Citation: Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system[J]. Networks and Heterogeneous Media, 2016, 11(1): 1-27. doi: 10.3934/nhm.2016.11.1
[1] | Ehsan Movahednia, Choonkil Park, Dong Yun Shin . Approximation of involution in multi-Banach algebras: Fixed point technique. AIMS Mathematics, 2021, 6(6): 5851-5868. doi: 10.3934/math.2021346 |
[2] | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438 |
[3] | Ehsan Movahednia, Young Cho, Choonkil Park, Siriluk Paokanta . On approximate solution of lattice functional equations in Banach f-algebras. AIMS Mathematics, 2020, 5(6): 5458-5469. doi: 10.3934/math.2020350 |
[4] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[5] | Tae Hun Kim, Ha Nuel Ju, Hong Nyeong Kim, Seong Yoon Jo, Choonkil Park . Bihomomorphisms and biderivations in Lie Banach algebras. AIMS Mathematics, 2020, 5(3): 2196-2210. doi: 10.3934/math.2020145 |
[6] | Araya Kheawborisut, Siriluk Paokanta, Jedsada Senasukh, Choonkil Park . Ulam stability of hom-ders in fuzzy Banach algebras. AIMS Mathematics, 2022, 7(9): 16556-16568. doi: 10.3934/math.2022907 |
[7] | Francisco Martínez, Inmaculada Martínez, Mohammed K. A. Kaabar, Silvestre Paredes . New results on complex conformable integral. AIMS Mathematics, 2020, 5(6): 7695-7710. doi: 10.3934/math.2020492 |
[8] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
[9] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[10] | Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour . Analysis study on multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains. AIMS Mathematics, 2023, 8(8): 18455-18473. doi: 10.3934/math.2023938 |
Hyers [1] made a response to the question of Ulam in the context of Banach spaces in relation to additive mappings and was a considerable step towards further solutions in this area. Note the concept of stability is a major property in the qualitative theory of differential equations. Over the last few years, results have been presented on numerous types of differential equations. The approach proposed by Hyers [1] which provides the additive function is named a direct technique. This technique is a significant and helpful tool used to investigate the stability of different functional equations. In recent years, a number of research monographs and articles have been studied on diverse applications and generalizations of the HUS, like k-additive mappings, differential equations, Navier–Stokes equations, ODEs, and PDEs (see [2,3,4]). Also in recent years, the stability of different (integral and differential, others functional) equations and other subjects (such as C∗-ternary algebras, groups, flows and Banach algebras) have been investigated. Fixed–point methods are useful when examining stability and fixed point theory proposes vital tools for solving problems arising in different fields of functional analysis, like equilibrium problems, differential equations, and dynamical systems.
Assume Banach algebras Q and Q′′. Suppose (Q′,Δ) is a probability measure space and suppose (Q,BQ) and (Q′′,BQ′′) are Borel measurable spaces. Then a map f:Q′×Q→Q′′ is a operator if {℘:f(℘,α)∈ν}∈Δ for each α in Q and ν∈BQ′′. Assume ℧=(℧1,…,℧m) and Ω=(Ω1,…,Ωm),m∈N. Then we have
℧⪯Ω⟺℧ı≤Ωı,ı=1,⋯,m; |
and also
℧→0⟺℧ı→0,ı=1,⋯,m. |
Definition 1.1 ([5]). Let ∇≠∅ is a set and d:∇2→[0,+∞]m,m∈N, is a given mapping. If the following conditions are satisfied, then we say d is a generalized metric on ∇:
(1) For each (g,g′)∈∇×∇, we get
d(g,g′)=(0,⋯,0)⏟m⟺g=g′; |
(2) For each (g,g′)∈∇×∇, we get
d(g′,g)=d(g,g′)⟺g=g′; |
(3) For each g,g′,g′′∈∇, we get
d(g,g′′)+d(g′′,g′)⪰d(g′,g). |
Theorem 1.2 ([5]). Assume the following assumptions:
(1) d:∇2→[0,+∞]m,m∈N, and (∇,d) is a complete generalized metric space.
(2) L:∇→∇ is a strictly contractive mappingwith Lipschitz constant Z<1.
Then for each g∈∇, either
d(Lng,Ln+1g)=m⏞(+∞,⋯,+∞) |
for each n∈N∪{0} or there is a n0∈N such that
(1) d(Lng,Ln+1g)⪯m⏞(+∞,⋯,+∞),∀n≥n0;
(2) The sequence {Lng} converges to a fixed point (g′)∗ of L;
(3) (g′)∗ is the unique fixed point of L in the set ∁={g′∈∇∣d(Ln0g,g′)⪯m⏞(+∞,⋯,+∞)};
(4) d(g′,(g′)∗)⪯11−Zd(g′,Lg′) for each g′∈∁.
We use fixed-point way to study the multi-stability of antiderivations associated with the following inequality:
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς))‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς))‖]n×n⪯diag[‖θ1(f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς))‖,…,‖θn(fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς))‖]n×n | (1.1) |
for each ε,ζ,ς∈Q, Λ∈Q′ with |θ1|,…,|θn|<1.
For this section we refer the reader [6,7]. Assume ℜ(ν) denotes the real part of ν if ν∈C. Also, let
(1) Z+ be the set of the positive integers;
(2) Z− be the negative integer numbers;
(3) R− be the negative real numbers;
(4) R+ be the positive real numbers.
We begin by defining various functions which will be needed later. The gamma function is given by
Γ(X)=∫∞0e−YYX−1dY,ℜ(X)>0,X∈C. |
Euler's functional equation is given by
Γ(X+1)=XΓ(X),ℜ(X)>0,X∈C. |
Theorem 2.1 ([6]).If X∈N∪{0}, then
Γ(X+1)=X!. |
Theorem 2.2 ([6]). Γ(0.5)=π0.5.
The Pochhammer symbol is
(∁)ȷ=ȷ∏ı=1(∁+ı−1)=Γ(∁+ȷ)Γ(∁)={1ȷ=0∁(∁+1)⋯(∁+ȷ−1)ȷ∈N∪{0} |
where ∁∈C and ȷ,ı∈N.
Note that
Γ(∁+ȷ)=∁(∁+1)⋯(∁+ȷ−1)Γ(∁) |
where ȷ∈N∪{0}.
The Gauss hypergeometric series [7] is given by
φⓈ1(X):=2F1(α,B;T;X)=1+αBTX+α(α+1)B(B+1)T(T+1)X22+⋯=∞∑n=0(α)n(B)n(T)nXnn!, | (2.1) |
where α,B,T,X∈C, n∈N∪{0}, and |X|<1.
Consider the Gauss differential equation
(X−X2)d2ωdX2+(T−(α+B+1)X)dωdX−αBω=0, | (2.2) |
where α,B,X∈C, T∈C∖(Z−∪{0}), and |X|<1. The hypergeometric series is a solution of (2.2).
Theorem 2.3 ([6]).Let α,B,T,X∈C and |X|<1. Then
2F1(α,B;T;X)=Γ(T)Γ(B)Γ(T−B)∫10YB−1(1−Y)T−B−1(1−XY)−αdY, |
where ℜ(T)>ℜ(B)>0.
Theorem 2.4. If ℜ(T)>0,|X|<1, and |arg(−X)|<π, then
2F1(α,B;T;X)=Γ(T)Γ(α)Γ(B)12πi∫+i∞−i∞Γ(α+Y)Γ(B+Y)Γ(−Y)Γ(T+Y)(−X)YdY, |
We now present the Clausen hypergeometric series [7] and its properties:
φⓈ2(X):=pFq((α);(T);X)=pFq(α,⋯,αp;T1,⋯,Tq;X)=pFq(α1,⋯,αpT1,⋯,Tq;X)=∞∑k=0(α1)k⋯(αp)k(T1)k⋯(Tq)kXnn!, | (2.3) |
where p,n,q∈N∪{0} and αn,X,Tn∈C.
