Citation: Michael Eden, Michael Böhm. Homogenization of a poro-elasticity model coupled withdiffusive transport and a first order reaction for concrete[J]. Networks and Heterogeneous Media, 2014, 9(4): 599-615. doi: 10.3934/nhm.2014.9.599
[1] | Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262 |
[2] | Ming Mei, Yau Shu Wong . Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences and Engineering, 2009, 6(4): 743-752. doi: 10.3934/mbe.2009.6.743 |
[3] | Zhongcai Zhu, Xiaomei Feng, Xue He, Hongpeng Guo . Mirrored dynamics of a wild mosquito population suppression model with Ricker-type survival probability and time delay. Mathematical Biosciences and Engineering, 2024, 21(2): 1884-1898. doi: 10.3934/mbe.2024083 |
[4] | Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85 |
[5] | Changyong Dai, Haihong Liu, Fang Yan . The role of time delays in P53 gene regulatory network stimulated by growth factor. Mathematical Biosciences and Engineering, 2020, 17(4): 3794-3835. doi: 10.3934/mbe.2020213 |
[6] | Gonzalo Galiano, Julián Velasco . Finite element approximation of a population spatial adaptation model. Mathematical Biosciences and Engineering, 2013, 10(3): 637-647. doi: 10.3934/mbe.2013.10.637 |
[7] | Feng Rao, Carlos Castillo-Chavez, Yun Kang . Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Mathematical Biosciences and Engineering, 2018, 15(6): 1401-1423. doi: 10.3934/mbe.2018064 |
[8] | Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001 |
[9] | Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036 |
[10] | Peter Hinow, Pierre Magal, Shigui Ruan . Preface. Mathematical Biosciences and Engineering, 2015, 12(4): i-iv. doi: 10.3934/mbe.2015.12.4i |
[1] | A. Ainouz, Homogenization of a double porosity model in deformable media, Electronic Journal of Differential Equations, 90 (2013), 1-18. |
[2] |
G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518. doi: 10.1137/0523084
![]() |
[3] | G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, World Scintific publication, Singapore, (1995), 15-25. |
[4] |
T. Arbogast, J. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM Journal on Mathematical Analysis, 21 (1990), 823-836. doi: 10.1137/0521046
![]() |
[5] |
M. Biot, General theory of three-dimensional consolidation, Journal of applied physics, 12 (1941), 155-164. doi: 10.1063/1.1712886
![]() |
[6] |
O. Coussy, Poromechanics, 2nd edition, Wiley, 2005, URL http://amazon.com/o/ASIN/0470849207/. doi: 10.1002/0470092718
![]() |
[7] | H. Deresiewicz and R. Skalak, On uniqueness in dynamic poroelasticity, Bulletin of the Seismological Society of America, 53 (1963), 783-788. |
[8] | M. Eden, Poroelasticity, Master's thesis, University of Bremen, 2014. |
[9] |
I. Graf, M. Peter and J. Sneyd, Homogenization of a nonlinear multiscale model of calcium dynamics in biological cells, Journal of Mathematical Analysis and Applications, 419 (2014), 28-47. doi: 10.1016/j.jmaa.2014.04.037
![]() |
[10] |
U. Hornung and W. Jäger, Diffusion, convection, adsorption, and reaction of chemicals in porous media, Journal of differential equations, 92 (1991), 199-225. doi: 10.1016/0022-0396(91)90047-D
![]() |
[11] | A. Meirmanov and R. Zimin, Compactness result for periodic structures and its application to the homogenization of a diffusion-convection equation, Electronic Journal of Differential Equations, 115 (2011), 1-11. |
[12] | S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier, Adv. Math. Sci. Appl., 13 (2003), 43-63. |
[13] |
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, 20 (1989), 608-623. doi: 10.1137/0520043
![]() |
[14] | G. Pavliotis and A. Stuart, Multiscale Methods: Averaging and Homogenization (Texts in Applied Mathematics), Springer, New York, 2008. URL http://amazon.com/o/ASIN/1441925325/. |
[15] |
M. Peter and M. Böhm, Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium, Mathematical Methods in the Applied Sciences, 31 (2008), 1257-1282. doi: 10.1002/mma.966
![]() |
