Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

An analytical approach of multi-dimensional Navier-Stokes equation in the framework of natural transform

  • This article introduces a new iterative transform method and homotopy perturbation transform method along with a natural transform to analyze the multi-dimensional Navier-Stokes equations. To solve the fractional-derivative, the Caputo-Fabrizio definition of the fractional derivative was employed. Four examples were considered to examine the efficacy and accuracy of the proposed methods. The efficiency and accuracy were also demonstrated by the solution comparison via graphs. The proposed methods' convergence and uniqueness are also discussed. The methods mentioned above are straightforward and support a high rate of convergence.

    Citation: Manoj Singh, Ahmed Hussein, Msmali, Mohammad Tamsir, Abdullah Ali H. Ahmadini. An analytical approach of multi-dimensional Navier-Stokes equation in the framework of natural transform[J]. AIMS Mathematics, 2024, 9(4): 8776-8802. doi: 10.3934/math.2024426

    Related Papers:

    [1] Mohammed S. El-Khatib, Atta A. K. Abu Hany, Mohammed M. Matar, Manar A. Alqudah, Thabet Abdeljawad . On Cerone's and Bellman's generalization of Steffensen's integral inequality via conformable sense. AIMS Mathematics, 2023, 8(1): 2062-2082. doi: 10.3934/math.2023106
    [2] Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174
    [3] Awais Younus, Khizra Bukhsh, Manar A. Alqudah, Thabet Abdeljawad . Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Mathematics, 2022, 7(7): 12050-12076. doi: 10.3934/math.2022670
    [4] Ahmed A. El-Deeb, Inho Hwang, Choonkil Park, Omar Bazighifan . Some new dynamic Steffensen-type inequalities on a general time scale measure space. AIMS Mathematics, 2022, 7(3): 4326-4337. doi: 10.3934/math.2022240
    [5] Tingting Guan, Guotao Wang, Haiyong Xu . Initial boundary value problems for space-time fractional conformable differential equation. AIMS Mathematics, 2021, 6(5): 5275-5291. doi: 10.3934/math.2021312
    [6] Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250
    [7] Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu . Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777
    [8] Gauhar Rahman, Kottakkaran Sooppy Nisar, Feng Qi . Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Mathematics, 2018, 3(4): 575-583. doi: 10.3934/Math.2018.4.575
    [9] Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk . Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales. AIMS Mathematics, 2024, 9(11): 31926-31946. doi: 10.3934/math.20241534
    [10] Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502
  • This article introduces a new iterative transform method and homotopy perturbation transform method along with a natural transform to analyze the multi-dimensional Navier-Stokes equations. To solve the fractional-derivative, the Caputo-Fabrizio definition of the fractional derivative was employed. Four examples were considered to examine the efficacy and accuracy of the proposed methods. The efficiency and accuracy were also demonstrated by the solution comparison via graphs. The proposed methods' convergence and uniqueness are also discussed. The methods mentioned above are straightforward and support a high rate of convergence.



    Riemann-Liouville fractional integral given by

    Iαa+ξ()=1Γ(α)χa(χ)α1ξ()dt.

    Many different concepts of fractional derivative maybe found in [9,10,11]. In [12] studied a conformable derivative:

    αf()=limϵ0f(+ϵ1α)f()ϵ.

    The time scale conformable derivatives was introduced by Benkhettou et al. [17].

    Further, in recent years, numerous mathematicians claimed that non-integer order derivatives and integrals are well suited to describing the properties of many actual materials, such as polymers. Fractional derivatives are a wonderful tool for describing memory and learning. a variety of materials and procedures inherited properties is one of the most significant benefits of fractional ownership. For more concepts and definition on time scales see [13,14,15,16,17,18,19,33,34,35].

    Continuous version of Steffensen's inequality [7] is written as: For 0g()1 on [a,b]. Then

    bbλf()dtbaf()g()dta+λaf()dt, (1.1)

    where λ=bag()dt.

    Supposing f is nondecreasing gets the reverse of (1.1).