Now, (2.3) is a solution of the following differential equation
(M(q,η,Tn)ω)(X)−(N(p,η,αn)ω)(X)=0, |
where
(M(q,η,Tn)ω)(X)=(XddX)q∏n=1((XddX)ω(X)+(Tn−1)ω(X))=XddX(q∏n=1((XddX+(Tn−1))ω)(X)), |
and
(N(p,η,αn)ω)(X)=Xp∏n=1(Xdω(X)dX+αnω(X))=Xp∏n=1((XddX+αn)ω)(X) |
and αn,X,Tn∈C, p,n,q∈N∪{0}, and |X|<1,
Theorem 2.5 ([6]).Suppose αn∈C∖(Z−∪{0}):
(1) The series converges only for X=0, if p>q+1.
(2) The series converges absolutely for X∈C, if p<q.
(3) The series converges absolutely for |X|<1 and diverges for |X|=1 and for |X|>1 it converges absolutely for ℜ(∑qk=1Tk−∑pk=1αk)>0, if p=q+1.
Assume the following notation [7]:
Ξ:=−q∑k=1bk+p∑j=1aj, | (2.4) |
σ:=−q∏k=1|bk|−bk+p∏j=1|aj|−aj, | (2.5) |
and
χ:=−p∑j=1κj+q∑k=1ϑk+p−q2, | (2.6) |
where κj,ϑk∈C,k,j∈N,p,q∈N∪{0}, and bk,aj∈R+.
The Wright generalized hypergeometric series is given by
φⓈ3(X):=pWq(X)=pWq((κ1,a1),⋯,(κp,ap)(ϑ1,b1),⋯,(ϑq,bq);X)=pWq((κp,ap)1,p(ϑq,bq)1,q;X)=∞∑s=0{∏pj=1Γ(κj+ajs)}{∏qk=1Γ(ϑk+bks)}Xss!, | (2.7) |
where j,s,k∈N,X∈C,Ξ>−1,κj,ϑk∈C,p,q∈N∪{0}, and bk,aj∈R+.
Theorem 2.6 ([6]).Suppose X∈C,ϑk,κj∈C,j,s,k∈N, bk,aj∈R+, then
(1) (2.7) is absolutely convergent for each valueof |X|=σ and of |X|<σ, and ℜ(χ)>0.5, if Ξ+1=0.
(2) (2.7) is absolutely convergent for X∈C, if Ξ+1>0.
Now, the Wright function is given by
φⓈ4(X):=K(ϑ,b,X)=0W1(−(b,ϑ);X)=∞∑k=01Γ(ϑ+bk)Xkk!, | (2.8) |
where X,ϑ∈C, and b∈R.
Theorem 2.7 ([6]).Now (2.8) for b∈C (b∈Z−∪{0} if ϑ=0) and ϑ>−1 is an entire function of type δ=(1+ϑ)|ϑ|−ϑ1+ϑ, andfinite order p=11+ϑ.
Theorem 2.8 ([6]).Now (2.8) is an entire functionof X for each b∈C and ϑ>−1.
The Wright generalized Bessel function (Bessel-Maitland function) is given by
φⓈ5(X):=J(κ,a,X)=∞∑k=01Γ(κ+1+ak)(−X)kk!=0W1(−(κ+1,b);−X), |
where κ,X∈C, and a∈R.
Theorem 2.9 ([6]).Suppose X∈C,j,s,k∈N, aj,bk∈R+, and κj,ϑk∈C. Then (2.7) is an entire function of X.
Theorem 2.10 ([6]).Suppose b∈R and ϑ∈C.
(1) (2.8) is absolutely convergent for all |X|<1 and of |X|=1, and ℜ(χ)>0.5, if b+1=0.
(2) (2.8) is absolutely convergent for X∈C, if b+1>0.
Theorem 2.11 ([6]).Suppose b>−1,ϑ∈C. Then(2.8) is anentire function of X.
Theorem 2.12 ([6]).Suppose X∈C,j,k,s∈N,κj,ϑk∈C, and aj,bk∈R+. Then
pWq((κ1,1),⋯,(κp,1)(ϑ1,1),⋯,(ϑq,1);X)=∏pj=1Γ(κj)∏pk=1Γ(ϑk)pFq(κ1,⋯,κpϑ1,⋯,ϑq;X), |
where Ξ+1≥0.
The shifted Wright generalized hypergeometric series [6] is given by
φⓈ6(X):=pBq(X)=pBq((κ1,a1;ϑ1,b1),⋯,(κp,ap;ϑp,bp)(ˆκ1,c1;ˆϑ1,d1),⋯,(ˆκp,cp;ˆϑp,dp);X)=pBq((κp,ap;ϑp,bp)1,p(ˆκp,cp;ˆϑp,dp)1,q;X)=∞∑k=0{∏pm=1b(κm+amk;ϑm+bmk)}{∏qn=1b(ˆκn+cnk;ˆϑn+dnk)}Xkk!=∞∑k=0∏pm=1(Γ(κm+amk)Γ(ϑm+bmk))∏qn=1Γ((ˆκn+ˆϑn)+(cn+dn)k)∏pm=1Γ((ϑm+κm)+(bm+am)k)∏qn=1(Γ(ˆκn+cnk)Γ(ˆϑn+dnk))Xkk!, |
where m,n∈N,k∈N∪{0},κm,ϑm,ˆκn,ˆϑn,X∈C,p,q∈N∪{0}, and am,bm,cn,dn∈R+.
We have the following special cases:
0B0=eX,1B0(X)=1B0((κ,a;ϑ,b)−;X)=∞∑k=0b(κ+ak;ϑ+bk)Xkk!=∞∑k=0Γ(κ+ak)Γ(ϑ+bk)Γ[(b+b)k+(ϑ+κ)]Xkk!=2W1((κ,b),(ϑ,b)(ϑ+κ,b+b);X),0B1(X)=0B1(−(κ,a;ϑ,b);X)=∞∑k=01b(κ+ak;ϑ+bk)Xkk!=∞∑k=0Γ[(b+b)k+(ϑ+κ)]Γ(ϑ+bk)Γ(κ+ak)Xkk!=1W2((ϑ+κ,b+b)(κ,b),(ϑ,b);X),1B1(X)=1B1((ˆκ,c;ˆϑ,d)(κ,a;ϑ,b);X)=∞∑k=0b(κ+ak;ϑ+bk)b(ˆκ+ck;ˆϑ+dk)Xkk!=∞∑k=0Γ(κ+ak)Γ(ϑ+bk)Γ[(ˆκ+ˆϑ)+(c+d)k]Γ[(b+b)k+(κ+ϑ)]Γ(ˆϑ+dk)Γ(ˆκ+ck)Xkk!=3W3((κ,b),(ϑ,b),(ˆκ+ˆϑ,c+d)(ˆκ,c),(ˆϑ,d),(ϑ+κ,b+b);X), |
where k∈N∪{0},κm,ϑm,ˆκn,ˆϑn,X∈C, and am,bm,cn,dn∈R+.
Now, we define the Wright generalized hypergeometric series (see [6]) as follows
φⓈ7(X):=[pWq]n(X)=n∑s=0{∏pj=1Γ(κj+ajs)}{∏qk=1Γ(ϑk+bks)}Xss!, |
where X,κj,ϑk∈C,s,j,k,q,p∈N, and aj,bk∈R+.
