Citation: Hasan Kara, Hüseyin Budak, Mehmet Eyüp Kiriş. On Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions[J]. AIMS Mathematics, 2020, 5(5): 4681-4701. doi: 10.3934/math.2020300
[1] | Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299 |
[2] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[3] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[4] | Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502 |
[5] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[6] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[7] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[8] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[9] | Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and $ \delta^{1} $-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327 |
[10] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable significant in the literature (see, e.g., [9], [18], [27,p.137]). These inequalities state that if f:I→R is a convex function on the interval I of real numbers and a,b∈I with a<b, then
f(a+b2)≤1b−ab∫af(x)dx≤f(a)+f(b)2. | (1.1) |
Both inequalities hold in the reversed direction if f is concave.
The Hermite-Hadamard inequality, which is the first fundamental result for convex mappings with a natural geometrical interpretation and many applications, has drawn attention much interest in elementary mathematics. A number of mathematicians have devoted their efforts.
The most well-known inequalities related to the integral mean of a convex function are the Hermite Hadamard inequalities or its weighted versions, the so-called Hermite-Hadamard-Fejér inequalities. In [17], Fejer gave a weighted generalization of the inequalities (1.1) as the following:
Theorem 1. f:[a,b]→R, be a convex function, then the inequality
f(a+b2)b∫ag(x)dx≤b∫af(x)g(x)dx≤f(a)+f(b)2b∫ag(x)dx | (1.2) |
holds, where g:[a,b]→R is nonnegative, integrable, and symmetric about x=a+b2 (i.e. g(x)=g(a+b−x)).
In this paper we will establish some new Fejér type inequalities for the new concept of co-ordinated hyperbolic ρ-convex functions.
The overall structure of the paper takes the form of four sections including introduction. The paper is organized as follows: we first give the definition of co-ordinated convex functions, the definition of fractional integrals and related Hermite-Hadamard inequality in Section 1. We also recall the concept of hyperbolic ρ-convex functions and co-ordinated hyperbolic ρ-convex functions introduced by Özçelik et. al in [23]. Moreover, we give a lemma and a theorem which will be frequently used in the next section. Some Hermite-Hadamard-Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions are obtained and some special cases of the results are also given in Section 2. Then, we also apply the inequalities obtained in Section 2 to establish some fractional Fejer type inequalities in Section 3. Finally, in Section 4, some conclusions and further directions of research are discussed.
A formal definition for co-ordinated convex function may be stated as follows:
Definition 1. A function f:Δ:=[a,b]×[c,d]→R is called co-ordinated convex on Δ, for all (x,u),(y,v)∈Δ and t,s∈[0,1], if it satisfies the following inequality:
f(tx+(1−t) y,su+(1−s) v)≤ts f(x,u)+t(1−s)f(x,v)+s(1−t)f(y,u)+(1−t)(1−s)f(y,v). | (1.3) |
The mapping f is a co-ordinated concave on Δ if the inequality (1.3) holds in reversed direction for all t,s∈[0,1] and (x,u),(y,v)∈Δ.
In [11], Dragomir proved the following inequalities which is Hermite-Hadamard type inequalities for co-ordinated convex functions on the rectangle from the plane R2.
Theorem 2. Suppose that f:Δ:=[a,b]×[c,d]→R is co-ordinated convex, then we have the following inequalities:
f(a+b2,c+d2)≤12[1b−ab∫af(x,c+d2)dx+1d−cd∫cf(a+b2,y)dy]≤1(b−a)(d−c)b∫ad∫cf(x,y)dydx≤14[1b−ab∫af(x,c)dx+1b−ab∫af(x,d)dx+1d−cd∫cf(a,y)dy+1d−cd∫cf(b,y)dy]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4. | (1.4) |
The above inequalities are sharp. The inequalities in (1.4) hold in reverse direction if the mapping f is a co-ordinated concave mapping.
Over the years, the numerous studies have focused on to establish generalization of the inequality (1.1) and (1.4). For some of them, please see ([1,2,3,4,5,6,7,8], [19,20,21,22,23,24,25,26], [28,29,30,31,32,33,34,35,36]).
