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ABSTRACT. We study a two-scale homogenization problem describing the lin-
earized poro-elastic behavior of a periodic two-component porous material ex-
hibited to a slightly compressible viscous fluid flow and a first-order chemical
reaction. One material component consists of disconnected parts embedded in
the other component which is supposed to be connected. It is shown that a
memory effect known from the purely mechanic problem gets inherited by the
reaction component of the model.

1. Introduction. Building concrete is a mixture of cement, sand and other solid
components such as gravel, reinforced by steel. Physico-chemical processes like
carbonation and others pave the way to degradation of such structures. We look into
a process which precedes the actual corrosion and takes a certain two-component
structure of real concrete into account. A (not necessarily close) look reveals that
some types of building concrete can be considered as a concrete-cement matrix with
embedded gravel pieces (cf. Figure 1 for a real-life example).

FI1GURE 1. A standard cylindrical concrete test specimen.

Matrix as well as gravel are porous, [6], and eligible of fluid transport accompa-
nied by transport (dispersion (diffusion)) of diluted chemicals. In connection with
the fluid transport concrete might exhibit poro-elastic behavior (cf. the discussion
in [20], e.g.).

In this note we consider a generalization — a two-component porous solid un-
dergoing slow viscous fluid flow and chemical transport and reaction. The material
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we have in mind is a concrete with many very small embedded (porous!) gravel
pieces, cf. fig 1. Figures 2 show idealizations: fig. 2(a) depicts such a concrete
piece from afar, fig. 2(b) indicates a magnification including the gravel pieces (small
gray circles, summarized in 5, the whole setting idealized as a periodic structure)
and fig. 2(c) shows a magnification of a single gravel piece and its cementitious
neighborhood. An upscaled version of fig. 2(c) will serve as the “cell” Y in our
homogenization setting below.

Let ¢g > 0 stand for the “real”, “typical” length of the small cube inside the
larger cube in fig. 2(b). If gy is “very small”, then the (homogenization-) limit case
€ — 0 is a candidate for a good approximation of the case 9. Below we will make
clear what is meant by “c — 0”.

This note deals with two features — a (microscopic) double-poro-elasticity model
(M;e) based on Biot’s system, complemented by Deresiewicz-Skalak interfacial
(cf. [7]) and initial and boundary conditions (cf. (2a)-(2h) and [1]) and a diffusion-
reaction equation based on the continuity equation. Implicitly we deal with a third
scale by employing Darcy’s law at the microscopic scale. The poro-elastic part has
essentially been done by Ainouz, [1], and Showalter and Momken, [18]; the chem-
istry part seems to be new.! As a further simplification of the model, we assume
the pores to be completely saturated.

In section 2 we introduce the formulations at the micro-level and obtain the
“poro-elasticity problem” (M;e) and the combined “poro-elasticity problem with
dispersion of a chemical”, (MZ,.). Section 3 deals with the existence of solutions
of (Mg,.) and e-independent estimates. The fourth and final section is devoted to
the two-scale convergence of the concentrations and the identification of the limit
equations. As a particular feature, one might see the memory term (42b) in the
concentration equations, which is inherited from the memory term in the limit
equations for (M), cf. Ainouz [1] and (19b).

2. Setting. Let Q C R?® be a bounded Lipschitz domain with outward normal
vector 7 and Y = (0,1)3 be the open unit cell in R3. Let Y7, Yo C Y be two disjoint
open sets, such that Yj is connected, such that I' := Y7 NY; is smooth and T' = 9Y53,
Y, C Y and such that Y = Y; UY, UT. Furthermore, let n denote the unit normal
vector on I" pointing into Y7 and x1, x2 be the indicator functions of Y7, Y5 extended
by Y-periodicity to the whole of R3, resp.

Let € > 0 be a small parameter and define for i € {1,2} the sets

O ={reQ:xi(z)=1} and I*=05n0;, (1)

where x5 (z) = x; (£) (see figure 2 (b), (c) for a two dimensional sketch). Note that
Q = Q7UQSUT* by construction, that €2f is connected and that €25 is disconnected.
For T'> 0 let S := (0,T) denote a time interval; the space-time domains are
Q:=SxQNand Q5 :=5xQ5, i€ {1,2}.
Both phases, i.e., Q] and €25, are assumed to be occupied by a porous and slightly
deformable material and to be saturated with a slightly compressible and viscous

L Actually, Ainouz, [1], assumes implicitely an additional interface condition (cf. our “note”
following equation (6e)). This leads to a slight simplification of the problem. Therefore our
relations (6¢), (10a), (10b), (14c)-(14f), (15a) and (19a) have no or other counterparts in [1].
Despite this fact, we use the essential features of Ainouz’ arguments.
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FIGURE 2. (a) Macroscale, (b) Mesoscale, (¢) Microscale
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fluid which moves through it. We denote by u$ = uf(t,x), p5 = pi(t,x) the dis-
placement field and the fluid pressure, resp., x € Q5, t € S, i € {1,2}.