Let
diag[ρ1,⋯,ρn]n×n=[ρ10…00ρ2⋱⋮⋮⋱⋱00…0ρn]n×n. |
Note that ρ:=diag[ρ1,⋯,ρn]⪯ϱ:=diag[ϱ1,⋯,ϱn] if ρi≤ϱi for each 1≤i≤n.
We denote W[X] as
diag[φⓈ1(X),⋯,φⓈn(X)]n×n. |
A HUR-stability with control functions W[X], is called multi-stability.
We now propose the notion of antiderivations in Banach algebras and introduce the super-multi-stability of antiderivations in algebras Banach, associated to (1.1).
Throughout this section, let Q be a complex Banach algebra and that θ1,⋯,θn∈C∖{0} with |θ1|,…,|θn|<1.
In this subsection, we study the multi stability of the additive (θ1,⋯,θn)-functional inequality (1.1).
Lemma 3.1. Suppose fi:Q′×Q→Q(i=1,…,n∈N) are mappings satisfying fi(Λ,0)=0 and (1.1) for each ε,ζ,ς∈Q, and Λ∈Q′. Then the mappings fi:Q′×Q→Q,(i=1,…,n∈N) are additive (the usual definition is at the end of the proof).
Proof. Assume that fi:Q′×Q→Q(i=1,…,n∈N) satisfies (1.1).
Replacing ζ by −ζ in (1.1), we get
diag[‖f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς)‖]⪯diag[‖θ1(f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς))‖,…,‖θn(fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς))‖] | (3.1) |
for each ε,ζ,ς∈Q, and Λ∈Q′. According to (1.1) and (3.1) we have
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖]⪯diag[‖θ21(f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς))‖,…,‖θ2n(fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς))‖] |
and so
fi(Λ,ε+ζ+ς)−fi(Λ,ε+ς)−fi(Λ,ε+ζ−ς)+fi(Λ,ε−ς)=0,i=1,…,n | (3.2) |
for each ε,ζ,ς∈Q,Λ∈Q′, since |θi|<1(i=1,…,n).
Letting ς=ε in (3.2),
fi(Λ,2ε+ζ)−fi(Λ,2ε)−fi(Λ,ζ)=0,i=1,…,n |
for each ε,ζ∈Q,Λ∈Q′. Thus fi(i=1,…,n) are additive.
Throughout the paper, let φji:(Q)3i→[0,∞)i, 1≤i≤n,1≤ji≤n, and n∈N. Notice that M:=diag[φj1,…,φjn] is a matrix valued control function such that φj1(φjn) represents the element at the 1th(nth) row and 1th(nth) column of the matrix M and φji demonstrates the jith given control function.
Theorem 3.2. Let (φj1,…,φjn):(Q×Q×Q)n→[0,∞)n(1≤j1,…,jn≤n), be functions such that there exists an (T1,…,Tn)<(1,…,1)⏟n with
diag[φj1(ε2,ζ2,ς2),…,φjn(ε2,ζ2,ς2)]⪯diag[T12φj1(ε,ζ,ς),…,Tn2φjn(ε,ζ,ς)], | (3.3) |
for all ε,ζ,ς∈Q. Suppose fi:Q′×Q→Q(i=1,…,n) are mappings satisfying fi(Λ,0)=0 and
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖+|θ1|φj1⏟1≤j1≤n(ε,−ζ,ς),…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖+|θn|φjn⏟1≤jn≤n(ε,−ζ,ς)]⪯diag[‖θ1(f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς))‖+φj1⏟1≤j1≤n(ε,ζ,ς),…,‖θn(fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς))‖+φjn⏟1≤jn≤n(ε,ζ,ς)], | (3.4) |
for each ε,ζ,ς∈Q and Λ∈Q′. Then there exist unique additive mappings f′i:Q′×Q→Q such that
diag[‖f1(Λ,ε)−f′1(Λ,ε)‖,…,‖fn(Λ,ε)−f′n(Λ,ε)‖]n×n⪯diag[T12(1−T1)φj1⏟1≤j1≤n(ε2,ε,ε2),…,Tn2(1−Tn)φjn⏟1≤jn≤n(ε2,ε,ε2)]n×n, | (3.5) |
for each ε∈Q, and Λ∈Q′.
Proof. Replacing ζ by −ζ in (3.4), we get
diag[‖f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς)‖+|θ1|φj1⏟1≤j1≤n(ε,ζ,ς),…,‖fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς)‖+|θn|φjn⏟1≤jn≤n(ε,ζ,ς)]⪯diag[‖θ1(f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς))‖+φj1⏟1≤j1≤n(ε,−ζ,ς),…,‖θn(fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς))‖+φjn⏟1≤jn≤n(ε,−ζ,ς)], | (3.6) |
for each ε,ζ,ς∈Q, and Λ∈Q′. According to (3.4) and (3.6) we have
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖]n×n⪯diag[φj1⏟1≤j1≤n(ε,ζ,ς),…,φjn⏟1≤jn≤n(ε,ζ,ς)]n×n, | (3.7) |
for each ε,ζ,ς∈Q, and Λ∈Q′.
Letting ε=ς=σ2 and ζ=σ in (3.7), we get
diag[‖f1(Λ,2σ)−2f1(Λ,σ)‖,…,‖fn(Λ,2σ)−2fn(Λ,σ)‖]n×n⪯diag[φj1⏟1≤j1≤n(σ2,σ,σ2),…,φjn⏟1≤jn≤n(σ2,σ,σ2)]n×n, | (3.8) |
for each σ∈Q, and Λ∈Q′.
Let ℏ=(ℏ1,…,ℏn) and ℏ′=(ℏ′1,…,ℏ′n).
Now, consider the set
∇:={ℏ:(Q′×Q)n→Qn:ℏ(Λ,0)=n⏞(0,…,0)} |
and define the generalized metric on ∇ by
d(ℏ,ℏ′)=inf{(μ1,…,μn)∈Rn+:diag[‖ℏ1(Λ,ε)−ℏ′1(Λ,ε)‖,…‖ℏn(Λ,ε)−ℏ′n(Λ,ε)‖]⪯diag[μ1φj1⏟1≤j1≤n(ε2,ε,ε2),…,μnφjn⏟1≤jn≤n(ε2,ε,ε2)],∀ε∈Q,Λ∈Q′}, |
where inf∅=(+∞,…,+∞)⏟n.
Now (∇,d) is complete (also, see [8]).
Let L:=(L1,…,Ln). Now, we consider the linear mapping L:∇→∇ s.t.
Liℏi(Λ,ε):=2ℏi(Λ,ε2),i=1,…,n |
for each ε∈Q, and Λ∈Q′.