Definition 2. [29] Let f∈L1(Δ).The Riemann-Lioville integrals Jα,βa+,c+,Jα,βa+,d−,+Jα,βb−,c+ and Jα,βb−,d−of order α,β>0 with a,c≥0 are defined by
Jα,βa+,c+f(x,y)=1Γ(α)Γ(β)x∫ay∫c(x−t)α−1(y−s)β−1f(t,s)dsdt, x>a, y>c,Jα,βa+,d−f(x,y)=1Γ(α)Γ(β)x∫ad∫y(x−t)α−1(s−y)β−1f(t,s)dsdt, x>a, y>d,Jα,βb−,c+f(x,y)=1Γ(α)Γ(β)b∫xy∫c(t−x)α−1(y−s)β−1f(t,s)dsdt, x<b, y>c,Jα,βb−,d−f(x,y)=1Γ(α)Γ(β)b∫xd∫y(t−x)α−1(s−y)β−1f(t,s)dsdt, x<b, y<d, |
respectively. Here, Γ is the Gamma funtion,
J0,0a+,c+f(x,y)=J0,0a+,d−f(x,y)=J0,0b−,c+f(x,y)=J0,0b−,d−f(x,y) |
and
J1,1a+,c+f(x,y)=x∫ay∫cf(t,s)dsdt. |
First, we give the definition of hyperbolic ρ-convex functions and some related inequalities. Then we define the co-ordinated hyperbolic ρ -convex functions.
Definition 3. [10] A function f:I→R is said to be hyperbolic ρ-convex, if for any arbitrary closed subinterval [a,b] of I such that we have
f(x)≤sinh[ρ(b−x)]sinh[ρ(b−a)]f(a)+sinh[ρ(x−a)]sinh[ρ(b−a)]f(b) | (1.5) |
for all x∈[a,b]. If we take x=(1−t)a+tb, t∈[0,1] in (1.5), then the condition (1.5) becomes
f((1−t)a+tb)≤sinh[ρ(1−t)(b−a)]sinh[ρ(b−a)]f(a)+sinh[ρt(b−a)]sinh[ρ(b−a)]f(b). | (1.6) |
If the inequality (1.5) holds with "≥", then the function will be called hyperbolic ρ-concave on I.
The following Hermite-Hadamard inequality for hyperbolic ρ-convex function is proved by Dragomir in [10].
Theorem 3. Suppose that f:I→R is hyperbolic ρ-convex on I. Then for any a,b∈I, we have
2ρf(a+b2)sinh[ρ(b−a)2]≤b∫af(x)dx≤f(a)+f(b)ρtanh[ρ(b−a)2]. | (1.7) |
Moreover in [12], Dragomir prove the following Hermite Hadamard-Fejer type inequalities for hyperbolic ρ-convex functions.
Theorem 4. Assume that the function f:I→R is hyperbolic ρ-convex on I and a,b∈I. Assume also that p:[a,b]⟶R is a positive, symmetric and integrable function on [a,b], then we have
f(a+b2)b∫acosh[ρ(x−a+b2)]p(x)dx≤b∫af(x)p(x)dx≤f(a)+f(b)2sech[ρ(b−a)2]b∫acosh[ρ(x−a+b2)]p(x)dx. | (1.8) |
For the other inequalities for hyperbolic ρ-convex functions, please refer to ([12,13,14,15]).
Now we give the definition of co-ordinated hyperbolic ρ-convex functions.
Definition 4. [23] A function f:Δ→R is said to co-ordinated hyperbolic ρ-convex on Δ, if the inequality
f(x,y)≤sinh[ρ1(b−x)]sinh[ρ1(b−a)]sinh[ρ2(d−y)]sinh[ρ2(d−c)]f(a,c)+sinh[ρ1(b−x)]sinh[ρ1(b−a)]sinh[ρ2(y−c)]sinh[ρ2(d−c)]f(a,d)+sinh[ρ1(x−a)]sinh[ρ1(b−a)]sinh[ρ2(d−y)]sinh[ρ2(d−c)]f(b,c)+sinh[ρ1(x−a)]sinh[ρ1(b−a)]sinh[ρ2(y−c)]sinh[ρ2(d−c)]f(b,d). | (1.9) |
holds.
If the inequality (1.9) holds with "≥", then the function will be called co-ordinated hyperbolic ρ-concave on Δ.
If we take x=(1−t)a+tb and y=(1−s)c+sd for t,s,∈[0,1], then the inequality (1.9) can be written as
f((1−t)a+tb,(1−s)c+sd)≤sinh[ρ1(1−t)(b−a)]sinh[ρ1(b−a)]sinh[ρ2(1−s)(d−y)]sinh[ρ2(d−c)]f(a,c)+sinh[ρ1(1−t)(b−a)]sinh[ρ1(b−a)]sinh[ρ2s(d−y)]sinh[ρ2(d−c)]f(a,d)+sinh[ρ1t(b−a)]sinh[ρ1(b−a)]sinh[ρ2(1−s)(d−y)]sinh[ρ2(d−c)]f(b,c)+sinh[ρ1(b−a)]sinh[ρ1(b−a)]sinh[ρ2s(d−y)]sinh[ρ2(d−c)]f(b,d). | (1.10) |
Now we give the following useful lemma:
Lemma 1. [23] If f:Δ=[a,b]×[c,d]→R is co-ordinated ρ-convex function on Δ, then we have the following inequality
cosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]f(a+b2,c+d2)≤14[f(x,y)+f(x,c+d−y)+f(a+b−x,y)+f(a+b−x,c+d−y)]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(x−a+b2)]cosh[ρ1(b−a)2]cosh[ρ2(y−c+d2)]cosh[ρ2(d−c)2] | (1.11) |
for all (x,y)∈Δ.
