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Abstract. We study a two-scale homogenization problem describing the lin-

earized poro-elastic behavior of a periodic two-component porous material ex-

hibited to a slightly compressible viscous fluid flow and a first-order chemical
reaction. One material component consists of disconnected parts embedded in

the other component which is supposed to be connected. It is shown that a

memory effect known from the purely mechanic problem gets inherited by the
reaction component of the model.

1. Introduction. Building concrete is a mixture of cement, sand and other solid
components such as gravel, reinforced by steel. Physico-chemical processes like
carbonation and others pave the way to degradation of such structures. We look into
a process which precedes the actual corrosion and takes a certain two-component
structure of real concrete into account. A (not necessarily close) look reveals that
some types of building concrete can be considered as a concrete-cement matrix with
embedded gravel pieces (cf. Figure 1 for a real-life example).

Figure 1. A standard cylindrical concrete test specimen.

Matrix as well as gravel are porous, [6], and eligible of fluid transport accompa-
nied by transport (dispersion (diffusion)) of diluted chemicals. In connection with
the fluid transport concrete might exhibit poro-elastic behavior (cf. the discussion
in [20], e.g.).

In this note we consider a generalization — a two-component porous solid un-
dergoing slow viscous fluid flow and chemical transport and reaction. The material
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we have in mind is a concrete with many very small embedded (porous!) gravel
pieces, cf. fig 1. Figures 2 show idealizations: fig. 2(a) depicts such a concrete
piece from afar, fig. 2(b) indicates a magnification including the gravel pieces (small
gray circles, summarized in Ωε

2, the whole setting idealized as a periodic structure)
and fig. 2(c) shows a magnification of a single gravel piece and its cementitious
neighborhood. An upscaled version of fig. 2(c) will serve as the “cell” Y in our
homogenization setting below.

Let ε0 > 0 stand for the “real”, “typical” length of the small cube inside the
larger cube in fig. 2(b). If ε0 is “very small”, then the (homogenization-) limit case
ε→ 0 is a candidate for a good approximation of the case ε0. Below we will make
clear what is meant by “ε→ 0”.

This note deals with two features — a (microscopic) double-poro-elasticity model(
Mε

pe

)
based on Biot’s system, complemented by Deresiewicz-Skalak interfacial

(cf. [7]) and initial and boundary conditions (cf. (2a)-(2h) and [1]) and a diffusion-
reaction equation based on the continuity equation. Implicitly we deal with a third
scale by employing Darcy’s law at the microscopic scale. The poro-elastic part has
essentially been done by Ainouz, [1], and Showalter and Momken, [18]; the chem-
istry part seems to be new.1 As a further simplification of the model, we assume
the pores to be completely saturated.

In section 2 we introduce the formulations at the micro-level and obtain the
“poro-elasticity problem” (Mε

pe) and the combined “poro-elasticity problem with
dispersion of a chemical”, (Mε

cpe). Section 3 deals with the existence of solutions
of (Mε

cpe) and ε-independent estimates. The fourth and final section is devoted to
the two-scale convergence of the concentrations and the identification of the limit
equations. As a particular feature, one might see the memory term (42b) in the
concentration equations, which is inherited from the memory term in the limit
equations for (Mε

pe), cf. Ainouz [1] and (19b).

2. Setting. Let Ω ⊂ R3 be a bounded Lipschitz domain with outward normal
vector ~ν and Y = (0, 1)3 be the open unit cell in R3. Let Y1, Y2 ⊂ Y be two disjoint
open sets, such that Y1 is connected, such that Γ := Y1∩Y2 is smooth and Γ = ∂Y2,
Y2 ⊂ Y and such that Y = Y1 ∪ Y2 ∪ Γ. Furthermore, let n denote the unit normal
vector on Γ pointing into Y1 and χ1, χ2 be the indicator functions of Y1, Y2 extended
by Y -periodicity to the whole of R3, resp.

Let ε > 0 be a small parameter and define for i ∈ {1, 2} the sets

Ωε
i = {x ∈ Ω : χε

i (x) = 1} and Γε = Ωε
1 ∩ Ωε

2, (1)

where χε
i (x) = χi

(
x
ε

)
(see figure 2 (b), (c) for a two dimensional sketch). Note that

Ω = Ωε
1∪Ωε

2∪Γε by construction, that Ωε
1 is connected and that Ωε

2 is disconnected.
For T > 0 let S := (0, T ) denote a time interval; the space-time domains are

Q := S × Ω and Qε
i := S × Ωε

i , i ∈ {1, 2}.
Both phases, i.e., Ωε

1 and Ωε
2, are assumed to be occupied by a porous and slightly

deformable material and to be saturated with a slightly compressible and viscous

1Actually, Ainouz, [1], assumes implicitely an additional interface condition (cf. our “note”
following equation (6e)). This leads to a slight simplification of the problem. Therefore our

relations (6c), (10a), (10b), (14c)-(14f), (15a) and (19a) have no or other counterparts in [1].
Despite this fact, we use the essential features of Ainouz’ arguments.
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Figure 2. (a) Macroscale, (b) Mesoscale, (c) Microscale

fluid which moves through it. We denote by uεi = uεi (t, x), pεi = pεi (t, x) the dis-
placement field and the fluid pressure, resp., x ∈ Ωε

i , t ∈ S, i ∈ {1, 2}.