Let ℏ,ℏ′∈∇ be given s.t. d(ℏ,ℏ′)=(ε1,…,εn). Then
diag[‖ℏ1(Λ,ε)−ℏ′1(Λ,ε)‖,…,‖ℏn(Λ,ε)−ℏ′n(Λ,ε)‖]⪯diag[ε1φj1⏟1≤j1≤n(ε2,ε,ε2),…,εnφjn⏟1≤jn≤n(ε2,ε,ε2)], |
for each ε∈Q, and Λ∈Q′. Hence
diag[‖L1ℏ1(Λ,ε)−L1ℏ′1(Λ,ε)‖,…,‖Lnℏn(Λ,ε)−Lnℏ′n(Λ,ε)‖]=diag[‖2ℏ1(Λ,ε2)−2ℏ′1(Λ,ε2)‖,…,‖2ℏn(Λ,ε2)−2ℏ′n(Λ,ε2)‖]⪯diag[2ε1φj1⏟1≤j1≤n(ε4,ε2,ε4),…,2εnφjn⏟1≤jn≤n(ε4,ε2,ε4)]⪯diag[T1ε1φj1⏟1≤j1≤n(ε2,ε,ε2),…,Tnεnφjn⏟1≤jn≤n(ε2,ε,ε2)], |
for each ε∈Q, and Λ∈Q′. Thus d(ℏ,ℏ′)=(ε1,…,εn)⏟n implies that
d(Lℏ(Λ,ε),Lℏ′(Λ,ε))⪯(T1ε1,…,Tnεn). |
Hence
d(Lℏ(ε),Lℏ′(ε))⪯(T1,…,Tn)d(ℏ,ℏ′), |
for each ℏ,ℏ′∈∇. According to (3.8), we get
diag[‖f1(Λ,ε)−2f1(Λ,ε2)‖,…,‖fn(Λ,ε)−2fn(Λ,ε2)‖]n×n⪯diag[φj1⏟1≤j1≤n(ε4,ε2,ε4),…,φjn⏟1≤jn≤n(ε4,ε2,ε4)]n×n⪯diag[T12φj1⏟1≤j1≤n(ε2,ε,ε2),…,Tn2φjn⏟1≤jn≤n(ε2,ε,ε2)]n×n, |
for each ε∈Q,Λ∈Q′, so d(f,Lf)⪯(T12,…,Tn2).
According to Theorem 1.2 there exist mappings f′i:Q→Q(i=1,…,n) satisfying the following:
(1) f′ is a fixed point of L, i.e.
f′(Λ,ε)=2f′(Λ,ε2), | (3.9) |
for each ε∈Q, and Λ∈Q′. The mapping f′ is a unique fixed point of L in the set
k={ℏ∈∇:d(f,ℏ)<∞}. |
This implies that f′ is a unique mapping satisfying (3.8) s.t. there exist μ1,…,μn∈(0,∞) satisfying
diag[‖f1(Λ,ε)−f′1(Λ,ε)‖,…,‖fn(Λ,ε)−f′n(Λ,ε)‖]⪯diag[μ1φj1⏟0≤j1≤n(ε2,ε,ε2),…,μnφjn⏟0≤jn≤n(ε2,ε,ε2)], |
for each ε∈Q, and Λ∈Q′.
(2) Since limn→∞d(Lnf,f′)=0,
limn→∞2nfi(Λ,ε2n)=f′i(Λ,ε),∀i=1,…,n | (3.10) |
for each ε∈Q, and Λ∈Q′.
(3) d(f,f′)⪯(11−T1,…,11−Tn)d(f,Lf), which implies
diag[‖f1(Λ,ε)−f′1(Λ,ε)‖,…,‖fn(Λ,ε)−f′n(Λ,ε)‖]n×n⪯diag[T12(1−T1)φj1⏟1≤j1≤n(ε2,ε,ε2),…,Tn2(1−Tn)φjn⏟1≤jn≤n(ε2,ε,ε2)]n×n, |
for each ε∈Q, and Λ∈Q′. According to (3.3) and (3.4) we have
diag[‖f′1(Λ,ε+ζ+ς)−f′1(Λ,ε+ς)−f′1(Λ,ε+ζ−ς)+f′1(Λ,ε−ς)‖,…,‖f′n(Λ,ε+ζ+ς)−f′n(Λ,ε+ς)−f′n(Λ,ε+ζ−ς)+f′n(Λ,ε−ς)‖]=diag[limn→∞2n‖f1(Λ,ε+ζ+ς2n)−f1(Λ,ε+ς2n)−f1(Λ,ε+ζ−ς2n)+f1(Λ,ε−ς2n)‖,…,limn→∞2n‖fn(Λ,ε+ζ+ς2n)−fn(Λ,ε+ς2n)−fn(Λ,ε+ζ−ς2n)+fn(Λ,ε−ς2n)‖]⪯diag[limn→∞2n|θ1|‖f1(Λ,ε−ζ+ς2n)−f1(Λ,ε+ς2n)−f1(Λ,ε−ζ−ς2n)+f1(Λ,ε−ς2n)‖+limn→∞2n(φj1⏟1≤j1≤n(ε2n,ζ2n,ς2n)−θ1φj1⏟1≤j1≤n(ε2n,−ζ2n,ς2n)),…,limn→∞2n|θn|‖fn(Λ,ε−ζ+ς2n)−fn(Λ,ε+ς2n)−fn(Λ,ε−ζ−ς2n)+fn(Λ,ε−ς2n)‖+limn→∞2n(φjn⏟1≤jn≤n(ε2n,ζ2n,ς2n)−θnφjn⏟1≤jn≤n(ε2n,−ζ2n,ς2n))]⪯diag[‖θn(f′1(Λ,ε−ζ+ς)−f′1(Λ,ε+ς)−f′1(Λ,ε−ζ−ς)+f′1(Λ,ε−ς))‖,…,‖θn(f′n(Λ,ε−ζ+ς)−f′n(Λ,ε+ς)−f′n(Λ,ε−ζ−ς)+f′n(Λ,ε−ς))‖] |
for each ε,ζ,ς∈Q, and Λ∈Q′. According to Lemma 3.1, the mapping f′i(i=1,…,n) is additive.
Definition 3.3. Assume Q is a complex Banach algebra. A C-linear mapping G:Q′×Q→Q is called an antiderivation if it satisfies
G(Λ,ε)G(Λ,ζ)=G(Λ,G(Λ,ε)ζ)+G(Λ,εG(Λ,ζ)) |
for each ε,ζ∈Q and Λ∈Q′.
Example 3.4. Suppose Qm is the collection of all polynomials of degree m with complex coefficients and
Q={qm∈Qm|q(Λ,0)=0,m∈N}. |
Define G:Q′×Q→Q by
G(Λ,n∑k=1bkχk)=n∑k=1bkkχk |
and G(Λ,0)=0. Then G is an antiderivation.
Example 3.5. Consider the collection of all continuous functions on R, represented by C(R).
Define G:Q′×C(R)→C(R) by
G(Λ,g(ε))=∫ε0g(τ)dτ |
for each τ∈R. Then G is an antiderivation.
Lemma 3.6. [9]Suppose Q is complex Banach algebra and suppose f:Q′×Q→Q is an additive mapping s.t. f(Λ,Jε)=Jf(Λ,ε) for each J∈T1:={η∈C:|η|=1} and each ε∈Q. Then f is C-linear.
Theorem 3.7. Suppose φj1,…,φjn:Q3→[0,∞), (1≤j1,…,jn≤n), are functions.