Theorem 5. Let p:Δ→R be a positive, integrable and symmetric about a+b2 and c+d2. Let, f:Δ→R be a co-ordinated hyperbolic ρ-convex functions on Δ. We have the following Hermite-Hadamard-Fejer type inequalities:
f(a+b2,c+d2)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx≤b∫ad∫cf(x,y)p(x,y)dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(b−a)2]cosh[ρ2(d−c)2]×b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx. | (2.1) |
Proof. Multiplying the inequality (1.1) by p(x,y)>0 and then integrating with respect to (x,y) on Δ, we obtain
f(a+b2,c+d2)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx≤14b∫ad∫c[f(x,y)+f(x,c+d−y)+f(a+b−x,y)+f(a+b−x,c+d−y)]p(x,y)dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(b−a)2]cosh[ρ2(d−c)2]×b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx | (2.2) |
Since p is symmetric about a+b2 and c+d2, one can show that
b∫ad∫cf(x,c+d−y)p(x,y)dydx=b∫ad∫cf(a+b−x,y)p(x,y)dydx=b∫ad∫cf(a+b−x,c+d−y)p(x,y)dydx=b∫ad∫cf(x,y)p(x,y)dydx. |
This completes the proof.
Remark 1. If we choose p(x,y)=1 in Theorem 5, then we have the following the inequality
4ρ1ρ2sinh[ρ1(b−a)2]sinh[ρ2(d−c)2]f(a+b2,c+d2)≤b∫ad∫cf(x,y)dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)ρ1ρ2tanh[ρ1(b−a)2]tanh[ρ2(d−c)2] |
which is proved by Özçelik et. al in [23].
Corollary 1. Suppose that all assumptions of Theorem 5 are satisfied. Then we have the following inequality,
f(a+b2,c+d2)b∫ad∫cw(x,y)dydx≤b∫ad∫cf(x,y)w(x,y)sech[ρ1(x−a+b2)]sech[ρ2(y−c+d2)]dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]b∫ad∫cw(x,y)dydx. | (2.3) |
Proof. Let us define the function p(x,y) by
w(x,y)=p(x,y)cosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]. |
Clearly, w(x.y) is a a positive, integrable and symmetric about a+b2 and c+d2. If we apply Theorem 5 for the function w(x,y) then we establish the desired inequality (2.3).
Remark 2. If we choose w(x,y)=1 for all (x,y)ϵΔ in Corollary 1, then we have the following the inequality
f(a+b2,c+d2)≤1(b−a)(d−c)b∫ad∫cf(x,y)sech[ρ1(x−a+b2)]sech[ρ2(y−c+d2)]dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]. | (2.4) |
which is proved by Özçelik et. al in [23].
Theorem 6. Let p:Δ→R be a positive, integrable and symmetric about a+b2 and c+d2. Let f:Δ→R be a co-ordinated hyperbolic ρ-convex on Δ, then we have the following Hermite-Hadamard-Fejer type inequalities
f(a+b2,c+d2)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx≤12[b∫ad∫cf(x,c+d2)cosh[ρ2(y−c+d2)]p(x,y)dydx+b∫ad∫cf(a+b2,y)cosh[ρ1(x−a+b2)]p(x,y)dydx]≤b∫ad∫cf(x,y)p(x,y)dydx≤14[sech[ρ2(d−c)2]b∫ad∫c[f(x,c)+f(x,d)]cosh[ρ2(y−c+d2)]p(x,y)dydx+sech[ρ1(b−a)2]b∫ad∫c[f(a,y)+f(b,y)]cosh[ρ1(x−a+b2)]p(x,y)dydx]≤f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]×b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx. | (2.5) |
Proof. Since f is co-ordinated hyperbolic ρ-convex on Δ, if we define the mappings fx:[c,d]→R, fx(y)=f(x,y) and px:[c,d]→R, px(y)=p(x,y), then fx(y) is hyperbolic ρ-convex on [c,d] and px(y) is positive, integrable and symmetric about c+d2 for all x∈[a,b]. If we apply the inequality (1.8) for the hyperbolic ρ-convex function fx(y), then we have
fx(c+d2)d∫ccosh[ρ2(y−c+d2)]px(y)dy≤d∫cfx(y)px(y)dy≤fx(c)+fx(d)2sech[ρ2(d−c)2]d∫ccosh[ρ2(y−c+d2)]px(y)dy. | (2.6) |
That is,
f(x,c+d2)d∫ccosh[ρ2(y−c+d2)]p(x,y)dy≤d∫cf(x,y)p(x,y)dy≤f(x,c)+f(x,d)2sech[ρ2(d−c)2]d∫ccosh[ρ2(y−c+d2)]p(x,y)dy. | (2.7) |
Integrating the inequality (2.7) with respect to x from a to b, we obtain
b∫ad∫cf(x,c+d2)cosh[ρ2(y−c+d2)]p(x,y)dydx≤b∫ad∫cf(x,y)p(x,y)dydx≤12b∫ad∫c[f(x,c)+f(x,d)]sech[ρ2(d−c)2]cosh[ρ2(y−c+d2)]p(x,y)dydx. | (2.8) |
Similarly, as f is co-ordinated hyperbolic ρ-convex on Δ, if we define the mappings fy:[a,b]→R, fy(x)=f(x,y) and py:[a,b]→R, py(x)=p(x,y), then fy(x) is hyperbolic ρ-convex on [a,b] and py(x) is positive, integrable and symmetric about a+b2 for all y∈[c,d]. Utilizing the inequality (1.8) for the hyperbolic ρ-convex function fy(x), then we obtain the inequality
fy(a+b2)b∫acosh[ρ1(x−a+b2)]py(x)dx≤b∫afy(x)py(x)dx≤fy(a)+fy(b)2sech[ρ1(b−a)2]b∫acosh[ρ1(x−a+b2)]py(x)dx | (2.9) |
i.e.