    Also, the discrete inequality of Steffensen [6] is: For λ2n=1g()λ1. Then

    n=nλ2+1f()n=1f()g()λ1=1f(). (1.2)

    Recently, a large number of dynamic inequalities on time scales have been studied by a small number of writers who were inspired by a few applications (see [1,2,3,4,8,28,29,30,31,32,36,37,40,41,42,44,48,49,50,51,52,53]).

    In [5] Jakšetić et al. proved that, if ˆμ([c,d])=[a,b]g()dˆμ(), where [c,d][a,b]. Then

    [a,b]f()g()dˆμ()[c,d]f()g()dˆμ()+[a,c](f()f(d))g()dˆμ(),

    and

    [c,d]f()dˆμ()[d,b](f(c)f())g()dˆμ()[a,b]f()g()dˆμ().

    Anderson, in [3], studied the inequality:

    bbλϕ()baϕ()ψ()a+λaϕ(), (1.3)

    In [47] the authors have proved, for

    m+λ1mζ()d=kmζ()g()d,

    and

    nnλ2ζ()d=nkζ()g()d.

    If there exists a constant A such that r()/ζ()At is monotonic on the intervals [m,k], [k,n], and

    nmtq()g()d=m+λ1mtq()d+nnλ2tq()d,

    then

    nmr()g()dm+λ1mr()d+nnλ2r()d.

    In particularly, Anderson [3] proved

    nnλr()nmr()g()m+λmr().

    where m,nTκ with m<n, r, g:[m,n]TR are -integrable functions such that r is of one sign and nonincreasing and 0g()1 on [m,n]T and λ=nmg(), nλ,m+λT.

    We prove the next two needed results:

    Theorem 1.1. Assume q>0 with 0g()ζ() [m,n]T and λ is given from nmg()Δα=m+λmζ()Δα, then

    nmr()g()Δαm+λmr()ζ()Δα. (1.4)

    Also, provided with 0g()ζ() and nnλζ()Δα=nmg()Δα, we have

    nnλr()ζ()Δαnmr()g()Δα. (1.5)

    We get the reverse inequalities of (1.4) and (1.5) when assuming r/ζ is nondecreasing.

    Theorem 1.2. Assume ψ is integrable on time scales interval [m,n], with ζ()ψ()g()ψ()0[m,n]T and m+λmζ()Δα=nmg()Δα=nnλζ()Δα and g, r and ζ are Δα-integrable functions, ζ()g()0, we have

    nnλr()ζ()Δα+nm|(r()r(nλ))ψ()|Δαnmr()g()Δαm+λmr()ζ()Δαnm|(r()r(m+λ))ψ()|Δα, (1.6)

    and

    nnλr()ζ()Δαnnλ[r()ζ()(r()r(nλ))][ζ()g()]Δαnmr()g()Δαm+λm[r()ζ()(r()r(m+λ))][ζ()g()]Δαm+λmr()ζ()Δα. (1.7)

    Proof. The proof techniques of Theorems 1.6 and 1.7 are like to that in [4] and is removed.

    Several authors proved conformable Hardy's inequality [20,21], conformable Hermite-Hadamard's inequality [22,23,24], conformable inequality of Opial's [26,27] and conformable inequality of Steffensen's [25]. In [45] Anderson proved the followong results:

    Theorem 1.3. [45] Suppose α(0,1] and r1, r2R such that 0r1r2. Suppose :[r1,r2][0,) and Γ:[r1,r2][0,1] are α-fractional integrable functions on [r1,r2] with Π is decreasing, we get

    r2r2Π(ζ)dαζr2r1Π(ζ)Γ(ζ)dαζr1+r1Π(ζ)dαζ,

    where =α(r2r1)rα2rα1r2r1Γ(ζ)dαζ[0,r2r1].