Double poro-elasticity: The (linear) double poro-elasticity model (Mε
pe) is formu-

lated in the reference configuration and is based on Biot’s system for consolidation
processes in both phases. It is completed with Deresiewicz-Skalak interfacial, initial
and boundary conditions (for details regarding the modeling, cf. [1, 5, 6, 18]):

−div(Aε
1e(uε1)) + α1∇pε1 = 0 in Qε

1, (2a)

−div(Aε
2e(uε2)) + εα2∇pε2 = 0 in Qε

2, (2b)

∂t (cε1p
ε
1 + α1 div uε1)− div(Kε

1∇pε1) = fε1 in Qε
1, (2c)

∂t (cε2p
ε
2 + εα2 div uε2)− div(ε2Kε

2∇pε2) = fε2 in Qε
2, (2d)

uε1 = uε2, σε
1n

ε = σε
2n

ε on S × Γε, (2e)

Kε
1∇pε1 · nε = ε2Kε

2∇pε2 · nε = εgε(pε1 − pε2) on S × Γε, (2f)

uε1 = 0, pε1 = 0, on S × ∂Ω, (2g)

uεi (0) = 0 pεi (0) = 0 in Ωε
i . (2h)

Here, fεi are source densities,2 αi are the Biot-Willis parameters and σi =
Aε

i e(uεi ) − αip
ε
i I3 the effective stresses, where Aε

i are forth rank elasticity tensors,
where e(uεi ) = 1

2 (∇uεi +(∇uεi )t) is the linearized strain tensor, and where I3 denotes

the identity in R3×3. The coefficients cεi and Kε
i denote the porosity and the per-

meability, resp. Note that the Kε
i and the cεi are already averaged quantities and

given by Darcy’s law which is assumed to hold for both phases. The coefficient gε

is the hydraulic permeability, which describes the quality of the hydraulic contact
between the phases. The limit cases gε = 0 and gε = ∞, correspond to no trans-
mission and perfect transmission, resp., (cf. [1, 18]).

Chemical transport: We include the dispersive/diffusive transport of a dissolved
chemical substance. In Ωε

i its concentration is denoted by bεi = bεi (t, x) (x ∈ Ωε
i , t ∈

S). The transport is heavily influenced by the fluid pressure and the deformation but
is assumed to have no reverse coupling to the poro-elasticity system.3 We assume

2We exclude the case of volume distributed forces for the mechanical part since they can be
eliminated by a simple translation (for details cf. [18]).

3Note: One could easily think of scenarios in which this is not the case, e.g., the chemical
substance could have a directly affect the porosity or permeability.
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that the advection can be neglected. In analogy to the poro-elasticity equations the
linearized mass conservation then reads, cf. [8],

∂t(d
ε
1b

ε
1 + α̂1 div uε1 + ĉε1p

ε
1)− div(Dε

1∇bε1) = H1(bε1), (2i)

∂t(d
ε
2b

ε
2 + εα̂2 div uε2 + ĉε2p

ε
2)− div(ε2Dε

2∇bε2) = H2(bε2). (2j)

Here, Dε
i are the averaged dispersion/diffusion coefficients, dεi are the porosities,

α̂1 and ĉε1 are essentially analogous to αi and cεi and hi are concentration-dependent
source densities.

The coupling terms, i.e., (α̂i div uεi )
′ and (ĉεip

ε
i )
′ (i ∈ {1, 2}), account for the

change of porosity and the change of pore pressure and arise via a linearization
similar to that leading to Biot’s system for consolidation.

Equations (2a)-(2h) are complemented by open-pore interface conditions, Neu-
mann boundary conditions and non homogeneous initial values:

Dε
1∇bε1 · nε = ε2Dε

2∇bε2 · nε on S × Γε, (2k)

Dε
1∇bε1 · nε = εβε(bε1 − bε2) on S × Γε, (2l)

∇bε1 · ~ν = 0 on S × ∂Ω, (2m)

b0 = χε
1b

ε
1(0) + χε

2b
ε
2(0) in Ω. (2n)

We summarize (2a)-(2n) as model (Mε
cpe).

Note. Our choice of the ε-scalings of the permeabilities, diffusivities, Biot-Willis
parameters and hydraulic permeabilities follows [1, 4, 15].

3. Well posedness of Model (Mε
cpe). We shall assume that there exist continuous

and Y -periodic functions Ai : R3 → R3×3×3×3, Ki, Di : R3 → R3×3 and ci, ĉi, di,
g, β : R3 → R and a C > 0, independent of ε, such that

Aε
i (x) = Ai

(x
ε

)
and Ai(x)Ψ : Ψ ≥ C(Ψ : Ψ), (3a)

cεi (x) = ci

(x
ε

)
and ci(x) ≥ C, (3b)

Kε
i (x) = Ki

(x
ε

)
and Ki(x)ξ · ξ ≥ C |ξ|2 , (3c)

ĉεi (x) = ĉi

(x
ε

)
and ĉi(x) ≥ C, (3d)

dεi (x) = di

(x
ε

)
and di(x) ≥ C, (3e)

Dε
i (x) = Di

(x
ε

)
and Di(x)ξ · ξ ≥ C |ξ|2 , (3f)

gε(x) = g
(x
ε

)
and gi(x) ≥ C, (3g)

βε(x) = β
(x
ε

)
and βi(x) ≥ C (3h)

for all x ∈ R3, for all symmetric matrices Ψ ∈ R3×3 and for all vectors ξ ∈ R3,
i ∈ {1, 2}. Furthermore, let αi and α̂i be positive constants.4 In addition, we
assume that we are given a Caratheodory function5 h1 and that there exists a
function a ∈ L2(Q) such that

|h1(t, x, u)| ≤ C (|a(t, x)|+ |u|) for all (t, x, u) ∈ S × Ω× R. (3i)

4Note: By these assumptions all coefficients have ε-independent L∞ bounds.
5For details, we refer to [21, Chapter 26.3].
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As a consequence, this Caratheodory function h1 defines a continuous Nemyckii
operator H1 : L2(Q) → L2(Q) via H1(·)(t, x) := h1(t, x, ·). A second operator,
H2 : L2(Q) → L2(Q), is assumed to be given by the linear relation H2(b)(t, x) =

h2 + h̃2(t, x)b(t, x) for some h2, h̃2 ∈ L2(Q) and for all b ∈ L2(Q).
We introduce the following spaces (cf. [1, 12]):

H = L2(Ω), H = L2(Ω)3, V = H1
0 (Ω)3,

A1
ε = {u ∈ H1(Ωε

1) : u = 0 on ∂Ω}, A2
ε = H1(Ωε

2), Aε = A1
ε ×A2

ε,

Bε = H1(Ωε
1)×H1(Ωε

2), W =
{
u ∈ L2(S;Bε) : u′ ∈ L2(S;B′ε)

}
.