f(a+b2,y)b∫acosh[ρ1(x−a+b2)]p(x,y)dx≤b∫af(x,y)p(x,y)dx≤f(a,y)+f(b,y)2sech[ρ1(b−a)2]b∫acosh[ρ1(x−a+b2)]p(x,y)dx. | (2.10) |
Integrating the inequality (2.10) with respect to y on [c,d], we get
b∫ad∫cf(a+b2,y)cosh[ρ1(x−a+b2)]p(x,y)dydx≤b∫ad∫cf(x,y)p(x,y)dydx≤12b∫ad∫c[f(a,y)+f(b,y)]sech[ρ1(b−a)2]cosh[ρ1(x−a+b2)]p(x,y)dydx. | (2.11) |
Summing the inequalities (2.8) and (2.11), we obtain the second and third inequalities in (2.5).
Since f(a+b2,y) is hyperbolic ρ-convex on [c,d] and px(y) is positive, integrable and symmetric about c+d2, using the first inequality in (1.8), we have
f(a+b2,c+d2)d∫ccosh[ρ2(y−c+d2)]p(x,y)dy≤d∫cf(a+b2,y)p(x,y)dy. | (2.12) |
Multiplying the inequality (2.12) by cosh[ρ1(x−a+b2)] and integrating resulting inequality with respect to x on [a,b], we get
f(a+b2,c+d2)b∫ad∫ccosh[ρ2(y−c+d2)]cosh[ρ1(x−a+b2)]p(x,y)dydx≤b∫ad∫cf(a+b2,y)cosh[ρ1(x−a+b2)]p(x,y)dydx. | (2.13) |
Since f(x,c+d2) is hyperbolic ρ-convex on [a,b] and py(x) is positive, integrable and symmetric about a+b2, utilizing the first inequality in (1.8), we have the following inequality
f(a+b2,c+d2)b∫acosh[ρ1(x−a+b2)]p(x,y)dx≤b∫af(x,c+d2)p(x,y)dx. | (2.14) |
Multiplying the inequality (2.14) by cosh[ρ2(y−c+d2)] and integrating resulting inequality with respect to y on [c,d], we get
f(a+b2,c+d2)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx≤b∫ad∫cf(x,c+d2)cosh[ρ2(y−c+d2)]p(x,y)dydx. | (2.15) |
From the inequalities (2.13) and (2.15), we obtain the first inequality in (2.5).