Double poro-elasticity: The (linear) double poro-elasticity model (M, ) is formu-

lated in the reference configuration and is based on Biot’s system for consolidation
processes in both phases. It is completed with Deresiewicz-Skalak interfacial, initial
and boundary conditions (for details regarding the modeling, cf. [1, 5, 6, 18]):

—div(Afe(u])) + aaVpi =0 in Qf, (2a)
—div(ASe(us)) + a2 Vp; =0 in @5, (2b)

9y (cipi + andivui) — div(KiVpi) = fi in Qf, (2¢)

0; (c5p5 + e divus) — div(e? K5Vp5) = f5 in Q5, (2d)
uj =uj, oin®=o05n° on S xI*®, (2e)

K{Vpi -n® = 2K5Vp5 -n® = eg®(pf — p5) on S x I, (2f)
uf =0, p; =0, on Sx0Q, (2¢)

u;(0)=0 p5(0)=0 in 5. (2h)

Here, ff are source densities,” «; are the Biot-Willis parameters and o; =
Ase(uf) — a;p5Is the effective stresses, where AS are forth rank elasticity tensors,
where e(u$) = 3(Vus + (Vu§)?) is the linearized strain tensor, and where I3 denotes
the identity in R3*3. The coefficients ¢; and K{ denote the porosity and the per-
meability, resp. Note that the K; and the ¢ are already averaged quantities and
given by Darcy’s law which is assumed to hold for both phases. The coefficient ¢°
is the hydraulic permeability, which describes the quality of the hydraulic contact
between the phases. The limit cases ¢°* = 0 and g° = oo, correspond to no trans-
mission and perfect transmission, resp., (cf. [1, 18]).

Chemical transport: We include the dispersive/diffusive transport of a dissolved
chemical substance. In Q5 its concentration is denoted by b5 = b (t,x) (x € Q5, t €
S). The transport is heavily influenced by the fluid pressure and the deformation but
is assumed to have no reverse coupling to the poro-elasticity system.? We assume

2We exclude the case of volume distributed forces for the mechanical part since they can be
eliminated by a simple translation (for details cf. [18]).

3Note: One could easily think of scenarios in which this is not the case, e.g., the chemical
substance could have a directly affect the porosity or permeability.
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that the advection can be neglected. In analogy to the poro-elasticity equations the
linearized mass conservation then reads, cf. [8],

O (d505 + Gy divus + &pf) — div(D;VHS) = Hy (b5), (2i)
O (d5bs + edig div us + 5p5) — div(e2D5Vb5) = Ho(b5). (2)

Here, D$ are the averaged dispersion/diffusion coefficients, d are the porosities,
&1 and ¢§ are essentially analogous to a; and ¢ and h; are concentration-dependent
source densities.

The coupling terms, i.e., (&;divu$) and (&p5)" (i € {1,2}), account for the
change of porosity and the change of pore pressure and arise via a linearization
similar to that leading to Biot’s system for consolidation.

Equations (2a)-(2h) are complemented by open-pore interface conditions, Neu-
mann boundary conditions and non homogeneous initial values:

DSVbS -nf = e2D5Vb5 -n on S x '€, (2k)
D;Vb; -n® =ef8°(b] —b5) on S xTI*¢, (21
Vb -7=0 on S x99, (2m)
bo = X505 (0) + x55(0) in Q. (20)
We summarize (2a)-(2n) as model (M, ).

Note. Our choice of the e-scalings of the permeabilities, diffusivities, Biot-Willis
parameters and hydraulic permeabilities follows [1, 4, 15].