The norms of the spaces Aε and Bε are defined for p = (p1, p2) ∈ Aε and b =
(b1, b2) ∈ Bε by

‖p‖2Aε
:= ‖∇p1‖2L2(Ωε

1) + ε2 ‖∇p2‖2L2(Ωε
2) + ε ‖p1 − p2‖2L2(Γε) , (4)

‖b‖2Bε
:= ‖b1‖2H1(Ωε

1) + ‖b2‖2L2(Ωε
2) + ε2 ‖∇b2‖2L2(Ωε

2)3 + ε ‖b1 − b2‖2L2(Γε) . (5)

A weak formulation of problem (Mε
cpe) can be obtained as follows: For fε :=

χε
1f

ε
1 +χε

2f
ε
2 ∈ L2(Q) find (uε, pε, bε) = (uε, (pε1, p

ε
2), (bε1, b

ε
2)) ∈ L∞(S;V)×L2(S;Aε)

× L2(S;Bε) such that6

(cε1p
ε
1 + α1 div uε)

′ ∈ L2(S;A1
ε
′
), (dε1b

ε
1 + c̃ε1p

ε
1 + α̃1 div uε)

′ ∈ L2(S;H1(Ωε
1)
′
),
(6a)

(cε2p
ε
2 + α2 div uε)

′ ∈ L2(S;A2
ε
′
), (dε2b

ε
2 + c̃ε2p

ε
2 + εα̃2 div uε)

′ ∈ L2(S;H1(Ωε
2)
′
),
(6b)

such that uε(0) = 0, pεi (0) = 0, bεi (0) = χε
i b0, i ∈ {1, 2}, and such that∫

Ω

Aεe(uε) : e(v) dx−
∫

Ωε
1

α1p
ε
1 div v dx− ε

∫
Ωε

2

α2p
ε
2 div v dx = 0, (6c)

〈(cε1pε1 + α1 div uε)′, q1〉A1
ε
′A1

ε
+ 〈(cε2pε2 + εα2 div uε)′, q2〉A2

ε
′A2

ε

+

∫
Ωε

1

Kε
1∇pε1 · ∇q1 dx+ ε2

∫
Ωε

2

Kε
2∇pε2 · ∇q2 dx

+ε

∫
Γε

gε(pε1 − pε2)(q1 − q2) ds =

∫
Ω

fεq dx, 7

(6d)

〈(dε1bε1 + c̃ε1p
ε
1 + α̃1 div uε)′, w1〉H1(Ωε

1)′H1(Ωε
1)

+ 〈(dε2bε2 + c̃ε2p
ε
2 + εα̃2 div uε)′, w2〉H1(Ωε

2)′H1(Ωε
1)

+

∫
Ωε

1

Dε
1∇bε1 · ∇w1 dx+ ε2

∫
Ωε

2

Dε
2∇bε2 · ∇w2 dx

+ ε

∫
Γε

hε(bε1 − bε2)(w1 − w2) ds =

∫
Ω

H1(χε
1b

ε
1)w1 dx+

∫
Ω

H2(χε
2b

ε
2)w2 dx, (6e)

for all (v, q, w) ∈ L2(S;V) × L2(S;Aε) × L2(S;Bε). Note that for such a weak
solution we do not necessarily have a priori that pε′ or bε′ exists, though in our
case they do exist in appropriate dual spaces, where they are also bounded with
respect to the parameter ε. Also note that the weak formulation of the mechanical
part (6) differs from the one in [1] since, although not explicitly stated, the author

6For a function w ∈ L2(Qε
1) we understand by χε

1w the extension of f by zero into all of Q.
7Here, 〈, 〉Ai

ε
′Ai

ε
stands for the dual pairing between Ai

ε and Ai
ε
′
, i ∈ {1, 2}.
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uses (slightly) different interface conditions (cf. (2e) here vs. A1e(u1)nε = A2e(u2)nε

on S×Γε in [1]) for the (otherwise same!) problem. This leads to a different notion
of “weak solution” and, as a consequence, to a slightly different homogenized system.

By the works of Ainouz [1, Theorem 2.2], Showalter and Momken [18, Theorem
1] and Showalter [17, Chapter 4, Theorem 3.3, Chapter 5, Theorem 2.1], there is
the following existence and uniqueness result:

Theorem 3.1. Let fε ∈ L2(Q) and let conditions (3a)-(3c) and (3g) be fulfilled.
Then there exists a unique

(uε, pε) ∈ C1(S;V)× C1(S;H)

such that p(0) = χε
1p

ε
1(0) + χε

2p
ε
2(0) = 0, u(0) = χε

1u
ε
1(0) + χε

2u
ε
2(0) = 0 and such

that (uε, pε) satisfies the system (Mε
pe) in the weak sense (6c)-(6d).

If, in addition, supε>0 ‖fε‖L2(Ω) <∞ we have the following a-priori bounds:

sup
ε>0

(
‖uε‖L∞(S;V) + ‖uε′‖L2(S;V) + ‖pε‖L2(S;Aε)

+ ‖pε‖L∞(S;H) + ‖pε′‖L2(S;H)

)
<∞. (7)

Proof. For uniqueness and existence, cf. the references above. The estimates (7)
follow by standard energy arguments.