For the proof of last inequality in (2.5), using the second inequality in (1.8) for the hyperbolic ρ-convex functions f(x,c) and f(x,d) on [a,b] and for the symmetric function py(x), we obtain the inequalities
b∫af(x,c)p(x,y)dx≤f(a,c)+f(b,c)2sech[ρ1(b−a)2]b∫acosh[ρ1(x−a+b2)]p(x,y)dx | (2.16) |
and
b∫af(x,d)p(x,y)dx≤f(a,d)+f(b,d)2sech[ρ1(b−a)2]b∫acosh[ρ1(x−a+b2)]p(x,y)dx. | (2.17) |
If we multiply the inequalities (2.16) and (2.17) by sech[ρ2(d−c)2]cosh[ρ2(y−c+d2)] and integrating the resulting inequalities on [c,d], then we have
b∫ad∫cf(x,c)sech[ρ2(d−c)2]cosh[ρ2(y−c+d2)]p(x,y)dydx≤f(a,c)+f(b,c)2sech[ρ1(b−a)2]sech[ρ2(d−c)2]×b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx | (2.18) |
and
b∫ad∫cf(x,d)sech[ρ2(d−c)2]cosh[ρ2(y−c+d2)]p(x,y)dydx≤f(a,d)+f(b,d)2sech[ρ1(b−a)2]sech[ρ2(d−c)2]×b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx. | (2.19) |
Similarly, applying the second inequality in (1.8) for the hyperbolic ρ-convex functions f(a,y) and f(b,y) on [c,d] and for the symmetric function px(y), we have
d∫cf(a,y)p(x,y)dy≤f(a,c)+f(a,d)2sech[ρ2(d−c)2]d∫ccosh[ρ2(y−c+d2)]p(x,y)dy | (2.20) |
and
d∫cf(b,y)p(x,y)dy≤f(b,c)+f(b,d)2sech[ρ2(d−c)2]d∫ccosh[ρ2(y−c+d2)]p(x,y)dy. | (2.21) |
Multiplying the inequalities (2.20) and (2.21) by sech[ρ1(b−a)2]cosh[ρ1(x−a+b2)] and integrating the resulting inequalities on [a,b], then we have
b∫ad∫cf(a,y)sech[ρ1(b−a)2]cosh[ρ1(x−a+b2)]p(x,y)dydx≤f(a,c)+f(a,d)2sech[ρ2(d−c)2]sech[ρ1(b−a)2]×b∫ad∫ccosh[ρ2(y−c+d2)]cosh[ρ1(x−a+b2)]p(x,y)dydx | (2.22) |
and
b∫ad∫cf(b,y)sech[ρ1(b−a)2]cosh[ρ1(x−a+b2)]p(x,y)dydx≤f(b,c)+f(b,d)2sech[ρ2(d−c)2]sech[ρ1(b−a)2]×b∫ad∫ccosh[ρ2(y−c+d2)]cosh[ρ1(x−a+b2)]p(x,y)dydx. | (2.23) |
Summing the inequalities (2.18), (2.19), (2.22) and (2.23), we establish the last inequality in (2.5). This completes the proof.
Remark 3. If we choose p(x,y)=1 in Theorem 6, then we have
4ρ1ρ2sinh[ρ1(b−a)2]sinh[ρ2(d−c)2]f(a+b2,c+d2)≤1ρ1sinh[ρ1(b−a)2]d∫cf(a+b2,y)dy+1ρ2sinh[ρ2(d−c)2]b∫af(x,c+d2)dx≤b∫ad∫cf(x,y)dydx≤12[1ρ2tanh[ρ2(d−c)2]b∫a[f(x,c)+f(x,d)]dx+1ρ1tanh[ρ1(b−a)2]d∫c[f(a,y)+f(b,y)]dy]≤tanh[ρ1(b−a)2]tanh[ρ2(d−c)2]f(a,c)+f(a,d)+f(b,c)+f(b,d)ρ1ρ2 | (2.24) |
which is proved by Özçelik et. al in [23].
Remark 4. Choosing ρ1=ρ2=0 in Theorem 6, we obtain
f(a+b2,c+d2)b∫ad∫cp(x,y)dydx≤12b∫ad∫c[f(x,c+d2)+f(a+b2,y)]p(x,y)dydx≤b∫ad∫cf(x,y)p(x,y)dydx≤14b∫ad∫c[f(x,c)+f(x,d)+f(a,y)+f(b,y)]p(x,y)dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4b∫ad∫cp(x,y)dydx. |
which is proved by Budak and Sarikaya in [5].
Corollary 2. Let g1:[a,b]→R and g1:[c,d]→R be two positive, integrable and symmetric about a+b2 and c+d2, respectively. If we choose p(x,y)=g1(x)g2(y)G1G2 for all (x,y)∈Δ in Theorem 6, then we have
f(a+b2,c+d2)≤12[1G1b∫af(x,c+d2)g1(x)dx+1G2d∫cf(a+b2,y)g2(y)dy]≤1G1G2b∫ad∫cf(x,y)g1(x)g2(y)dydx≤14[sech[ρ2(d−c)2]1G1b∫a[f(x,c)+f(x,d)]g1(x)dx+sech[ρ1(b−a)2]1G2d∫c[f(a,y)+f(b,y)]g2(y)dy]≤f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2] | (2.25) |
where
G1=b∫acosh[ρ1(x−a+b2)]g1(x)dxandG2=d∫ccosh[ρ2(y−c+d2)]g2(y)dy. |
Remark 5. If we choose ρ1=ρ2=0 in Corollary 2, then we have
f(a+b2,c+d2)≤12[1G1b∫af(x,c+d2)g1(x)dx+1G2d∫cf(a+b2,y)g2(y)dy]≤1G1G2b∫ad∫cf(x,y)g1(x)g2(y)dydx≤14[1G1b∫a[f(x,c)+f(x,d)]g1(x)dx+1G2d∫c[f(a,y)+f(b,y)]g2(y)dy]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4 |
which is proved by Farid et al. in [16].