(i) If there exist (T1,…,Tn)<(1,…,1) satisfying
diag[φj1⏟1≤j1≤n(εJ,ζJ,ςJ),…,φjn⏟1≤jn≤n(εJ,ζJ,ςJ)]⪯diag[T12φj1⏟1≤j1≤n(2ε,2ζ,2ς),…,Tn2φjn⏟1≤jn≤n(2ε,2ζ,2ς)], | (3.11) |
and if fi:Q′×Q→Q, (i=1,…,n), are mappings satisfying fi(Λ,0)=0 and
diag[‖Jf1(Λ,ε+ζ+ς)−f1(Λ,J(ε+ς))−f1(Λ,J(ε+ζ−ς))+Jf1(Λ,ε−ς)‖+|θ1|φj1⏟1≤j1≤n(ε,−ζ,ς),…,‖Jfn(Λ,ε+ζ+ς)−fn(Λ,J(ε+ς))−fn(Λ,J(ε+ζ−ς))+Jfn(Λ,ε−ς)‖+|θn|φjn⏟1≤jn≤n(ε,−ζ,ς)]⪯diag[‖θ1(Jf1(Λ,ε−ζ+ς)−f1(Λ,J(ε+ς))−f1(Λ,J(ε−ζ−ς))+Jf1(Λ,ε−ς))‖+φj1⏟1≤j1≤n(ε,ζ,ς),…,‖θn(Jfn(Λ,ε−ζ+ς)−fn(Λ,J(ε+ς))−fn(Λ,J(ε−ζ−ς))+Jfn(Λ,ε−ς))‖+φjn⏟1≤jn≤n(ε,ζ,ς)], | (3.12) |
for each J∈T1 and all ε,ζ,ς∈Q,Λ∈Q′, then there exist unique C-linear mappings Gi:Q′×Q→Q,(i=1,…,n), s.t.
diag[‖f1(Λ,ε)−G1(Λ,ε)‖,…,‖fn(Λ,ε)−Gn(Λ,ε)‖]⪯diag[T12(1−T1)φj1⏟1≤j1≤n(ε2,ε,−ε2),…,Tn2(1−Tn)φjn⏟1≤jn≤n(ε2,ε,−ε2)], | (3.13) |
for each ε∈Q,Λ∈Q′.
(ii) In addition, if (T1,…,Tn)<(12,…,12) and fi,(i=1,…,n), are continuous and satisfy fi(Λ,2ε)=2fi(Λ,ε) and
diag[‖f1(Λ,ε)f1(Λ,ζ)−f1(Λ,f1(Λ,ε)ζ)−f1(Λ,εf1(Λ,ζ))‖,…,‖fn(Λ,ε)fn(Λ,ζ)−fn(Λ,fn(Λ,ε)ζ)−fn(Λ,εfn(Λ,ζ))‖]⪯diag[φj1⏟1≤j1≤n(ε,ζ,ε),…,φjn⏟1≤jn≤n(ε,ζ,ε)], | (3.14) |
for each ε,ζ∈Q, then fi:Q′×Q→Q are antiderivations.
Proof. By a similar method used in Theorem 3.2 the proof of (i) is straightforward. Now, we prove (ii).
(ii) Since Gi=fi,(i=1,…,n), are continuous and C-linear, we conclude from (3.11) and (3.14) that
diag[‖G1(Λ,ε)G1(Λ,ζ)−G1(Λ,G1(Λ,ε)ζ)−G1(Λ,εG1(Λ,ζ))‖,…,‖Gn(Λ,ε)Gn(Λ,ζ)−Gn(Λ,Gn(Λ,ε)ζ)−Gn(Λ,εGn(Λ,ζ))‖]=diag[limm→∞4m‖Jm(f1(Λ,ε2mJm)f1(Λ,ζ2mJm)−G1(Λ,f1(Λ,ε2mJm)ζ2mJm)−G1(Λ,ε2mJmf1(Λ,ζ2mJm)))‖,…,limm→∞4m‖Jm(fn(Λ,ε2mJm)fn(Λ,ζ2mJm)−Gn(Λ,fn(Λ,ε2mJm)ζ2mJm)−Gn(Λ,ε2mλmfn(Λ,ζ2mJm)))‖]=diag[limm→∞4m‖Jm(f1(Λ,ε2mJm)f1(Λ,ζ2mJm)−f1(Λ,f1(Λ,ε2mJm)ζ2mJm)−f1(Λ,ε2mJmf1(Λ,ζ2mJm)))‖,…,limm→∞4m‖Jm(fn(Λ,ε2mJm)fn(Λ,ζ2mJm)−fn(Λ,f1(Λ,ε2mJm)ζ2mJm)−fn(Λ,ε2mJmfn(Λ,ζ2mJm)))‖]⪯diag[limm→∞22mφj1⏟1≤j1≤n(ε2mJm,ζ2mJm,ε2mJm),…,limm→∞22mφjn⏟1≤jn≤n(ε2mJm,ζ2mJm,ε2mJm)]⪯diag[limm→∞(2T1)mφj1⏟1≤j1≤n(ε,ζ,ε),…,limm→∞(2Tn)mφjn⏟1≤jn≤n(ε,ζ,ε)], |
for each J∈T1 and each ε,ζ∈Q,Λ∈Q′. Since (2T1,⋯,2Tn)⏟n<(1,⋯,1)⏟n, the C-linear mappings Gi,(i=1,⋯,n), are antiderivations. Thus the mappings fi:Q′×Q→Q,(i=1,⋯,n), are antiderivations.
In this subsection, we investigate the super-multi-stability of continuous antiderivations in Banach algebras.
Theorem 3.8. Consider φj1⏟1≤j1≤n,⋯,φjn⏟1≤jn≤n:Q3→[0,∞).
(i) If there exist (T1,⋯,Tn)≺n⏞(1,⋯,1) satisfying
diag[φj1⏟1≤j1≤n(εJ,ζJ,ςJ),⋯,φjn⏟1≤jn≤n(εJ,ζJ,ςJ)]⪯diag[T12φj1⏟1≤j1≤n(2ε,2ζ,2ς),⋯,Tn2φjn⏟1≤jn≤n(2ε,2ζ,2ς)] | (3.15) |
and if fi:Q′×Q→Q,(i=1,⋯,n), are mappings satisfying fi(Λ,0)=0 and
diag[‖Jf1(Λ,ε+ζ+ς)−f1(Λ,J(ε+ς))−f1(Λ,J(ε+ζ−ς))+Jf1(Λ,ε−ς)‖+|θ1|φj1⏟1≤j1≤n(ε,−ζ,ς),⋯,‖Jfn(Λ,ε+ζ+ς)−fn(Λ,J(ε+ς))−fn(Λ,J(ε+ζ−ς))+Jfn(Λ,ε−ς)‖+|θn|φjn⏟1≤jn≤n(ε,−ζ,ς)]⪯diag[‖θ1(Jf1(Λ,ε−ζ+ς)−f1(Λ,J(ε+ς))−f1(Λ,J(ε−ζ−ς))+Jf1(Λ,ε−ς))‖+φj1⏟1≤j1≤n(ε,ζ,ς),⋯,‖θn(Jfn(Λ,ε−ζ+ς)−fn(Λ,J(ε+ς))−fn(Λ,J(ε−ζ−ς))+Jfn(Λ,ε−ς))‖+φjn⏟1≤jn≤n(ε,ζ,ς)], | (3.16) |
for each J∈C−¯T1 and each ε,ζ,ς∈Q,Λ∈Q′, then there are unique C-linear mappings Gi:Q′×Q→Q,(i=1,⋯,n), s.t.
diag[‖f1(Λ,ε)−G1(Λ,ε)‖,⋯,‖fn(Λ,ε)−Gn(Λ,ε)‖]⪯diag[T12(1−T1)φj1⏟1≤j1≤n(ε2,ε,−ε2),⋯,Tn2(1−Tn)φjn⏟1≤jn≤n(ε2,ε,−ε2)], | (3.17) |
for each ε∈Q,Λ∈Q′.
