignment reduction and flexible naive Bayesian classifier, J. Mech. Sci. Technol., 32 (2018), 37-47.
|
[50]
|
Y. Xue, B. Xue, M. J. Zhang, Self-adaptive particle swarm optimization for large-scale feature selection in classification, ACM T. Knowl. Discov. D., 23 (2019), 50.
|
[51]
|
Y. Xu, H. Chen, A. A. Heidari, J. Luo, Q. Zhang, X. Zhao, et al, An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks, Expert Syst. Appl., 129 (2019),135-155.
|
[52]
|
J. Yu, Y. Xu, K. Liu, Planetary gear fault diagnosis using stacked denoising autoencoder and gated recurrent unit neural network under noisy environment and time-varying rotational speed conditions, Meas. Sci. Technol., 30 (2019), 095003.
|
[53]
|
Z. Wang, X. Ren, Z. Ji, W. Huang, T. Wu, A novel bio-heuristic computing algorithm to solve the capacitated vehicle routing problem based on Adleman-Lipton model, Biosystems, 184 (2019), 103997.
|
[54]
|
H. L. Fu, M. M. Wang, P. Li, S. Jiang, M. Cao, Tracing knowledge development trajectories of the internet of things domain: A main path analysis, IEEE T. Ind. Inform., 15 (2019), 6531-6540.
|
[55]
|
A. Cicone, J. Liu, H. Zhou, Hyperspectral chemical plume detection algorithms based on multidimensional iterative filtering decomposition, Philos. T. R. Soc. A., 374 (2016), 20150196.
|
[56]
|
J. Luo, H. Chen, A. A. Heidari, Y. Xu, Q. Zhang, C. Li, Multi-strategy boosted mutative whale-inspired optimization approaches, Appl. Math. Model, 73 (2019),109-123.
|
[57]
|
J. Yu, Y. Xu, G. Yu, L. Liu, Fault severity identification of roller bearings using flow graph and Non-naive Bayesian inference, P. I. Mech. Eng. C-J. Mec., 233(2019), 5161-5171.
|
[58]
|
X. J. Liu, X. D. Liu, X. Luo, H. Fua, M. Wang, L. Lia, Impact of different policy instruments on diffusing energy consumption monitoring technology in public buildings: evidence from Xi'an, China, J. Clean. Prod., 251 (2020), 119693.
|
[59]
|
H. Chen, F. Miao, X. Shen, Hyperspectral remote sensing image classification with CNN based on quantum genetic-optimized sparse representation, IEEE Access, 8 (2020), 99900-99909.
|
[60]
|
J. Yu, Y. He, Planetary gearbox fault diagnosis based on data-driven valued characteristic multigranulation model with incomplete diagnostic information, J. Sound Vib., 429 (2018), 63-77.
|