In this section we obtain some fractional Hermite-Hadamard an Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions.
Theorem 7. If f:Δ→R is a co-ordinated hyperbolic ρ-convex functions on Δ, then we have the following Hermite-Hadamard and Fejer type inequalities,
f(a+b2,c+d2)H(α,β)≤[Jα,βa+,c+f(b,d)+Jα,βa+,d−f(b,c)+Jα,βb−,c+f(a,d)+Jα,βb−,d−f(a,c)]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]H(α,β) |
where
H(α,β)=1Γ(α)Γ(β)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]×[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx. |
Proof. If we apply Theorem 5 for the symmetric function
p(x,y)=1Γ(α)Γ(β)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1], |
then we get the following inequality
f(a+b2,c+d2)H(α,β)≤1Γ(α)Γ(β)b∫ad∫cf(x,y)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]H(α,β). |
From the definition of the double fractional integrals we have
1Γ(α)Γ(β)b∫ad∫cf(x,y)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx=[Jα,βa+,c+f(b,d)+Jα,βa+,d−f(b,c)+Jα,βb−,c+f(a,d)+Jα,βb−,d−f(a,c)] |
which completes the proof.
Remark 6. If we choose ρ1=ρ2=0 in Theorem 7, then we have the following fractional Hermite-Hadamard inequality,
f(a+b2,c+d2)≤Γ(α+1)Γ(β+1)4(b−a)α(d−c)β[Jα,βa+,c+f(b,d)+Jα,βa+,d−f(b,c)+Jα,βb−,c+f(a,d)+Jα,βb−,d−f(a,c)]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4 |
which was proved by Sarikaya in [29,Theorem 4].
Remark 7. If we choose α =β=1 in Theorem 7, then we have
H(1,1)=16ρ1ρ2sinh(ρ1(b−a)2)sinh(ρ2(d−c)2). |
Thus, we get the following Hermite-Hadamard inequality,
4ρ1ρ2f(a+b2,c+d2)sinh(ρ1(b−a)2)sinh(ρ2(d−c)2)≤b∫ad∫cf(x,y)dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)ρ1ρ2tanh[ρ1(b−a)2]tanh[ρ2(d−c)2] |
which is proved by Özçelik et al. in [23].
Theorem 8. Let p:Δ→R be a positive, integrable and symmetric about a+b2 and c+d2. If f:Δ→R is a co-ordinated hyperbolic ρ-convex functions on Δ, then we have the following Hermite-Hadamard-Fejer type inequalities,
f(a+b2,c+d2)Hp(α,β)≤[Jα,βa+,c+(fp)(b,d)+Jα,βa+,d−(fp)(b,c)+Jα,βb−,c+(fp)(a,d)+Jα,βb−,d−(fp)(a,c)]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]Hp(α,β) |
where
Hp(α,β)=1Γ(α)Γ(β)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]×[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]p(x,y)dydx. |
Proof. Let us define the function k(x,y) by
k(x,y)=p(x,y)Γ(α)Γ(β)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1], |
Clearly, k(x.y) is a a positive, integrable and symmetric about a+b2 and c+d2. If we apply Theorem 5 for the function k(x,y) then we obtain,
f(a+b2,c+d2)Hp(α,β)≤1Γ(α)Γ(β)b∫ad∫cf(x,y)p(x,y)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(b−a)2]cosh[ρ2(d−c)2]Hp(α,β). |
From the definition of the double fractional integrals we have
1Γ(α)Γ(β)b∫ad∫cf(x,y)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]p(x,y)dydx=[Jα,βa+,c+(fp)(b,d)+Jα,βa+,d−(fp)(b,c)+Jα,βb−,c+(fp)(a,d)+Jα,βb−,d−(fp)(a,c)]. |
This completes the proof.
Remark 8. If we choose ρ1=ρ2=0 in Theorem 3, then we have the following fractional Hermite-Hadamard inequality,
f(a+b2,c+d2)[Jα,βa+,c+p(b,d)+Jα,βa+,d−p(b,c)+Jα,βb−,c+p(a,d)+Jα,βb−,d−p(a,c)]≤[Jα,βa+,c+(fp)(b,d)+Jα,βa+,d−(fp)(b,c)+Jα,βb−,c+(fp)(a,d)+Jα,βb−,d−(fp)(a,c)]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4[Jα,βa+,c+p(b,d)+Jα,βa+,d−p(b,c)+Jα,βb−,c+p(a,d)+Jα,βb−,d−p(a,c)] |
which is proved by Yaldız et all in [34].
Remark 9. If we choose α =β=1 in Theorem 3, then we have Theorem 1.3 reduces to Theorem 5.