(ii) Furthermore, if (T1,⋯,Tn)≺n⏞(12,⋯,12), φj1⏟1≤j1≤n,⋯,φjn⏟1≤jn≤n are continuous functions and also fi,(i=1,⋯,n), are continuous and satisfy fi(Λ,2ε)=2fi(Λ,ε) and
diag[‖f1(Λ,ε)f1(Λ,ζ)−f1(Λ,f1(Λ,ε)ζ)−f1(Λ,εf1(Λ,ζ))‖,⋯,‖fn(Λ,ε)fn(Λ,ζ)−fn(Λ,fn(Λ,ε)ζ)−fn(Λ,εfn(Λ,ζ))‖]⪯diag[φj1⏟1≤j1≤n(ε,ζ,ε),⋯,φjn⏟1≤jn≤n(ε,ζ,ε)], |
for each ε,ζ∈Q,Λ∈Q′, then fi:Q′×Q→Q are continuous antiderivations.
Proof. Using the same reasoning as in the proof of Theorem 3.7, we obtain the desired result.
Here, let n=7.
Corollary 3.9. Suppose fi:Q′×Q→Q(i=1,…,n) are mappings satisfying fi(Λ,0)=0 and
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖]⪯diag[‖θ1(f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς))‖+(1−|θ1|)φⓈj1⏟1≤j1≤n(‖ε2‖+‖ζ2‖+‖ς2‖),…,‖θn(fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς))‖+(1−|θn|)φⓈjn⏟1≤jn≤n(‖ε2‖+‖ζ2‖+‖ς2‖)] |
for each ε,ζ,ς∈Q, and Λ∈Q′. Then there are unique additive mappings f′i:Q′×Q→Q s.t.
diag[‖f1(Λ,ε)−f′1(Λ,ε)‖,…,‖fn(Λ,ε)−f′n(Λ,ε)‖]n×n⪯diag[φⓈj1⏟1≤j1≤n(‖ε‖2),…,φⓈjn⏟1≤jn≤n(‖ε‖2)], |
for each ε∈Q and Λ∈Q′.
Proof. The proof follows from Theorem 3.2 by letting
diag[φj1⏟1≤j1≤n(ε,ζ,ς),…,φjn⏟1≤jn≤n(ε,ζ,ς)]:=diag[φⓈj1⏟1≤j1≤n(‖ε2‖+‖ζ2‖+‖ς2‖),…,φⓈjn⏟1≤jn≤n(‖ε2‖+‖ζ2‖+‖ς2‖)], |
for each ε,ζ,ς∈Q. Choosing (T1,…,Tn)=(47,…,47), we obtain the desired result.
Corollary 3.10. Suppose fi:Q′×Q→Q,(i=1,…,n) are mappings satisfying fi(Λ,0)=0 and
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖]⪯diag[‖θ1(f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς))‖+(1−|θ1|)φⓈj1⏟1≤j1≤n(‖εζς‖),…,‖θn(fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς))‖+(1−|θn|)φⓈjn⏟1≤jn≤n(‖εζς‖)] |
for each ε,ζ,ς∈Q and Λ∈Q′. Then there are unique additive mappings f′i:Q′×Q→Q,(i=1,…,n), s.t.
diag[‖f1(Λ,ε)−f′1(Λ,ε)‖,…,‖fn(Λ,ε)−f′n(Λ,ε)‖]⪯diag[φⓈj1⏟1≤j1≤n(‖ε‖3),…,φⓈjn⏟1≤jn≤n(‖ε‖3)], |
for each ε∈Q and Λ∈Q′.
Proof. The proof follows from Theorem 3.2 by letting
diag[φj1⏟1≤j1≤n(ε,ζ,ς),…,φjn⏟1≤jn≤n(ε,ζ,ς)]:=diag[φⓈj1⏟1≤j1≤n(‖εζς‖),…,φⓈjn⏟1≤jn≤n(‖εζς‖)], |
for each ε,ζ,ς∈Q and Λ∈Q′. Choosing (T1,…,Tn)=(89,…,89), we obtain the desired result.
Corollary 3.11. Let fi:Q′×Q→Q,(i=1,…,n) be odd mappings satisfying
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖]⪯diag[‖θ1[f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς)]‖+(1−|θ1|)φⓈj1⏟1≤j1≤n(‖εζς‖),…,‖θn[fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς)]‖+(1−|θn|)φⓈjn⏟1≤jn≤n(‖εζς‖)], | (3.18) |
for each \varepsilon, \zeta, \varsigma\in \mathscr{Q} and \Lambda\in\mathscr{Q}^{\prime} . Then f_{i}(i = 1, \ldots, n) are additive.
Proof. Putting \varepsilon = 0 in (3.18), we get
\begin{align} &\text{diag}\bigg[\:\: \bigg\Vert f_{1}(\Lambda , \zeta+\varsigma)-f_{1}(\Lambda , \varsigma)-f_{1}(\Lambda, \zeta-\varsigma)+f_{1}(\Lambda , -\varsigma)\bigg\Vert \:\:, \ldots , \\ & \quad \bigg\Vert f_{n}(\Lambda , \zeta+\varsigma)-f_{n}(\Lambda , \varsigma)-f_{n}(\Lambda , \zeta-\varsigma)+f_{n}(\Lambda , -\varsigma)\bigg\Vert \:\:\bigg]\\ &\preceq \text{diag}\bigg[\:\: \bigg\Vert \theta_{1} (f_{1}(\Lambda , -\zeta+\varsigma)-f_{1}(\Lambda , \varsigma)-f_{1}(\Lambda , -\zeta-\varsigma)+f_{1}(\Lambda , -\varsigma))\bigg\Vert \:\: , \ldots ,\\ & \quad \bigg\Vert \theta_{n} (f_{n}(\Lambda , -\zeta+\varsigma)-f_{n}(\Lambda , \varsigma)-f_{n}(\Lambda , -\zeta-\varsigma)+f_{n}(\Lambda , -\varsigma))\bigg\Vert \:\:\bigg], \end{align} | (3.19) |
for each \zeta, \varsigma\in \mathscr{Q} and \Lambda\in\mathscr{Q}^{\prime} . Replacing \zeta by -\zeta in (3.19), we have
\begin{align} &\text{diag}\bigg[\:\:\bigg\Vert f_{1}(\Lambda , -\zeta+\varsigma)-f_{1}(\Lambda , \varsigma)-f_{1}(\Lambda , -\zeta-\varsigma)+f_{1}(\Lambda , -\varsigma)\bigg\Vert \:\:, \ldots , \\ & \quad \bigg\Vert f_{n}(\Lambda , -\zeta+\varsigma)-f_{n}(\Lambda , \varsigma)-f_{n}(\Lambda , -\zeta-\varsigma)+f_{n}(\Lambda , -\varsigma)\bigg\Vert \:\:\bigg] \\ &\preceq \text{diag}\bigg[\:\: \bigg\Vert \theta_{1} [f_{1}(\Lambda , \zeta+\varsigma)-f_{1}(\Lambda , \varsigma)-f_{1}(\Lambda , \zeta-\varsigma)+f_{1}(\Lambda , -\varsigma)]\bigg\Vert \:\: , \ldots , \\ & \quad \bigg\Vert \theta_{n} [f_{n}(\Lambda , \zeta+\varsigma)-f_{n}(\Lambda , \varsigma)-f_{n}(\Lambda , \zeta-\varsigma)+f_{n}(\Lambda , -\varsigma)]\bigg\Vert \:\: \bigg], \end{align} | (3.20) |
for each \zeta, \varsigma\in \mathscr{Q} and \Lambda\in\mathscr{Q}^{\prime} . From (3.19) and (3.20), it follows that
\begin{equation*} f_{i}(\Lambda , \zeta+\varsigma)-f_{i}(\Lambda , \varsigma)-f_{i}(\Lambda , \zeta-\varsigma)+f_{i}(\Lambda , -\varsigma) = 0,\:\:\:\:\:i = 1,\ldots , n \end{equation*} |
for each \zeta, \varsigma\in \mathscr{Q} and \Lambda\in\mathscr{Q}^{\prime} . Since f_{i}, (i = 1, \ldots, n) , are odd mappings,
\begin{equation*} f_{i}(\varsigma+\zeta)+f_{i}(\varsigma-\zeta)-2f_{i}(\varsigma) = 0,\:\:\:\:\:i = 1,\ldots , n \end{equation*} |
for each \zeta, \varsigma\in \mathscr{Q} and \Lambda\in\mathscr{Q}^{\prime} . Thus the mappings f_{i}, (i = 1, \ldots, n) , are additive.