3. Well posedness of Model (M, ). We shall assume that there exist continuous
and Y-periodic functions A; : R? — R3*3x3x3 K D, : R? — R3*3 and ¢;, &, d;,
g, B:R?> >R and a C > 0, independent of ¢, such that

AS(z) = A, (g) and  A;(2)¥: T > O : ), (3a)
() = ¢ (g) and ci(z) > C, (3b)
Ki@) =K (2) and  K@)E-¢>Clf, (3¢)
E(2) = & (g) and é(z) > C, (3d)
& (z) = d; (g) and di(z) > C, (3¢)
Di@)=Di(%) and  Difa)s-&>Clef, (36)
F@)=g()  and gi(2) = C, (38)
F)=8(2)  and Bila) = C (30)

for all z € R3, for all symmetric matrices ¥ € R3*3 and for all vectors & € R3,
i € {1,2}. Furthermore, let c; and d; be positive constants.* In addition, we
assume that we are given a Caratheodory function® h; and that there exists a
function a € L?(Q) such that

|hi(t, z,u)] < C(la(t,z)| + |u|) for all (t,z,u) €S xQxR. (3i)

4Note: By these assumptions all coefficients have e-independent L> bounds.
5For details, we refer to [21, Chapter 26.3].
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As a consequence, this Caratheodory function h; defines a continuous Nemyckii
operator Hy : L*(Q) — L?(Q) via Hy(-)(t,x) := hy(t,z,-). A second operator,
Hy : L*(Q) — L?(Q), is assumed to be given by the linear relation Hy(b)(t,z) =
ho + ha(t, z)b(t, ) for some hy, hy € L*(Q) and for all b € L2(Q).

We introduce the following spaces (cf. [1, 12]):

H = L), H=L*Q)  V=HQ)7
Al ={uec HY(Q5) : u=00n0dQ}, A2=H'Y(05), A=Al x A%
B. = H'(Q5) x H(Q5), W ={ueL?S;B:) : v €L*S;BL)}.

The norms of the spaces A. and B, are defined for p = (p1,p2) € A and b =
(b1,b2) € B: by

2 2 2

P12, = IV PlZe(as) + 2 VPl 22ag) + € 1 — Poleqrey (4)
2 2 2 2 2

[[bll5, == Hblqu(Qg) + ||b2||L2(Q;) +e’ ||Vb2||L2(Qg)3 +ellbr - b2||L2(I‘E) : (5)

A weak formulation of problem (MZ,.) can be obtained as follows: For f¢ :=
XifTHX5f5 € L2(Q) find (uf, p%,b%) = (u7, (pf, p3), (b5, b3)) € L(S; V)< L2(S; Ac)
x L?(S; B.) such that®

(&5p5 + aydive®) € L2(S; ALY, (d5b5 + &p5 + ay divu®) € L2(S; H(Q5)),

(6a)
(c5p5 + andivu) € L2(S; A2, (d5bs + &5p5 + eda divu) € L2(S; H'(Q5)),
(6b)
such that ©®(0) = 0, p;(0) =0, b5(0) = x5bo, 7 € {1,2}, and such that

/ Afe(u®) : e(v)da — / a1pf diveodz — 6/ asps divedz = 0, (6¢)
Q Qs

Qs

((eipi + a1 divu®)’, q1) g g + (€505 + can divu®)’, g2) 41 42

+ [ KiVp -V de+e* [ K5Vps- Vg da
Qf QF (6d)
1 2

+€/ gs(pi—pé)(ql—qz)ds=/ﬂf‘fqu,7

((d5b5 + &p5 + @y divu®), w1>H1(Q§)/H1(Q§)
+ ((d5b5 + &5p5 + edn divu®)’, W2) (s 11 (02)

+ / DIV -V do+ 22 | DEVDS - Vuo d
Q

i Q5
+5/ hg(bffbg)(wlfwg)ds:/Hl(xibf)wl d:E+/ Hy(x505)we dz,  (6e)
e (9] Q

for all (v,q,w) € L?(S;V) x L%(S;A.) x L*(S;B.). Note that for such a weak
solution we do not necessarily have a priori that p*’ or b°’ exists, though in our
case they do exist in appropriate dual spaces, where they are also bounded with
respect to the parameter €. Also note that the weak formulation of the mechanical
part (6) differs from the one in [1] since, although not explicitly stated, the author

SFor a function w € Lz(Qﬁ) we understand by xjw the extension of f by zero into all of Q.
"Here, (, ) 4i’ 4i stands for the dual pairing between A% and Aél, i €{1,2}.
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uses (slightly) different interface conditions (cf. (2¢) here vs. Aje(u;)n® = Age(ug)n®
on S x I'® in [1]) for the (otherwise same!) problem. This leads to a different notion
of “weak solution” and, as a consequence, to a slightly different homogenized system.