    In [46] the authors gave an extension for Theorem 1.8:

    Theorem 1.4. Assume α(0,1] and r1, r2R such that 0r1r2. Suppose ,Γ,Σ:[r1,r2][0,) are integrable on [r1,r2] with the decreasing function Π and 0ΓΣ, we get

    r2r2Σ(ζ)Π(ζ)dαζr2r1Π(ζ)Γ(ζ)dαζr1+r1Σ(ζ)Π(ζ)dαζ,

    where =(r2r1)r2r1Σ(ζ)dαζr2r1Γ(ζ)dαζ[0,r2r1].

    In this paper, we prove and explore several novel speculations of the Steffensen inequality obtained in [47] through the conformable integral containing time scale concept. We furthermore recover certain known results as special cases of our results.

    Lemma 2.1. Assume ζ>0 is rd-continuous function on [m,n]T, g, r be rd-continuous on [m,n]T such that r/ζ nonincreasing function and 0g()1 [m,n]T. Then

    (Λ1)

    nmr()g()Δαm+λmr()Δα, (2.1)

    where λ is given by

    nmζ()g()Δα=m+λmζ()Δα.

    (Λ2)

    nnλr()Δαnmr()g()Δα, (2.2)

    such that

    nnλζ()Δα=nmζ()g()Δα.

    (2.1) and (2.2) are reversed when r/ζ is nondecreasing.

    Proof. Putting g()ζ()g() and r()r()/ζ() in (1.4), (1.5) to get (Λ1) and (Λ2) simultaneously.

    Lemma 2.2. Under the same hypotheses of Lemma 2.1. with ψ be integrable functions on [m,n]T and 0ψ()g()1ψ() for all [m,n]T. Then

    nnλr()Δα+nm|(r()ζ()r(nλ)ζ(nλ))ζ()ψ()|Δαnmr()g()Δαm+λmr()Δαnm|(r()ζ()r(m+λ)ζ(m+λ))ζ()ψ()|Δα,

    where λ is obtained from

    m+λmh()Δα=nmζ()g()Δα=nnλζ()Δα.

    Proof. Putting g()ζ()g(), r()r()/h() and ψ()ζ()ψ() in (1.6).

    Lemma 2.3. Under the same conditions of Lemma 2.1. Then

    nnλr()Δαnnλ(r()[r()ζ()r(nλ)ζ(nλ)]ζ()[1g()])Δαnmr()g()Δαm+λm(r()[r()ζ()r(a+λ)ζ(m+λ)]ζ()[1g()])Δαm+λmr()Δα,

    where λ is obtained from

    m+λmζ()Δα=nmg()Δα=nnλζ()Δα.

    Proof. Taking g()ζ()g() and r()r()/ζ() in (1.7).

    Theorem 2.1. Under the same conditions of Lemma 2.3 such that k(m,n) and λ1, λ2 are given from

    (Λ3)

    m+λ1mζ()Δα=kmζ()g()Δα,
    nnλ2ζ()Δα=nkζ()g()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=m+λ1mϕ()ζ()Δα+nnλ2ϕ()ζ()Δα, (2.3)

    then

    nmrσ()g()Δαm+λ1mrσ()Δα+nnλ2rσ()Δα. (2.4)

    (2.4) is reversed if rσ/ζAHk2[m,n] and (2.3).

    (Λ4)

    kkλ1ζ()Δα=kmζ()g()Δα,
    k+λ2kζ()Δα=nkζ()g()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=k+λ2kλ1ϕ()ζ()Δα, (2.5)

    then

    nmrσ()g()Δαk+λ2kλ1rσ()Δα. (2.6)

    If rσ/ζAHk2[m,n] and (2.5) satisfied, then we reverse (2.6).

    (Λ5) If λ1, λ2 be the same as in (Λ3) and rσ/ζAHk1[m,n] so that

    nmϕ()ζ()g()Δα=m+λ1m(ϕ()ζ()[ϕ()mλ1]ζ()[1g()])Δα+nnλ2(ϕ()ζ()[ϕ()n+λ2]ζ()[1g()])Δα, (2.7)

    then

    nmrσ()g()Δαm+λ1m(rσ()|rσ()ζ()rσ(m+λ1)ζ(m+λ1)|ζ()[1g()])Δα+nnλ2(rσ()|rσ()ζ()rσ(nλ2)ζ(nλ2)|ζ()[1g()])Δα. (2.8)

    If rσ/ζAHk2[m,n] and (2.7) satisfied, the inequality in (2.8) is reversed.