[16] | R. Showalter, Distributed microstructure models of porous media, in Flow in porous media, Springer, 114 (1993), 155-163. |
[17] | R. Showalter, Hilbert Space Methods in Partial Differential Equations (Dover Books on Mathematics), Dover Publications, 2010, URL http://amazon.com/o/ASIN/B008SLYENC/. |
[18] | R. Showalter and B. Momken, Single-phase Flow in Composite Poro-elastic Media, Technical report, Mathematical Methods in the Applied Sciences, 2002. |
[19] |
L. Tartar, The General Theory of Homogenization: A Personalized Introduction (Lecture Notes of the Unione Matematica Italiana), 2010th edition, Springer, 2009, URL http://amazon.com/o/ASIN/3642051944/. doi: 10.1007/978-3-642-05195-1
![]() |
[20] | F.-J. Ulm, G. Constantinides and F. Heukamp, Is concrete a poromechanics materials? A multiscale investigation of poroelastic properties, Materials and Structures, 37 (2004), 43-58. |
[21] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications: II/ B: Nonlinear Monotone Operators, Translated from the German by the author and Leo F. Boron. Springer-Verlag, New York, 1990. URL http://amazon.com/o/ASIN/0387968024/. doi: 10.1007/978-1-4612-0985-0
![]() |
1. | Yu Jin, Xiao-Qiang Zhao, Spatial Dynamics of a Nonlocal Periodic Reaction-Diffusion Model with Stage Structure, 2009, 40, 0036-1410, 2496, 10.1137/070709761 | |
2. | Guanying Sun, Dong Liang, Wenqia Wang, Numerical analysis to discontinuous Galerkin methods for the age structured population model of marine invertebrates, 2009, 25, 0749159X, 470, 10.1002/num.20355 | |
3. | Peter Y.H. Pang, Yifu Wang, Time periodic solutions of the diffusive Nicholson blowflies equation with delay, 2015, 22, 14681218, 44, 10.1016/j.nonrwa.2014.07.014 | |
4. | Majid Bani-Yaghoub, David E. Amundsen, Oscillatory traveling waves for a population diffusion model with two age classes and nonlocality induced by maturation delay, 2015, 34, 0101-8205, 309, 10.1007/s40314-014-0118-y | |
5. | Cui-Ping Cheng, Wan-Tong Li, Zhi-Cheng Wang, Persistence of bistable waves in a delayed population model with stage structure on a two-dimensional spatial lattice, 2012, 13, 14681218, 1873, 10.1016/j.nonrwa.2011.12.016 | |
6. | Majid Bani-Yaghoub, Numerical Simulations of Traveling and Stationary Wave Solutions Arising from Reaction-Diffusion Population Models with Delay and Nonlocality, 2018, 4, 2349-5103, 10.1007/s40819-017-0441-2 | |
7. | Shangjiang Guo, Patterns in a nonlocal time-delayed reaction–diffusion equation, 2018, 69, 0044-2275, 10.1007/s00033-017-0904-7 | |
8. | Dong Liang, Guanying Sun, Wenqia Wang, Second-order characteristic schemes in time and age for a nonlinear age-structured population model, 2011, 235, 03770427, 3841, 10.1016/j.cam.2011.01.031 | |
9. | Majid Bani-Yaghoub, Guangming Yao, Hristo Voulov, Existence and stability of stationary waves of a population model with strong Allee effect, 2016, 307, 03770427, 385, 10.1016/j.cam.2015.11.021 | |
10. | Taishan Yi, Xingfu Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case, 2008, 245, 00220396, 3376, 10.1016/j.jde.2008.03.007 | |
11. | Majid Bani-Yaghoub, Guangming Yao, Masami Fujiwara, David E. Amundsen, Understanding the interplay between density dependent birth function and maturation time delay using a reaction-diffusion population model, 2015, 21, 1476945X, 14, 10.1016/j.ecocom.2014.10.007 | |
12. | E. Ya. Frisman, O. L. Zhdanova, M. P. Kulakov, G. P. Neverova, O. L. Revutskaya, Mathematical Modeling of Population Dynamics Based on Recurrent Equations: Results and Prospects. Part II, 2021, 48, 1062-3590, 239, 10.1134/S1062359021030055 | |
13. | Matvey Kulakov, Efim Frisman, Clustering Synchronization in a Model of the 2D Spatio-Temporal Dynamics of an Age-Structured Population with Long-Range Interactions, 2023, 11, 2227-7390, 2072, 10.3390/math11092072 | |
14. | Khalaf M. Alanazi, Modeling and Simulating an Epidemic in Two Dimensions with an Application Regarding COVID-19, 2024, 12, 2079-3197, 34, 10.3390/computation12020034 |