By the works of Ainouz [1, Theorem 2.2], Showalter and Momken [18, Theorem
1] and Showalter [17, Chapter 4, Theorem 3.3, Chapter 5, Theorem 2.1], there is
the following existence and uniqueness result:

Theorem 3.1. Let f. € L*(Q) and let conditions (3a)-(3c) and (3g) be fulfilled.
Then there exists a unique

(uf,pf) € CL(S; V) x CL(S; H)

such that p(0) = xipi(0) + x5p3(0) = 0, w(0) = xjui(0) + x5u5(0) = 0 and such
that (u®, p®) satisfies the system (M) in the weak sense (6¢)-(6d).
If, in addition, sup.~ || f¢||z2(q) < 0o we have the following a-priori bounds:

sup ([0l 5wy + [0 Nuzesivy + 10 Lz2(s.a)
£>

+ ||| oo (5m) + ”pE/HL2(S;H)) <oo. (7)

Proof. For uniqueness and existence, cf. the references above. The estimates (7)
follow by standard energy arguments. O

This implies the following result for problem (Mg ), cf. [8],

cpe

Theorem 3.2. Let (uf,p°) € C1(S; V) x CL(S; H) be given and let conditions (3d),
(3f), (3h),(3e) and (3i) be satisfied. Then there exists b° € W such that b°(0) = by
and such that (u®,p®, b%) satisfies problem 6. Additionally we have that

up (161 2.y + 10 aow sy + 18] e s ) < (8)
IS €

Proof. The existence can obtained by standard arguments for parabolic equations
by virtue of Schauder’s fixed-point theorem. The a priori estimates then follow by
energy estimates. O

Remark 1. In this general setting uniqueness of the solution cannot be expected.
Under stronger assumptions on the source terms, however, e.g., Lipschitz continuity
of Hj, uniqueness can be established.

4. Homogenization. In the following we will use the notion of two-scale conver-
gence to derive a homogenized model. Our basic references for homogenization in
general and two-scale convergence in particular are [2, 13, 19].

4.1. Review and extension of Ainouz’ results.

Theorem 4.1. Let (u®,p®) be the sequence of solutions of Problem (Py,) given by
Theorem 3.1. There exists a subsequence (u®,p®), still denoted by €, and there exist

uw€ L®(S;V), @€ L>®(S;L*(Q Hy(Y)/R)?),
p1 € L(S;Hg(Q), 1€ LX(QH,(Y)/R), p2 € L>(S;L*(Q;Hy(Y)/R))
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such that
ut 3, divus 3 divu + divy a, (9a)
2 2 _
Xipi = xap1,  XiVPL = x1(Vp1 + Vypr), (9b)
2 2
X5P3 — X2P2,  €X3VPps = x2Vype. (9¢)

Moreover, we have that

lin'(l)// —p5)e°dsdt = //p1 p2)p dsdz d, (9d)
e—

for any ¢ € C°(Q; Cx(Y)) with ¢°(t,x) = ¢(t,z,x/¢).

Proof. This result holds due to the a priori estimates established in Theorem 3.1,
see also [1, Theorem 3.1]. O

Now, let v € C5°(Q)*, © € C*(OF(Y))%, 1 € C3°(S x Q) and G1, g2 €
C5(Q; CL(Y)). Now, choosing (v%,¢i,¢5) defined by v*(z) = v(z) + ev(z, z/¢),
Gtx)=qtz)+qt e, z/e) and ¢5(t, x) = q2(t, z,z/€) as a test function for the
variational formulation of the poro-elasticity part, see equations (6¢) and (6d), and
letting € — 0, we obtain

/ / ) +ey(@)) : (e(v) +¢,(v)) dy da

- / / agpy (dive +divy 9) dyde =0, teS, (10a)
o v

— / / (cip1 + aq divu + divy @) 0¢q1 dy da dt — / / Cop20sqo dy dx dt
Q Y1 Q Y
+ / Ki(Vp1 +Vyp1) - (Va1 + Vyq1) dy de dt + / KoVyps - Vygedydzdt
Y1 QJYs
[ [ oo -pa - aasarde= [ [ fodydears [ [ fedydea
QJr QJY7 QJY;
(10b)
Let j,k € {1,2,3} and define djr = (yj01k,Y;02k,y;03x)" for y € Y. We then
3
denote by w;i € (H;# (Y) /R) the unique solutions of the elasticity cell problems