Theorem 9. If f:Δ→R is a co-ordinated hyperbolic ρ-convex functions on Δ. Then we have the following Hermite-Hadamard type inequalities for fractional integrals,
f(a+b2,c+d2)H1(α,β)≤12[(Jαa+f(b,c+d2)+Jαb−f(a,c+d2))H2(β)+Jβc+f(d,a+b2)+Jβd−f(c,a+b2)H3(α)]≤[Jα,βa+,c+f(b,d)+Jα,βa+,d−f(b,c)+Jα,βb−,c+f(a,d)+Jα,βb−,d−f(a,c)]≤14[sech[ρ2(d−c)2](Jαa+f(b,c)+Jαa+f(b,d)+Jαb−f(a,c)+Jαb−f(a,d))H2(β)+sech[ρ1(b−a)2](Jβc+f(a,d)+Jβc+f(b,d)+Jβd−f(a,c)+Jβd−f(b,c))H3(α)]≤f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]H1(α,β) | (3.1) |
where
H1(α,β)=1Γ(α)Γ(β)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]×[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx, |
H2(β)=1Γ(β)d∫ccosh[ρ2(y−c+d2)][(d−y)β−1+(y−c)β−1]dy |
and
H3(α,β)=1Γ(α)b∫acosh[ρ1(x−a+b2)][(b−x)α−1+(x−a)α−1]dx. |
Proof. If we apply Theorem 6 for the symmetric function
p(x,y)=1Γ(α)Γ(β)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1], |
then we get the following inequality
f(a+b2,c+d2)H1(α,β)≤12[(1Γ(α)b∫af(x,c+d2)[(b−x)α−1+(x−a)α−1]dx)H2(β)+(1Γ(β)d∫cf(a+b2,y)[(d−y)β−1+(y−c)β−1]dy)H3(α)]≤1Γ(α)Γ(β)b∫ad∫cf(x,y)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx≤14[sech[ρ2(d−c)2](1Γ(α)b∫a[f(x,c)+f(x,d)][(b−x)α−1+(x−a)α−1]dx)H2(β)+sech[ρ1(b−a)2](1Γ(β)b∫a[f(a,y)+f(b,y)][(d−y)β−1+(y−c)β−1]dx)H3(α)]≤f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]H1(α,β). |
This completes the proof.
Remark 10. Under assumptions of Theorem 9 with α=β=1, the inequalities (3.1) reduce to inequalities (2.5) proved by Özçelik et. al in [23].
Remark 11. Under assumptions of Theorem 9 with ρ1=ρ2=0, the inequalities (3.1) reduce to inequalities proved by Sarikaya in [29,Theorem 4]
In this paper, we establish some Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. By using these inequalities we present some inequalities for Riemann-Liouville fractional integrals. In the future works, authors can prove similar inequalities for other fractional integrals.
All authors declare no conflicts of interest.
[1] |
A. Akkurt, M. Z. Sarikaya, H. Budak, et al. On the Hadamard's type inequalities for co-ordinated convex functions via fractional integrals, Journal of King Saud University - Science, 29 (2017), 380-387. doi: 10.1016/j.jksus.2016.06.003
![]() |
[2] | T. Ali, M. A. Khan, A. Kilicman, et al. On the refined Hermite-Hadamard inequalities, Mathematical Sciences & Applications E-Notes, 6 (2018), 85-92. |
[3] | A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Math., 28 (1994), 7-12. |
[4] | M. K. Bakula, An improvement of the Hermite-Hadamard inequality for functions convex on the coordinates, Australian journal of mathematical analysis and applications, 11 (2014), 1-7. |
[5] | H. Budak and M. Z. Sarikaya, Hermite-Hadamard-Fejer inequalities for double integrals, submitted, 2018. |
[6] | F. Chen, A note on the Hermite-Hadamard inequality for convex functions on the co-ordinates, J. Math. Inequal., 8 (2014), 915-923. |
[7] | F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions, J. Appl. Math., 2013 (2013), 935020. |
[8] |
F. Chen, S. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705-716. doi: 10.22436/jnsa.009.02.32
![]() |
[9] | S. S. Dragomir and C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. |
[10] | S. S. Dragomir, Some inequalities of Hermite-Hadamard type for hyperbolic ρ-convex functions, Preprint, 2018. |
[11] | S. S. Dragomir, On Hadamards inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan J. Math., 4 (2001), 775-788. |
[12] | S. S. Dragomir, Some inequalities of Fejer type for hyperbolic ρ-convex functions, Preprint, 2018. |
[13] | S. S. Dragomir, Some inequalities of Ostrowski and trapezoid type for hyperbolic ρ-convex functions, Preprint, 2018. |
[14] | S. S. Dragomir, Some inequalities of Jensen type for hyperbolic ρ-convex functions, Preprint, 2018. |
[15] | S. S. Dragomir and B. T. Torebek, Some Hermite-Hadamard type inequalities in the class of hyperbolic ρ-convex functions, arXiv preprint, arXiv:1901.06634, 2019. |