This implies the following result for problem (Mε
cpe), cf. [8],

Theorem 3.2. Let (uε, pε) ∈ C1(S;V)×C1(S;H) be given and let conditions (3d),
(3f), (3h),(3e) and (3i) be satisfied. Then there exists bε ∈ W such that bε(0) = b0
and such that (uε, pε, bε) satisfies problem 6. Additionally we have that

sup
ε>0

(
‖bε‖L2(S;B) + ‖bε‖L∞(S;H) +

∥∥bε′∥∥
L2(S;B′

ε)

)
<∞. (8)

Proof. The existence can obtained by standard arguments for parabolic equations
by virtue of Schauder’s fixed-point theorem. The a priori estimates then follow by
energy estimates.

Remark 1. In this general setting uniqueness of the solution cannot be expected.
Under stronger assumptions on the source terms, however, e.g., Lipschitz continuity
of H1, uniqueness can be established.

4. Homogenization. In the following we will use the notion of two-scale conver-
gence to derive a homogenized model. Our basic references for homogenization in
general and two-scale convergence in particular are [2, 13, 19].

4.1. Review and extension of Ainouz’ results.

Theorem 4.1. Let (uε, pε) be the sequence of solutions of Problem (P ε
pe) given by

Theorem 3.1. There exists a subsequence (uε, pε), still denoted by ε, and there exist

u ∈ L∞(S;V), ũ ∈ L∞(S;L2(Ω;H1
#(Y )/R)3),

p1 ∈ L∞(S;H1
0 (Ω)), p̃1 ∈ L2(Q;H1

#(Y )/R), p2 ∈ L∞(S;L2(Ω;H1
#(Y )/R))
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such that

uε
2→ u, div uε

2→ div u+ divy ũ, (9a)

χε
1p

ε
1

2→ χ1p1, χε
1∇pε1

2→ χ1(∇p1 +∇yp̃1), (9b)

χε
2p

ε
2

2→ χ2p2, εχε
2∇pε2

2→ χ2∇yp2. (9c)

Moreover, we have that

lim
ε→0

∫
S

∫
Γε

ε(pε1 − pε2)ϕε dsdt =

∫
Q

∫
Γ

(p1 − p2)ϕdsdx dt, (9d)

for any ϕ ∈ C∞0 (Q;C#(Y )) with ϕε(t, x) = ϕ(t, x, x/ε).

Proof. This result holds due to the a priori estimates established in Theorem 3.1,
see also [1, Theorem 3.1].

Now, let v ∈ C∞0 (Ω)3, ṽ ∈ C∞0 (Ω;C∞# (Y ))3, q1 ∈ C∞0 (S × Ω) and q̃1, q2 ∈
C∞0 (Q;C∞# (Y )). Now, choosing (vε, qε1, q

ε
2) defined by vε(x) = v(x) + εv(x, x/ε),

qε1(t, x) = q1(t, x) + q̃1(t, x, x/ε) and qε2(t, x) = q2(t, x, x/ε) as a test function for the
variational formulation of the poro-elasticity part, see equations (6c) and (6d), and
letting ε→ 0, we obtain∫

Ω

∫
Y

A(y)
(
e(u) + ey(ũ)

)
:
(
e(v) + ey(ṽ)

)
dy dx

−
∫

Ω1

∫
Y1

α1p1 (div v + divy ṽ) dy dx = 0, t ∈ S, (10a)

−
∫
Q

∫
Y1

(c1p1 + α1 div u+ divy ũ) ∂tq1 dy dxdt−
∫
Q

∫
Y2

c2p2∂tq2 dy dxdt

+

∫
Q

∫
Y1

K1(∇p1 +∇yp̃1) · (∇q1 +∇y q̃1) dy dxdt+

∫
Q

∫
Y2

K2∇yp2 · ∇yq2 dy dxdt

+

∫
Q

∫
Γ

g(p1 − p2)(q1 − q2) dsdxdt =

∫
Q

∫
Y1

fq1 dy dxdt+

∫
Q

∫
Y2

fq2 dy dxdt.

(10b)

Let j, k ∈ {1, 2, 3} and define djk = (yjδ1k, yjδ2k, yjδ3k)T for y ∈ Y . We then

denote by wjk ∈
(
H1

#(Y )/R
)3

the unique solutions of the elasticity cell problems

−divy (A1ey(wjk + djk)) = 0 in Y1, (11a)

−divy (A2ey(wjk + djk)) = 0 in Y2, (11b)

A1ey(wjk + djk)n = A2ey(wjk + djk)n on Γ, (11c)

y → wjk Y-periodic. (11d)

In addition, let w̃ ∈
(
H1

#(Y )/R
)3

be the unique solution to the cell problem

−divy (A1ey(w̃)) = 0 in Y1, (12a)

−divy (A2ey(w̃)) = 0 in Y2, (12b)

(A1ey(w̃)− α1)n = A2ey(w̃)n on Γ, (12c)

y → w̃ Y-periodic (12d)



606 MICHAEL EDEN AND MICHAEL BÖHM

and let πj ∈ H1(Y1)/R, j ∈ {1, 2, 3}, be the unique solutions of the following
micro-pressure cell problems:

−divy(K1(∇yπj + ej)) = 0 in Y1, (13a)

K1(∇yπj + ej) · n = 0 on Γ, (13b)

y → πj Y-periodic, (13c)

where {e1, e2, e3} denotes the standard basis in R3.
Building on that, we introduce a constant forth rank tensor Ah ∈ R3×3×3×3 and

some constant matrices Kh, Λh, αh ∈ R3×3 with entries (j, k, j1, j2, j3, j4 ∈ {1, 2, 3})

(Ah)j1j2j3j4 =

∫
Y

A(y)
(
ey(wj3j4(y) + dj3j4(y))

)
:
(
ey(wj1j2(y) + dj1j2(y))

)
dy,

(14a)

(Kh)jk =

∫
Y1

K1(y) (∇yπj(y) + ej) · (∇yπk(y) + ek) dy, (14b)

(Λh)jk = α1

(∫
Y1

divy wjk(y) dy + |Y1| ej · ek
)

dy, (14c)