—divy (Arey(wjg + djx)) =0 in Y7, (11a)
—div, (Agey(wjr + djx)) =0 in Ys, (11b)
Ajey(wji + dji)n = Agey(wjp + djp)n on T, (11c)

Y — Wi Y-periodic. (11d)

3
In addition, let w € (Hq}}é (Y)/R) be the unique solution to the cell problem

—div, (Are,(w)) =0 in Y1, (12a)
—div, (Agey(w)) =0 in Yo, (12b)
(Arey(w) —ar)n = Agey(w)n on T’ (12¢)

y—=w Y-periodic (12d)



606 MICHAEL EDEN AND MICHAEL BOHM

and let m; € H'(Y1)/R, j € {1,2,3}, be the unique solutions of the following
micro-pressure cell problems:

—divy (K1 (Vymj+€;)) =0 in Y7, (13a)
K(Vymj+ej)-n=0 on T, (13b)
y — m; Y-periodic, (13c¢)

where {e1, ez, e3} denotes the standard basis in R?.
Building on that, we introduce a constant forth rank tensor A" and
some constant matrices K", A" o € R3*3 with entries (4, , j1, j2, j3, j4 € {1,2,3})

c R3><3><3><3

(Ah)j1j2j3j4 = /Y A(y) (ey(wj3j4 (y) + dj3j4 (y))) : (ey (wj1j2 (y) + dj1j2 (y))) dy’

(14a)
(K™)jk = ; Ki(y) (Vym;(y) +¢5) - (Vymi(y) + ex) dy, (14b)
(AM)jk = (/Y divy wr(y) dy + [Y1| e; - €k) dy, (14c)
(@ =an (IMles e+ [ Ao, @we; exdy) (14d)

In addition, we define an averaged source density
f:SxQ=R, f(ta):= 3 fi(t, z,y) dy (14e)

and some constant coefficients:

éi= /Y (c1(y) + o divy (@(y))) dy, (14f)
ii= | ats)as (14g)

The two-scale homogenization limit of the poro-elasticity problem (Mg,) then
reads as (weak formulations of)

—div(A"e(u)) + a"Vp; ds = 0 in @, (15a)
dy(ep1 + A": e(u)) — div(K"Vp,)

+am1~ [ gpads = f Q. (15h)

r
O¢(cap2) — divy (KoVypa) = fo in QxYs, (15¢)
KoVyps -n=g(p1 —p2) on QxTI, (15d)
u=0, pr =0 on S x99, (15e)
Yy — P2 Y-periodic, (15f)
u(0) =0, p1(0) =0 in Q, (15g)
p2(0) =0 in Qx Y, (15h)

Moreover, in [1], Ainouz shows a memory-type result under the assumption that
fo = 0. In a similar way as for the system considered by Ainouz, the details of
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which are omitted, this can be established for our problem as well: By introducing
¢ € L>=(S,; H;E(Yg)) as the unique solution to the following Robin-type problem

Oi(c2C) — divy, (K2V,() =0 in S xYs, (16a)
KoVy¢-n=g(1—-¢) on SxT, (16b)
y—C Y -periodic, (16¢)
¢(0)=0 in Ys. (16d)
we have for almost all (t,z,y) € S x  x Y, the identification®
t
paltery) = [ piln0dCE - o a7
0
If we then define an auxiliary function
n(t,7) = / 90 ((t — 7,y) ds, (18)
r
we eliminate po and have
—div(Ale(u)) +a"Vp =0 in Q, (19a)
Or(épy + A" e(u)) — div(K"Vpy) + gp:
t . (19b)
—/ n(t, M)pi(r,x)dr=f in Q,
0
u=0,pr =0 on Sx0Q, (19c¢)
u(0) =0, p1(0)=0 in Q. (19d)

Remark 2. Note that this System is different from the homogenized model de-
rived in [1]: First, the homogenized coefficients o, A" and ¢ given by (14c), (14d)
and (14g) differ from these in [1], i.e., equations (2.21), (2.22) and (2.24). In ad-
dition, the effective momentum equation (19a) is independent of the micropressure
¢ € LOO(S;H;%(}/Q)), which is in opposition to the memory term emerging in [1].
Finally, the macroscopic pore pressure p; fulfills a homogeneous Dirichlet boundary
condition as opposed to the Neumann condition in [1].