[16] | G. Farid, M. Marwan and A. U. Rehman, Fejer-Hadamard inequlality for convex functions on the co-ordinates in a rectangle from the plane, International Journal of Analysis and Applications, 10 (2016), 40-47. |
[17] | L. Fejer, Über die Fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss., 24 (1906), 369-390. (Hungarian) |
[18] | J. Hadamard, Etude sur les proprietes des fonctions entieres en particulier d'une fonction consideree par Riemann, J. Math. Pures Appl., 58 (1893), 171-215. |
[19] | U. S. Kırmacı, M. K. Bakula, M. E. Özdemir, et al. Hadamard-tpye inequalities for s-convex functions, Appl. Math. Comput., 193 (2007), 26-35. |
[20] | M. A. Latif and M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinetes, Int. Math. Forum, 4 (2009), 2327-2338. |
[21] |
M. A. Latif, S. S. Dragomir, E. Momoniat, Generalization of some Inequalities for differentiable co-ordinated convex functions with applications, Moroccan J. Pure Appl. Anal., 2 (2016), 12-32. doi: 10.7603/s40956-016-0002-4
![]() |
[22] | M. A. Latif and S. S. Dragomir, On some new inequalities for differentiable co-ordinated convex functions, J. Inequal. Appl., 2012 (2012), 28. |
[23] | K. Ozcelik, H. Budak, S. S. Dragomir, On Hermite-Hadamard type inequalities for co-ordinated hyperbolic ρ-convex functions, Submitted, 2019. |
[24] |
M. E. Ozdemir, C. Yildiz and A. O. Akdemir, On the co-ordinated convex functions, Appl. Math. Inf. Sci., 8 (2014), 1085-1091. doi: 10.12785/amis/080318
![]() |
[25] | B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll, 6 (2003), 1-9. |
[26] |
Z. Pavic, Improvements of the Hermite-Hadamard inequality, J. Inequal. Appl., 2015 (2015), 1-11. doi: 10.1186/1029-242X-2015-1
![]() |
[27] | J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992. |
[28] | M. Z. Sarikaya, E. Set, M. E. Ozdemir, et al.New some Hadamard's type inequalities for coordinated convex functions, Tamsui Oxford Journal of Information and Mathematical Sciences, 28 (2012), 137-152. |
[29] |
M. Z. Sarikaya, On the Hermite-Hadamard-type inequalities for co-ordinated convex functions via fractional integrals, Integ. Transf. Spec. F., 25 (2014), 134-147. doi: 10.1080/10652469.2013.824436
![]() |
[30] | E. Set, M. E. Özdemir, S. S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, J. Inequal. Appl., 2010 (2010), 148102. |
[31] |
K. L. Tseng and S. R. Hwang, New Hermite-Hadamard inequalities and their applications, Filomat, 30 (2016), 3667-3680. doi: 10.2298/FIL1614667T
![]() |
[32] |
D. Y. Wang, K. L. Tseng and G. S. Yang, Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwan. J. Math., 11 (2007), 63-73. doi: 10.11650/twjm/1500404635
![]() |
[33] | R. Xiang and F. Chen, On some integral inequalities related to Hermite-Hadamard-Fejér inequalities for coordinated convex functions, Chinese Journal of Mathematics, 2014 (2014), 796132. |
[34] | H. Yaldız, M. Z. Sarikaya, Z. Dahmani, On the Hermite-Hadamard-Fejer-type inequalities for coordinated convex functions via fractional integrals, An International Journal of Optimization and Control: Theories & Applications, 7 (2017), 205-215. |
[35] |
G. S. Yang and K. L. Tseng, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl., 239 (1999), 180-187. doi: 10.1006/jmaa.1999.6506
![]() |
[36] | G. S. Yang and M. C. Hong, A note on Hadamard's inequality, Tamkang J. Math., 28 (1997), 33-37. |
1. | Dumitru Baleanu, Artion Kashuri, Pshtiwan Othman Mohammed, Badreddine Meftah, General Raina fractional integral inequalities on coordinates of convex functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03241-y | |
2. | Han Li, Muhammad Shoaib Saleem, Imran Ahmed, Kiran Naseem Aslam, Hermite–Hadamard and Fejér-type inequalities for strongly reciprocally (p, h)-convex functions of higher order, 2023, 2023, 1029-242X, 10.1186/s13660-023-02960-y | |
3. | Silvestru Sever Dragomir, Mohamed Jleli, Bessem Samet, Hermite-Hadamard-type inequalities for generalized trigonometrically and hyperbolic ρ-convex functions in two dimension, 2024, 22, 2391-5455, 10.1515/math-2024-0028 |