(αh)jk = α1

(
|Y1| ej · ek +

∫
Y

A(y)ey(w̃)(y)ej · ek dy

)
. (14d)

In addition, we define an averaged source density

f̃ : S × Ω→ R, f̃(t, x) :=

∫
Y1

f1(t, x, y) dy (14e)

and some constant coefficients:

c̃ :=

∫
Y1

(
c1(y) + α1 divy(w̃(y))

)
dy, (14f)

g̃ :=

∫
Γ

g(s) ds. (14g)

The two-scale homogenization limit of the poro-elasticity problem (Mε
cp) then

reads as (weak formulations of)

− div(Ahe(u)) + αh∇p1 ds = 0 in Q, (15a)

∂t(c̃p1 + Λh : e(u))− div(Kh∇p1)

+g̃p1 −
∫

Γ

gp2 ds = f̃ in Q, (15b)

∂t(c2p2)− divy(K2∇yp2) = f2 in Q× Y2, (15c)

K2∇yp2 · n = g(p1 − p2) on Q× Γ, (15d)

u = 0, p1 = 0 on S × ∂Ω, (15e)

y → p2 Y-periodic, (15f)

u(0) = 0, p1(0) = 0 in Ω, (15g)

p2(0) = 0 in Ω× Y2. (15h)

Moreover, in [1], Ainouz shows a memory-type result under the assumption that
f2 ≡ 0. In a similar way as for the system considered by Ainouz, the details of
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which are omitted, this can be established for our problem as well: By introducing
ζ ∈ L∞(S;H1

#(Y2)) as the unique solution to the following Robin-type problem

∂t(c2ζ)− divy(K2∇yζ) = 0 in S × Y2, (16a)

K2∇yζ · n = g(1− ζ) on S × Γ, (16b)

y → ζ Y -periodic, (16c)

ζ(0) = 0 in Y2. (16d)

we have for almost all (t, x, y) ∈ S × Ω× Y2 the identification8

p2(t, x, y) =

∫ t

0

p1(τ, x)∂tζ(t− τ, y)dτ. (17)

If we then define an auxiliary function

η(t, τ) =

∫
Γ

g∂tζ(t− τ, y) ds, (18)

we eliminate p2 and have

−div(Ahe(u)) + αh∇p1 = 0 in Q, (19a)

∂t(c̃p1 + Λh : e(u))− div(Kh∇p1) + g̃p1

−
∫ t

0

η(t, τ)p1(τ, x)dτ = f̃ in Q,
(19b)

u = 0, p1 = 0 on S × ∂Ω, (19c)

u(0) = 0, p1(0) = 0 in Ω. (19d)

Remark 2. Note that this System is different from the homogenized model de-
rived in [1]: First, the homogenized coefficients αh, Λh and c̃ given by (14c), (14d)
and (14g) differ from these in [1], i.e., equations (2.21), (2.22) and (2.24). In ad-
dition, the effective momentum equation (19a) is independent of the micropressure
ζ ∈ L∞(S;H1

#(Y2)), which is in opposition to the memory term emerging in [1].
Finally, the macroscopic pore pressure p1 fulfills a homogeneous Dirichlet boundary
condition as opposed to the Neumann condition in [1].

4.2. The chemical part of the model. With section 4.1 in mind we now attend
to the homogenization of the chemical part

Theorem 4.2. There exists a unique (b1, b̃1) ∈ L2(S;B0) × L2(Q;H1
#(Y )/R) and

b2 ∈ L∞(S;L2(Ω;H1
#(Y ))) such that, up to a subsequence,

χε
1b

ε
1

2→ χ1b1, χε
1∇bε1

2→ χ1(∇b1 +∇y b̃1), (20)

χε
2b

ε
2

2→ χ2b2, εχε
2∇bε2

2→ χ2∇yb2. (21)

Proof. The statement follows from estimates (8) (cf. [1, 2, 13, 14]).

By choosing test functions ϕε
1(t, x) = ϕ1(t, x) + εϕ̃1(t, x, x/ε) and ϕε

2(t, x) =

ϕ2(t, x, x/ε) where ϕ1 ∈ C∞(Q) and ϕ̃1, ϕ2 ∈ C∞
(
Q;C∞# (Y )

)
such that ϕ1(T ) =

8This can be seen via Laplace transformation, cf. [1].
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ϕ̃1(T ) = ϕ2(T ) = 0, we get after integrating by parts that

−
∫
Qε

1

(dε1b
ε
1 + α̂1 div u

ε + ĉε1p
ε
1)ϕ

ε
1
′ dxdt−

∫
Ωε

1

dε1b0ϕ
ε(0) dx

−
∫
Qε

2

(dε2b
ε
2 + εα̂2 div u

ε + ĉε2p
ε
2)ϕ

ε
2
′ dxdt−

∫
Ωε

1

dε2b0ϕ
ε(0) dx

+

∫
Qε

1

Dε
1∇bε1 · ∇ϕε

1 dxdt+ ε2

∫
Qε

2

Dε
2∇bε2 · ∇ϕε

2 dxdt

+ ε

∫
S×Γε

βε(bε1 − bε2) (ϕε
1 − ϕε

2) dsdt =

∫
Qε

1

H1(χ
ε
1b

ε
1)ϕ

ε
1 dxdt+

∫
Qε

2

H2(χ
ε
2b

ε
2)ϕ

ε
2 dx dt.