Corollary 3.12. Suppose f_{i}: \mathscr{Q}^{\prime}\times \mathscr{Q} \to \mathscr{Q}, (i = 1, \cdots, n), are mappings satisfying f_{i}(\Lambda, 0) = 0 and
\begin{align*} &\mathit{\text{diag}}\bigg[\:\:\bigg\Vert f_{1}(\Lambda, \varepsilon+\zeta+\varsigma)- f_{1}(\Lambda, \varepsilon+\varsigma)- f_{1}(\Lambda, \varepsilon+\zeta-\varsigma)+ f_{1}(\Lambda, \varepsilon-\varsigma)\bigg\Vert , \cdots , \\ & \quad \bigg\Vert f_{n}(\Lambda, \varepsilon+\zeta+\varsigma)- f_{n}(\Lambda, \varepsilon+\varsigma)- f_{n}(\Lambda, \varepsilon+\zeta-\varsigma)+ f_{n}(\Lambda, \varepsilon-\varsigma)\bigg\Vert \:\:\bigg]\nonumber\\ &\preceq \mathit{\text{diag}}\bigg[\:\: \bigg\Vert \theta_{1} ( f_{1}(\Lambda, \varepsilon-\zeta+\varsigma)- f_{1}(\Lambda, \varepsilon+\varsigma)- f_{1}(\Lambda, \varepsilon-\zeta-\varsigma)+ f_{1}(\Lambda, \varepsilon-\varsigma))\bigg\Vert \\ & \quad +(1-\vert \theta_{1} \vert) {\underbrace{\varphi_{j_{1}}^{{\circledS}}}_{1\leq j_{1}\leq n}}\bigg(\Vert \varepsilon^{4}+\zeta^{4}+\varsigma^{4} \Vert\bigg)\:\: , \cdots , \\ & \quad \bigg\Vert \theta_{n} ( f_{n}(\Lambda, \varepsilon-\zeta+\varsigma)- f_{n}(\Lambda, \varepsilon+\varsigma)- f_{n}(\Lambda, \varepsilon-\zeta-\varsigma)+ f_{n}(\Lambda, \varepsilon-\varsigma))\bigg\Vert \\ & \quad +(1-\vert \theta_{n} \vert){\underbrace{\varphi_{j_{n}}^{{\circledS}}}_{1\leq j_{n}\leq n}}\bigg( \Vert \varepsilon^{4}+\zeta^{4}+\varsigma^{4} \Vert\bigg) \:\:\bigg] \end{align*} |
and
\begin{align*} &\mathit{\text{diag}}\bigg[\:\:\bigg\Vert f_{1}(\Lambda, \varepsilon)f_{1}(\Lambda, \zeta)-f_{1}(\Lambda, f_{1}(\Lambda, \varepsilon)\zeta)-f_{1}(\Lambda, \varepsilon f_{1}(\Lambda, \zeta))\bigg\Vert \: , \cdots , \\ & \quad \bigg\Vert f_{n}(\Lambda, \varepsilon)f_{n}(\Lambda, \zeta)-f_{n}(\Lambda, f_{n}(\Lambda, \varepsilon)\zeta)-f_{n}(\Lambda, \varepsilon f_{n}(\Lambda, \zeta))\bigg\Vert \: \bigg] \\ & \preceq \mathit{\text{diag}}\bigg[\:\: {\underbrace{\varphi_{j_{1}}^{{\circledS}}}_{1\leq j_{1}\leq n}}\bigg(\Vert 2\varepsilon^{4}+\zeta^{4}\Vert\bigg) , \cdots , {\underbrace{\varphi_{j_{n}}^{{\circledS}}}_{1\leq j_{n}\leq n}}\bigg(\Vert 2\varepsilon^{4}+\zeta^{4}\Vert \bigg)\bigg]_{n\times n}, \end{align*} |
for each \varepsilon, \zeta, \varsigma\in \mathscr{Q}, \: \Lambda\in \mathscr{Q}^{\prime} . If f_{i}(\Lambda, 2\varepsilon) = 2 f_{i}(\Lambda, \varepsilon) foreach \varepsilon, \zeta, \varsigma\in \mathscr{Q}, \: \Lambda\in \mathscr{Q}^{\prime} , and f_{i}, (i = 1, \cdots, n), are continuous, then the mappings f_{i}: \mathscr{Q}^{\prime}\times \mathscr{Q}\to \mathscr{Q}, (i = 1, \cdots, n), are antiderivations.
Proof. The proof follows from Theorem 3.7 by letting
\begin{eqnarray*} &&\text{diag}\bigg[\:\: \underbrace{\varphi_{j_{1}}}_{1\leq j_{1}\leq n}(\varepsilon , \zeta , \varsigma) , \cdots , \underbrace{\varphi_{j_{n}}}_{1\leq j_{n}\leq n}(\varepsilon , \zeta , \varsigma) \bigg]\\ &&: = \text{diag}\bigg[\:\:{\underbrace{\varphi_{j_{1}}^{{\circledS}}}_{1\leq j_{1}\leq n}} \bigg(\Vert \varepsilon^{4}+\zeta^{4}+\varsigma^{4} \Vert\bigg) \: , \cdots , \:{\underbrace{\varphi_{j_{n}}^{{\circledS}}}_{1\leq j_{n}\leq n}}\bigg( \Vert \varepsilon^{4}+\zeta^{4}+\varsigma^{4} \Vert \bigg) \:\bigg]_{n\times n} \end{eqnarray*} |
for each \varepsilon, \zeta, \varsigma\in \mathscr{Q} . Choosing (\mathcal{T}_{1}, \cdots, \mathcal{T}_{n}) = \overbrace{(\frac{8}{17}, \cdots, \frac{8}{17})}^{n} , we obtain the desired result.
In this study, we investigated the concept of antiderivations in Banach algebras and study multi-super-stability of antiderivations in Banach algebras, associated with functional inequalities.
The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work through Research Partnership Program no RP-21-09-08.
The authors declare that they have no competing interests.