4.2. The chemical part of the model. With section 4.1 in mind we now attend
to the homogenization of the chemical part

Theorem 4.2. There exists a unique (by,b1) € L?(S;By) x LQ(Q;H#(Y)/R) and
by € L>(S; L*(Q; HJ,(Y))) such that, up to a subsequence,

Xibi % xabr, XiVb; 5 xa(Vhy + V). (20)
X5b5 = Xaba, EX5V5 2 XaVyba. (21)
Proof. The statement follows from estimates (8) (cf. [1, 2, 13, 14]). O

By choosing test functions ¢5(t,z) = ¢1(t,2) + €p1(t,x,x/e) and 5(t,z) =
pa(t,z,z/) where 1 € C*(Q) and @1, s € C™ (@, C’;&O(Y)) such that ¢ (7T)

8This can be seen via Laplace transformation, cf. [1].
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P1(T) = w2 (T) = 0, we get after integrating by parts that
— / (d7b] + Ga dive® + &ip3) ¢ dzdt — / dibo®(0) dz
Q1 Q]

- / (d5b3 + eba divu® + é5p3) 3’ daedt — d5bo®(0) dz
Q

€ £
2 Q1

+ [ DiVV; - Veidedt+e® | DSV - Vs da dt
QT Q5

+ 6/ B°(bT — b3) (¢ — ¢5) dsdt = Hi(x3b1)pldxdt + H>(x3b3)p5 dz dt.
SxTe Q1 Q3
(22)

We examine the individual expressions and pass to the limit for e — 0: We have
/ (505 + & dive +&p%) of dedt
Q1
= || [xieivich +xiat divuced + xicivich

& =gl

+ exidibi Py + exiag divus @y +exicipipy | dedt  (23)

The coefficients d5, ¢§ and &; are continuous. Furthermore, we know from [1,
Theorem 3.1] and from Theorem 4.2, that

ou® o Ou ou 2 2
= —+ — Spf > d X505 = xi1b1. 24
oz, oz, + By, X1P1 — X1p1 and X107 — X101 (24)

Therefore we have, at least along a subsequence ¢’, still denoted by &,”

| i (o) (4.0 do e
@ (25a)
—>//Xl(y)dl(y)bl(t,m)goll(t,m)dydxdt,
oy
/ X505 divu® (¢, )] (t, z) dz dt
Q (25b)
%/ / x1(y)ar (divu(t, z)+ div, a(t, z,y)) ¢} (¢, ) dy dz di,
QJly
[ s tadedt o [ [ a@awn oo dyded. (2500
Q QJY

The remaining terms of (23) are of first order with respect to £ and thus converge
to 0 for e — 0, i.e.,

e / X [dibi (t,2) + & divu (¢, ) + EpE(t, x)} &5 dzdt — 0. (25d)
1

9From here on all limits involving ¢ are to be understood in that sense.
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We turn our attention to the second integral term in (22):
/ (d5bs + eds divu® + C5p5) 5 do dt
2
= || [xisbios’ + xieas divucig’ + xszavios | duct (26)

The coefficients d5, ¢ and &y are continuous. We know from [1] and from
Theorem 4.2 that
out o Ou on

2 T e A and  SbS > Yobo. 27
o, " B + ay;’ X505 = x2p2  and  x3b5 = X2b2 (27)

This implies

/ XGd5b5 (1, )5 () dardt — / / X2 (@)da(9)ba(t, 7, y) b (t, 7, ) dy da dt,
Q QJY

(28a)
/Q NGBS (t 2)5 (1, ) do dt /Q | st a) dydsd
Y
(28)
and
5/ 55 div u (t, x) @5 (t, x) de dt — 0. (28¢)
Q
The limits of the initial value terms read as
X
/ XEdSbo (<p1(0,x) + e (0,2, 7)) dz
Q g
N / / %1 () (1)bo1 0, 7) da dy, (290)
QJY
[ xitoss0.00ds > [ [ xa)da(@boga(0,0,) dody. (290)
Q QJY

For the diffusion terms in 2§ and €5, resp., we have

DSV - (Vpy +eVE + V,@5) drdt
Qs

= / X;DiVbi - Vi dedt + 6/ X;D;V] - V@i dedt
Q Q

+ / XSDiV -V, @5 dzdt, (30a)
Q

1
g2 / D5Vbs - (w; + Evng) dx dt
Q

€
2

=2 / Y5D5VbS - Vo5 da dt + ¢ / X5D5Vb5 - Vo5 dadt.  (30b)
Q Q
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Since the D; are continuous, we obtain
/ X;DiVbi(t,z) - Vi (t,z)dedt
Q