(22)

We examine the individual expressions and pass to the limit for ε→ 0: We have∫
Qε

1

(dε1b
ε
1 + α̂ε

1 div uε + ĉε1p
ε
1)ϕε

1
′ dxdt

=

∫
Q

[
χε

1d
ε
1b

ε
1ϕ
′
1 + χε

1α̂
ε
1 div uεϕ′1 + χε

1ĉ
ε
1p

ε
1ϕ
′
1

+ εχε
1d

ε
1b

ε
1ϕ̃

ε′
1 + εχε

1α̂
ε
1 div uεϕ̃ε′

1 + εχε
1ĉ

ε
1p

ε
1ϕ̃

ε′
1

]
dxdt (23)

The coefficients dε1, ĉε1 and α̂1 are continuous. Furthermore, we know from [1,
Theorem 3.1] and from Theorem 4.2, that

∂uε

∂xj

2→ ∂u

∂xj
+
∂ũ

∂yj
, χε

1p
ε
1

2→ χ1p1 and χε
1b

ε
1

2→ χ1b1. (24)

Therefore we have, at least along a subsequence ε′, still denoted by ε,9∫
Q

χε
1d

ε
1b

ε
1(t, x)ϕ′1(t, x) dx dt

→
∫
Q

∫
Y

χ1(y)d1(y)b1(t, x)ϕ′1(t, x) dy dxdt,

(25a)

∫
Q

χε
1α̂

ε
1 div uε(t, x)ϕ′1(t, x) dx dt

→
∫
Q

∫
Y

χ1(y)α̂1(div u(t, x)+ divy ũ(t, x, y))ϕ′1(t, x) dy dxdt,

(25b)

∫
Q

χε
1ĉ

ε
1p

ε
1(t, x)ϕ′1(t, x) dx dt→

∫
Q

∫
Y

χ1(y)ĉ1(y)p1(t, x)ϕ′1(t, x) dy dxdt. (25c)

The remaining terms of (23) are of first order with respect to ε and thus converge
to 0 for ε→ 0, i.e.,

ε

∫
Q1

χε
1

[
dε1b

ε
1(t, x) + α̂ε

1 div uε(t, x) + ĉε1p
ε
1(t, x)

]
ϕ̃ε

1
′ dxdt→ 0. (25d)

9From here on all limits involving ε are to be understood in that sense.
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We turn our attention to the second integral term in (22):∫
Q2

(dε2b
ε
2 + εα̂ε

2 div uε + ĉε2p
ε
2)ϕε

2
′ dxdt

=

∫
Q

[
χε

2d
ε
2b

ε
2ϕ

ε
2
′ + χε

2εα̂
ε
2 div uεϕε

2
′ + χε

2ĉ
ε
2p

ε
2ϕ

ε
2
′
]

dxdt. (26)

The coefficients dε2, ĉε2 and α̂2 are continuous. We know from [1] and from
Theorem 4.2 that

∂uε

∂xj

2→ ∂u

∂xj
+
∂ũ

∂yj
, χε

2p
ε
2

2→ χ2p2 and χε
2b

ε
2

2→ χ2b2. (27)

This implies∫
Q

χε
2d

ε
2b

ε
2(t, x)ϕε

2
′(t, x) dxdt→

∫
Q

∫
Y

χ2(y)d2(y)b2(t, x, y)ϕ′2(t, x, y) dy dx dt,

(28a)∫
Q

χε
2ĉ

ε
2p

ε
2(t, x)ϕε

2
′(t, x) dxdt→

∫
Q

∫
Y

χ2(y)ĉ2(y)p2(t, x, y)ϕ′2(t, x, y) dy dxdt

(28b)

and

ε

∫
Q

χε
2α̂

ε
2 div uε(t, x)ϕε

2
′(t, x) dx dt→ 0. (28c)

The limits of the initial value terms read as∫
Ω

χε
1d

ε
1b0

(
ϕ1(0, x) + εϕ1(0, x,

x

ε
)
)

dx

→
∫

Ω

∫
Y

χ1(y)d1(y)b0ϕ1(0, x) dxdy, (29a)

∫
Ω

χε
2d

ε
2b0ϕ

ε
2(0, x) dx→

∫
Ω

∫
Y

χ2(y)d2(y)b0ϕ2(0, x, y) dx dy. (29b)

For the diffusion terms in Ωε
1 and Ωε

2, resp., we have∫
Qε

1

Dε
1∇bε1 · (∇ϕ1 + ε∇ϕ̃ε

1 +∇yϕ̃
ε
1) dxdt

=

∫
Q

χε
1D

ε
1∇bε1 · ∇ϕ1 dxdt+ ε

∫
Q

χε
1D

ε
1∇bε1 · ∇ϕ̃ε

1 dx dt

+

∫
Q

χε
1D

ε
1∇bε1 · ∇yϕ̃

ε
1 dxdt, (30a)

ε2

∫
Qε

2

Dε
2∇bε2 ·

(
∇ϕε

2 +
1

ε
∇yϕ

ε
2

)
dxdt

= ε2

∫
Q

χε
2D

ε
2∇bε2 · ∇ϕε

2 dxdt+ ε

∫
Q

χε
2D

ε
2∇bε2 · ∇yϕ

ε
2 dx dt. (30b)
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Since the Dε
i are continuous, we obtain∫

Q

χε
1D

ε
1∇bε1(t, x) · ∇ϕ1(t, x) dxdt

→
∫
Q

∫
Y

χ1(y)D1(y)
(
∇b1(t, x) +∇y b̃1(t, x, y)

)
· ∇ϕ1(t, x) dy dxdt, (31a)

∫
Q

χε
1D

ε
1∇bε1(t, x) · ∇yϕ̃

ε
1(t, x) dxdt

→
∫
Q

∫
Y

χ1(y)D1(y)
(
∇b1(t, x) +∇y b̃1(t, x, y)

)
· ∇yϕ̃1(t, x, y) dy dxdt, (31b)

ε

∫
Q

χε
2D

ε
2∇bε2(t, x) · ∇yϕ

ε
2(t, x) dx dt

→
∫
Q

∫
Y

χ2(y)D2(y)∇yb2(t, x, y) · ∇yϕ2(t, x, y) dy dxdt (31c)

and

ε

∫
Q

χε
1D

ε
1∇bε1(t, x) · ∇ϕ̃ε

1(t, x) dxdt

+ ε2

∫
Q

χε
2D

ε
2∇bε2(t, x) · ∇ϕε

2(t, x) dxdt→ 0. (31d)