[1] | Submitted. |
[2] |
B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics, Invent. Math., 171 (2008), 485-541. doi: 10.1007/s00222-007-0088-4
![]() |
[3] |
B. Alvarez-Samaniego and D. Lannes, A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations, Indiana Univ. Math. J., 57 (2008), 97-131. doi: 10.1512/iumj.2008.57.3200
![]() |
[4] |
E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows, SIAM J. Sci. Comput., 25 (2004), 2050-2065. doi: 10.1137/S1064827503431090
![]() |
[5] | URL http://hal.inria.fr/hal-01063577, (Submitted) http://hal.inria.fr/hal-01063577/PDF/kin_hydrost.pdf. |
[6] |
J.-L. Bona, T.-B. Benjamin and J.-J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Royal Soc. London Series A, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032
![]() |
[7] |
P. Bonneton, E. Barthelemy, F. Chazel, R. Cienfuegos, D. Lannes, F. Marche and M. Tissier, Recent advances in Serre-Green Naghdi modelling for wave transformation, breaking and runup processes, European Journal of Mechanics - B/Fluids, 30 (2011), 589-597, URL http://www.sciencedirect.com/science/article/pii/S0997754611000185, Special Issue: Nearshore Hydrodynamics. doi: 10.1016/j.euromechflu.2011.02.005
![]() |
[8] | F. Bouchut, An introduction to finite volume methods for hyperbolic conservation laws, ESAIM Proc., 15 (2005), 1-17. |
[9] |
F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Birkhäuser, 2004. doi: 10.1007/b93802
![]() |
[10] | F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (1974), 129-151. |
[11] | M.-O. Bristeau and B. Coussin, Boundary Conditions for the Shallow Water Equations Solved by Kinetic Schemes, Rapport de recherche RR-4282, INRIA, 2001, URL http://hal.inria.fr/inria-00072305, Projet M3N. |
[12] |
M.-O. Bristeau, N. Goutal and J. Sainte-Marie, Numerical simulations of a non-hydrostatic Shallow Water model, Computers & Fluids, 47 (2011), 51-64. doi: 10.1016/j.compfluid.2011.02.013
![]() |
[13] |
M. O. Bristeau, A. Mangeney, J. Sainte-Marie and N. Seguin, An energy-consistent depth-averaged Euler system: Derivation and properties, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 961-988, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10801. doi: 10.3934/dcdsb.2015.20.961
![]() |
[14] |
M.-O. Bristeau and J. Sainte-Marie, Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 733-759. doi: 10.3934/dcdsb.2008.10.733
![]() |
[15] |
R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Math., 31 (1994), 1-33. doi: 10.1016/S0065-2156(08)70254-0
![]() |
[16] |
F. Chazel, D. Lannes and F. Marche, Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model, J. Sci. Comput., 48 (2011), 105-116. doi: 10.1007/s10915-010-9395-9
![]() |
[17] |
A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745-762. doi: 10.1090/S0025-5718-1968-0242392-2
![]() |
[18] |
M.-W. Dingemans, Wave Propagation Over Uneven Bottoms, Advanced Series on Ocean Engineering - World Scientific, 1997. doi: 10.1142/9789812796042
![]() |
[19] | M. Dingemans, Comparison of Computations with Boussinesq-like Models and Laboratory Measurements, Technical Report H1684-12, AST G8M Coastal Morphodybamics Research Programme, 1994. |
[20] |
A. Duran and F. Marche, Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations, Communications in Computational Physics, 17 (2015), 721-760, URL https://hal.archives-ouvertes.fr/hal-00980826. doi: 10.4208/cicp.150414.101014a
![]() |
[21] |
W. E and J.-G. Liu, Projection method I: Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32 (1995), 1017-1057. doi: 10.1137/0732047
![]() |
[22] |
A. Ern and S. Meunier, A posteriori error analysis of euler-galerkin approximations to coupled elliptic-parabolic problems, ESAIM Math. Model. Numer. Anal., 43 (2009), 353-375, URL http://journals.cambridge.org/abstract\_S0764583X05000166. doi: 10.1051/m2an:2008048
![]() |
[23] |
E. Godlewski and P.-A. Raviart, Numerical Approximations of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118, Springer, New York, 1996. doi: 10.1007/978-1-4612-0713-9
![]() |
[24] |
A. Green and P. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78 (1976), 237-246. doi: 10.1017/S0022112076002425
![]() |
[25] | First Int. Conf. on Comput. Methods in Flow Analysis, Okayama University, Japan. |
[26] | J.-L. Guermond, Some implementations of projection methods for Navier-Stokes equations, ESAIM: Mathematical Modelling and Numerical Analysis, 30 (1996), 637-667, URL http://eudml.org/doc/193818. |
[27] |
J.-L. Guermond and J. Shen, On the error estimates for the rotational pressure-correction projection methods, Math. Comput., 73 (2004), 1719-1737, URL http://dblp.uni-trier.de/db/journals/moc/moc73.html#GuermondS04. doi: 10.1090/S0025-5718-03-01621-1
![]() |
[28] |
H. Johnston and J.-G. Liu, Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term, Journal of Computational Physics, 199 (2004), 221-259, URL http://www.sciencedirect.com/science/article/pii/S002199910400083X. doi: 10.1016/j.jcp.2004.02.009
![]() |
[29] |
D. Lannes and P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, Physics of Fluids, 21 (2009), 016601. doi: 10.1063/1.3053183
![]() |
[30] |
O. Le Métayer, S. Gavrilyuk and S. Hank, A numerical scheme for the Green-Naghdi model, J. Comput. Phys., 229 (2010), 2034-2045. doi: 10.1016/j.jcp.2009.11.021
![]() |
[31] |
R.-J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002. doi: 10.1017/CBO9780511791253
![]() |
[32] |
O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 119 (1993), 618-638. doi: 10.1061/(ASCE)0733-950X(1993)119:6(618)
![]() |
[33] |
D. Peregrine, Long waves on a beach, J. Fluid Mech., 27 (1967), 815-827. doi: 10.1017/S0022112067002605
![]() |
[34] | O. Pironneau, Méthodes Des Éléments Finis Pour Les Fluides., Masson, 1988. |
[35] |
R. Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations, in The Navier-Stokes Equations II - Theory and Numerical Methods (eds. G. Heywood John, K. Masuda, R. Rautmann and A. Solonnikov Vsevolod), vol. 1530 of Lecture Notes in Mathematics, Springer Berlin Heidelberg, 1992, 167-183, URL http://dx.doi.org/10.1007/BFb0090341. doi: 10.1007/BFb0090341
![]() |
[36] | 11th AIAA Computational Fluid Dynamic Conference, Orlando, FL, USA. |
[37] |
J. Shen, On error estimates of the penalty method for unsteady Navier-Stokes equations, SIAM J. Numer. Anal., 32 (1995), 386-403. doi: 10.1137/0732016
![]() |
[38] |
W. C. Thacker, Some exact solutions to the non-linear shallow water wave equations, J. Fluid Mech., 107 (1981), 499-508. doi: 10.1017/S0022112081001882
![]() |
1. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Themistocles M. Rassias, Choonkil Park, Special functions and multi-stability of the Jensen type random operator equation in C^{*}-algebras via fixed point, 2023, 2023, 1029-242X, 10.1186/s13660-023-02942-0 | |
2. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 13, 978-3-031-55563-3, 337, 10.1007/978-3-031-55564-0_13 | |
3. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 14, 978-3-031-55563-3, 351, 10.1007/978-3-031-55564-0_14 | |
4. | Safoura Rezaei Aderyani, Azam Ahadi, Reza Saadati, Hari M. Srivastava, Aggregate special functions to approximate permuting tri-homomorphisms and permuting tri-derivations associated with a tri-additive ψ-functional inequality in Banach algebras, 2024, 44, 0252-9602, 311, 10.1007/s10473-024-0117-z | |
5. | Safoura Rezaei Aderyani, Reza Saadati, Stability and controllability results by n–ary aggregation functions in matrix valued fuzzy n–normed spaces, 2023, 643, 00200255, 119265, 10.1016/j.ins.2023.119265 | |
6. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 11, 978-3-031-55563-3, 275, 10.1007/978-3-031-55564-0_11 | |
7. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 1, 978-3-031-55563-3, 1, 10.1007/978-3-031-55564-0_1 | |
8. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 10, 978-3-031-55563-3, 251, 10.1007/978-3-031-55564-0_10 |