- /Q /Y x1(y)D1(y) (Vbl(t,x)+vy61(t,x,y))-wl(t,x)dydxdt, (31a)

%;ﬁLEVﬁuﬂw-vz¢ﬂuxnudt

= [ [ @D (Fue0) 4 9h.0) Tt e, 310

[ XDEVE(t.) - Vit o) do
Q
o [ [ D@ beltn,) Vyaltn ) dydzde (310
QJy
and
e’:‘/ X; DIV (t, z) - V@5 (t, z) de dt
Q
+&? / X5 D5Vb5(t, ) - Vs (t, ) dedt — 0. (31d)
Q
Next, we deal with the interface exchange terms:
e [ 05 - 13) o 2 - 9) st
5 Jre
= 5/ B%(b] — b5) 1 dsdt + 52/ Be(b] — b5)@5 dsdt
S JTIe SxI's
e [ [ s0i-mesasan @)
5Jre
where we find that (see for instance [3, Theorem 2.1])

c / B (b (1, ) — B (4 2))pn (1, ) ds it
oo (33a)
%Azﬁ@wmw—@waw%wwmm&

5/’ B9 (b5 (t, ) — b5 (¢, 2)) g (t, ) ds dt
S JTIe

—>/Q/Fﬁ(y)(b1(t,$)—bg(t,x,y))m(tx,y)dsdxdt
(33b)

and

e / B2 (b2 (1, ) — b5 (¢, 2)) 55 (£, 2) ds dE — 0. (33¢)
S JIe
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For the right-hand side of equation (23) we have

Hy(Xib9)ei dadt + [ Hy(x505)p5 dedt =
Qs Qs
it dndt += [ G OGH)E dodt + [ xiHa(GH) dodt.
Q Q Q
(34)
With the extension theorem given in [10, Lemma 5], the boundedness of x§b5 in
L2(S; HY(Q)) and of x5b5" € L?(S; H()") we have the strong convergence x5b; —
by in L%(Q) for the same subsequence that two-scale converges by Theorem 4.2
(cf. also [11, Theorem 2.1]). Therefore there exist a subsequence of x5b5 and a
function r € L?(Q) such that x§b5 converges point-wise almost everywhere to by
and such that |x$b5(¢,z)| < r(¢,x) for almost all (¢,z) € Q. This implies the
estimate
|(Hy (x10)(t, )| = [ha(t, 2, X101 (E, 2))| < C (laa(t, 2)[ + [bT(E,2)])  (35)
< C(lai(t,z)| +r(t,x)) . (36)

The continuity of Hy implies Hy(x505) — Hi(b1). As a consequence, Lebesgue’s
dominated convergence theorem yields

/ 5 (L (569)) (8, 2) o (1 ) dar
¢ (37a)
—>/Q/YX1<y)(H1(b1))(t,:E)go1(t,x)dmdtdy,

e / & L (OG09)) (6, 2) @5 (¢, 2) e — 0. (37h)
Q

The second reaction term is actually more problematic: We do not expect the
sequence b5 to converge strongly since 25 is disconnected and since the gradients
of b are not bounded independently of € (cf. the definition (5) of the norm in B.).
But since the reaction term in 5 is assumed to be affine, we nonetheless are able
to pass to the limit:

/XEHz(Xibi)(t,w)dxdtZ/ X5 (R + ha(t, 2)b5 (¢, 7)) 5 (¢, ) da dt
Q Q

N / / o) (hat, ) + hio(t, 2)ba(t, 2, y)) 0ot 7, y) da dt dy.  (37¢)
oJy

Let us summarize the above limits, that is equations (25), (28), (29), (31), (33)
and (37):

7// [dlbl+a(divu+divyﬂ)+81p1}go’1dxdtdy7// dybor (0) da dy
Q Yl Q Yl

—// [d2b2 +62p2}¢gdxdtdy—// dobows(0) dz dy
Q Y2 Q Y2

+ /Q /Y1 Dy (Vb1 + Vyin) . (V(pl + Vygbl) dxdtdy
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+ / DyV by - Vo do dt dy + / / B(b1 — b2)(p1 — @2) dzdtds
QJY: QJI

:/ Hl(bl)(p1 dxdtdy—i—/ / (h2+ﬁ2b2>@2d$dtdy, (38)
QJIY: QJY>

which corresponds, as a weak formulation, to the following system of partial differ-
ential equations