Next, we deal with the interface exchange terms:

ε

∫
S

∫
Γε

βε(bε1 − bε2) (ϕ1 + εϕ̃ε
1 − ϕε

2) dsdt

= ε

∫
S

∫
Γε

βε(bε1 − bε2)ϕ1 dsdt+ ε2

∫
S×Γε

βε(bε1 − bε2)ϕ̃ε
1 dsdt

− ε
∫
S

∫
Γε

βε(bε1 − bε2)ϕε
2 dsdt, (32)

where we find that (see for instance [3, Theorem 2.1])

ε

∫
S

∫
Γε

βε(bε1(t, x)− bε2(t, x))ϕ1(t, x) dsdt

→
∫
Q

∫
Γ

β(y)(b1(t, x)− b2(t, x, y))ϕ1(t, x) dsdxdt,
(33a)

ε

∫
S

∫
Γε

βε(bε1(t, x)− bε2(t, x))ϕε
2(t, x) dsdt

→
∫
Q

∫
Γ

β(y)(b1(t, x)− b2(t, x, y))ϕ2(t, x, y) dsdx dt

(33b)

and

ε2

∫
S

∫
Γε

βε(bε1(t, x)− bε2(t, x))ϕ̃ε
1(t, x) dsdt→ 0. (33c)
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For the right-hand side of equation (23) we have∫
Qε

1

H1(χε
1b

ε
1)ϕε

1 dxdt+

∫
Qε

2

H2(χε
2b

ε
2)ϕε

2 dxdt =∫
Q

χε
1H1(χε

1b
ε
1)ϕ1 dx dt+ ε

∫
Q

χε
1H1(χε

1b
ε
1)ϕ̃ε

1 dxdt+

∫
Q

χε
2H2(χε

2b
ε
2)ϕε

2 dxdt.

(34)

With the extension theorem given in [10, Lemma 5], the boundedness of χε
1b

ε
1 in

L2(S;H1(Ω)) and of χε
1b

ε
1
′ ∈ L2(S;H1(Ω)′) we have the strong convergence χε

1b
ε
1 →

b1 in L2(Q) for the same subsequence that two-scale converges by Theorem 4.2
(cf. also [11, Theorem 2.1]). Therefore there exist a subsequence of χε

1b
ε
1 and a

function r ∈ L2(Q) such that χε
1b

ε
1 converges point-wise almost everywhere to b1

and such that |χε
1b

ε
1(t, x)| ≤ r(t, x) for almost all (t, x) ∈ Q. This implies the

estimate

|(H1(χε
1b

ε
1))(t, x)| = |h1(t, x, χε

1b
ε
1(t, x))| ≤ C (|a1(t, x)|+ |bε1(t, x)|) (35)

≤ C (|a1(t, x)|+ r(t, x)) . (36)

The continuity of H1 implies H1(χε
1b

ε
1)→ H1(b1). As a consequence, Lebesgue’s

dominated convergence theorem yields∫
Q

χε
1(H1(χε

1b
ε
1))(t, x)ϕ1(t, x) dxdt

→
∫
Q

∫
Y

χ1(y)(H1(b1))(t, x)ϕ1(t, x) dxdtdy,

(37a)

ε

∫
Q

χε
1(H1(χε

1b
ε
1))(t, x)ϕ̃ε

1(t, x) dxdt→ 0. (37b)

The second reaction term is actually more problematic: We do not expect the
sequence bε2 to converge strongly since Ωε

2 is disconnected and since the gradients
of bε2 are not bounded independently of ε (cf. the definition (5) of the norm in Bε).
But since the reaction term in Ωε

2 is assumed to be affine, we nonetheless are able
to pass to the limit:∫

Q

χε
2H2(χε

2b
ε
2)(t, x) dxdt =

∫
Q

χε
2(h2 + h̃2(t, x)bε2(t, x))ϕε

1(t, x) dxdt

→
∫
Q

∫
Y

χ2(y)(h2(t, x) + h̃2(t, x)b2(t, x, y))ϕ2(t, x, y) dx dtdy. (37c)

Let us summarize the above limits, that is equations (25), (28), (29), (31), (33)
and (37):

−
∫
Q

∫
Y1

[
d1b1 + α̂(div u+ divy ũ) + ĉ1p1

]
ϕ′1 dxdtdy −

∫
Ω

∫
Y1

d1b0ϕ1(0) dxdy

−
∫
Q

∫
Y2

[
d2b2 + ĉ2p2

]
ϕ′2 dxdtdy −

∫
Ω

∫
Y2

d2b0ϕ2(0) dxdy

+

∫
Q

∫
Y1

D1

(
∇b1 +∇y b̃1

)
·
(
∇ϕ1 +∇yϕ̃1

)
dxdtdy
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+

∫
Q

∫
Y2

D2∇yb2 · ∇yϕ2 dxdtdy +

∫
Q

∫
Γ

β(b1 − b2)(ϕ1 − ϕ2) dxdtds

=

∫
Q

∫
Y1

H1(b1)ϕ1 dxdtdy +

∫
Q

∫
Y2

(h2 + h̃2b2)ϕ2 dxdtdy, (38)

which corresponds, as a weak formulation, to the following system of partial differ-
ential equations

−divy

(
D1(∇b1 +∇y b̃1)

)
= 0 in Q× Y1, (39a)

∂t [d2b2 + ĉ2p2]− divy (D2∇yb2) = h2 + h̃2b2 in Q× Y2, (39b)

∂t

[∫
Y1

(d1b1 + α̂(div u+ divy ũ) + ĉ1p1) dy

]
−div

(∫
Y1

(
D1(∇b1 +∇y b̃1)