—div, (Di(Vbi + Vb)) =0 in Qx Vi, (39a)
Oy [dgbg + éng} — diVy (ngybg) =ho + ilgbg in @ XxYs, (39b)

Oy [/ (d1b1 + &(divu + divy @) + é1p1) dy]
Y1

_div ( /Y 1 (1)1(Vb1 + vyél)) dy) (39¢)
+/F6(b17b2)ds: ARGV

completed by the boundary and initial conditions

Di(Vby +Vyb)-n=0 in QxT, (39d)

Dy(Vby + Vb)) -vdy=0 in S xd0xYi, (39¢)
Y1

ngybz ‘n = ﬂ(bl — bg) in Q X F7 (39f)

y — b1,by  Y-periodic, (39g)

b1(0) = [Yi[bp in €, (39h)

bQ(O) = bo in Qx }/2 (391)

We continue by introducing a cell problem and some averaged quantities to arrive
at a simplified form of problem (39a)-(39¢). In this context, let 7; € H'(Y;)/R be
the unique solutions of the following cell problems

—divy(D1(Vy7; +€5)) =0, in Y7, (40a)
Dy(Vyrj+e€;) - n=0 on T, (40b)
y — 7; Y-periodic. (40c)

We then can write, up to an additive function ¢: S x Q — R,

3

61(t7x,y) = ZVbl(t7x) : ejﬁj(y) + C(t,l’).
j=1

Furthermore we introduce the homogenized tensors D", A and the averaged
hydraulic permeability and source density:

(Dh)ij = D, (y) (Vyn + ei) (Vy’fj + ej) dy, (41&)

(AM)jx = @ (/ divy wj(y) dy + ¢; - ek) dy, (41b)

1
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where w;y, is the solution of the cell problem (11a)-(11c), and some averaged quan-
tities

b= / Bly)ds,, d= /Y )y, (41¢)

- /y (é1(y) + 61 (y) divy, B(y)) dy. (41d)

In addition, we define a scaled source density operator H; : L2(Q) — L?*(Q) by
Hy(by) := |Y1| Hy(by) and a microscale source density operator Hs : L*(Q x Y3) —
L2(Q x Ya) by Hy(b) := hg + hab for b e L2(Q x Y3).'°

The complete homogenized system of problem (Mg,,) then reads as (15a)-(15h)
supplemented by

Ay(dby + A" : e(u) + 2py) — div(D"Vby)

5 ; in Q, 42
+ﬁb1 — / Bbz dsy = Hl(bl) - Q ( a)
r

D¢ (daby + éopy) — div, (DaVyby) = Ho(by) in QxVYy o (42b)
DyVyby-n= (b1 —b2) on QxT, (42¢)

D"V, -v =0 on S x 00, (42d)

y — by Y-periodic, (42e)

b1(0) = |Y1| bo in Q, (42f)

bo(0) = b in QxY, o (42g)

We define an auxiliary function by

V(tv 7, y) = 628tC(t -7, y)’ (43)

eliminate ps and obtain

Ap(dby + A" : e(u) + épy) — div(D"Vby)

4By — /F B)ba(s)dsy = ) @ (44a)

t
815 <d2b2 +/ "}/(T)pl(’r)d’r> — ley (ngybg) = I:IQ(bQ) in Q X YQ, (44b
0

)

DyVyby -n= (b1 —b2) on QxT, (44c)
D"V, -v =0 on S x 0%, (44d)
Yy — bo Y-periodic, (44e)

b1(0) = |Y1] bo in Q, (44f)

b2 (0) = bo in QxYy. (44g)

5. Conclusion. Using the two-scale convergence technique, we have derived the
upscaled system (44) — a distributed microstructure system, cf. [16] — govern-
ing the effective dynamics (including a first-order reaction) of a chemical substance
within a poro-elastic composite (consisting of a connected poro-elastic matrix and
fully embedded micro-inclusions displaying very low diffusivities). The strong con-
vergence of the concentrations b] has been established by using a compactness

10Recall that ho was introduced in Chapter 3.
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criterion given by Meirmanov and Zimin [11]. Let us also point to the paper [9]
in which a similar limit passage is discussed in the case where both 2§ and 25 are
connected (and the reaction terms in both domains are non-linear).

A very particular feature of system (44) is the memory term in equation (44b),
which has been inherited from the memory term in equation (19b) of the macro-
scopic poro-elasticity System (19).
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