)
dy

)
+

∫
Γ

β(b1 − b2) ds =

∫
Y1

H1(b1) in Q,

(39c)

completed by the boundary and initial conditions

D1(∇b1 +∇y b̃1) · n = 0 in Q× Γ, (39d)∫
Y1

D1(∇b1 +∇y b̃1) · ν dy = 0 in S × ∂Ω× Y1, (39e)

D2∇yb2 · n = β(b1 − b2) in Q× Γ, (39f)

y → b̃1, b2 Y-periodic, (39g)

b1(0) = |Y1| b0 in Ω, (39h)

b2(0) = b0 in Ω× Y2. (39i)

We continue by introducing a cell problem and some averaged quantities to arrive
at a simplified form of problem (39a)-(39c). In this context, let τj ∈ H1(Y1)/R be
the unique solutions of the following cell problems

−divy(D1(∇yτj + ej)) = 0, in Y1, (40a)

D1(∇yτj + ej) · n = 0 on Γ, (40b)

y → τj Y-periodic. (40c)

We then can write, up to an additive function c : S × Ω→ R,

b̃1(t, x, y) =

3∑
j=1

∇b1(t, x) · ejπj(y) + c(t, x).

Furthermore we introduce the homogenized tensors Dh, Λ̂ and the averaged
hydraulic permeability and source density:

(Dh)ij =

∫
Y1

D1(y) (∇yτi + ei) (∇yτj + ej) dy, (41a)

(Λ̂h)jk = α̂

(∫
Y1

divy wjk(y) dy + ej · ek
)

dy, (41b)
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where wjk is the solution of the cell problem (11a)-(11c), and some averaged quan-
tities

β̃ =

∫
Γ

β(y) dsy, d̃ =

∫
Y1

d1(y) dy, (41c)

c̃ =

∫
Y1

(ĉ1(y) + α̂1(y) divy w̃(y)) dy. (41d)

In addition, we define a scaled source density operator H̃1 : L2(Q) → L2(Q) by

H̃1(b1) := |Y1|H1(b1) and a microscale source density operator H̃2 : L2(Q× Y2)→
L2(Q× Y2) by H̃2(b) := h2 + h̃2b for b ∈ L2(Q× Y2).10

The complete homogenized system of problem (Mε
cpe) then reads as (15a)-(15h)

supplemented by

∂t(d̃b1 + Λ̂h : e(u) + c̃p1)− div(Dh∇b1)

+β̃b1 −
∫

Γ

βb2 dsy = H̃1(b1)
in Q, (42a)

∂t(d2b2 + ĉ2p2)− divy(D2∇yb2) = H̃2(b2) in Q× Y2, (42b)

D2∇yb2 · n = β(b1 − b2) on Q× Γ, (42c)

Dh∇b1 · ν = 0 on S × ∂Ω, (42d)

y → b2 Y-periodic, (42e)

b1(0) = |Y1| b0 in Ω, (42f)

b2(0) = b0 in Ω× Y2. (42g)

We define an auxiliary function by

γ(t, τ, y) = c̃2∂tζ(t− τ, y), (43)

eliminate p2 and obtain

∂t(d̃b1 + Λ̂h : e(u) + c̃p1)− div(Dh∇b1)

+β̃b1 −
∫

Γ

β(s)b2(s) dsy = H̃1(b1)
in Q, (44a)

∂t

(
d2b2 +

∫ t

0

γ(τ)p1(τ)dτ

)
− divy (D2∇yb2) = H̃2(b2) in Q× Y2, (44b)

D2∇yb2 · n = β(b1 − b2) on Q× Γ, (44c)

Dh∇b1 · ν = 0 on S × ∂Ω, (44d)

y → b2 Y-periodic, (44e)

b1(0) = |Y1| b0 in Ω, (44f)

b2(0) = b0 in Ω× Y2. (44g)

5. Conclusion. Using the two-scale convergence technique, we have derived the
upscaled system (44) — a distributed microstructure system, cf. [16] — govern-
ing the effective dynamics (including a first-order reaction) of a chemical substance
within a poro-elastic composite (consisting of a connected poro-elastic matrix and
fully embedded micro-inclusions displaying very low diffusivities). The strong con-
vergence of the concentrations bε1 has been established by using a compactness

10Recall that h2 was introduced in Chapter 3.
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criterion given by Meirmanov and Zimin [11]. Let us also point to the paper [9]
in which a similar limit passage is discussed in the case where both Ωε

1 and Ωε
2 are

connected (and the reaction terms in both domains are non-linear).
A very particular feature of system (44) is the memory term in equation (44b),

which has been inherited from the memory term in equation (19b) of the macro-
scopic poro-elasticity System (19).

REFERENCES

[1] A. Ainouz, Homogenization of a double porosity model in deformable media, Electronic Jour-

nal of Differential Equations, 90 (2013), 1–18.

[2] G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Anal-

ysis, 23 (1992), 1482–1518.

[3] G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and
applications, in Proceedings of the International Conference on Mathematical Modelling of

Flow through Porous Media, World Scintific publication, Singapore, (1995), 15–25.

[4] T. Arbogast, J. Douglas and U. Hornung, Derivation of the double porosity model of single

phase flow via homogenization theory, SIAM Journal on Mathematical Analysis, 21 (1990),
823–836.

[5] M. Biot, General theory of three-dimensional consolidation, Journal of applied physics, 12
(1941), 155–164.

[6] O. Coussy, Poromechanics, 2nd edition, Wiley, 2005, URL http://amazon.com/o/ASIN/

0470849207/.

[7] H. Deresiewicz and R. Skalak, On uniqueness in dynamic poroelasticity, Bulletin of the Seis-

mological Society of America, 53 (1963), 783–788.

[8] M. Eden, Poroelasticity, Master’s thesis, University of Bremen, 2014.

[9] I. Graf, M. Peter and J. Sneyd, Homogenization of a nonlinear multiscale model of calcium

dynamics in biological cells, Journal of Mathematical Analysis and Applications, 419 (2014),

28–47.
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