    (Λ6) If λ1, λ2 be defined as in (Λ4) and rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=kkλ1(ϕ()ζ()[ϕ()k+λ1]ζ()[1g()])Δα=m+λ1m(ϕ()ζ()[ϕ()k+λ2]ζ()[1g()])Δα, (2.9)

    then

    nmrσ()g()Δαkkλ1(rσ()[rσ()ζ()rσ(kλ1)ζ(kλ1)]ζ()[1g()])Δα+k+λ2k(rσ()[rσ()ζ()rσ(k+λ2)ζ(k+λ2)]ζ()[1g()])Δα. (2.10)

    If rσ/ζAHk2[m,n] and (2.9) satisfied, we reverse (2.10).

    Proof. (Λ3) Consider rσ/ζAHk1[m,n], and R1()=rσ()Aϕ()ζ(), since A is given in Definition 2.1. Since R1/ζ:[m,k]TR, using Lemma 2.1(Λ1), we deduce

    0m+λ1mR1()ΔαkmR1()g()Δα=m+λ1mrσ()Δαkmrσ()g()ΔαA(m+λ1mϕ()ζ()Δαkmϕ()ζ()g()Δα). (2.11)

    As R1/ζ:[k,n]TR is nondecreasing, using Lemma 2.1(Λ2), we obtain

    0nkR1()g()Δαnnλ2R1()Δα=nkrσ()g()Δαnnλ2rσ()ΔαA(nkϕ()ζ()g()Δαnnλ2ϕ()ζ()Δα). (2.12)

    (2.11) and (2.12) imply that

    m+λ1mrσ()Δα+nnλ2rσ()Δαnmrσ()g()ΔαA(m+λ1mϕ()ζ()Δα+nnλ2ϕ()ζ()Δαnmϕ()ζ()g()Δα)

    Hence, if (2.3) is hold, then (2.4) holds. For rσ/ζAHk2[m,n], we get the some steps.

    (Λ4) Let rσ/ζAHk1[m,n], also R1(x)=rσ(x)Aϕ(x)ζ(x), where A as in Definition 2.1. R1/ζ:[m,k]TR is nonincreasing, so from Lemma 2.1(Λ1) we obtain

    0kmrσ()g()Δαkkλ1rσ()ΔαA(kmϕ()h()g()Δαkcλ1ϕ()ζ()Δα). (2.13)

    Using Lemma 2.1(Λ1) we have

    0k+λ2krσ()Δαnkrσ()g()ΔαA(k+λ2kϕ()ζ()Δαnkϕ()ζ()g()Δα). (2.14)

    Thus, from (2.13), (2.14), we get

    nmrσ()g()Δαk+λ2kλ1rσ()ΔαA(nmϕ()ζ()g()Δαk+λ2kλ1ϕ()ζ()Δα)

    Therefore, if nmϕ()ζ()g()Δα=k+λ2kλ1ϕ()ζ()Δα is satisfied, then (2.8) holds. Follow the same steps for rσ/ζAHk2[m,n].

    Using Lemma 2.3 and repeat the steps of Theorem 2.1(Λ3) and Theorem 2.1(Λ4) in the proof of (Λ5) and (Λ6) respectively.

    Corollary 2.1. The inequalities (2.4), (2.6), (2.8) and (2.10) of Theorem 2.1 letting T=R takes

    (i)nmfσ()g()dαm+λ1mrσ()dα+nnλ2rσ()dα. (2.15)
    (ii)nmrσ()g()dαk+λ2kλ1rσ()dα. (2.16)
    (iii)nmrσ()g()dαm+λ1m(rσ()[rσ()ζ()rσ(m+λ1)ζ(m+λ1)]ζ()[1g()])dα+nnλ2(rσ()[rσ()ζ()rσ(nλ2)ζ(nλ2)]ζ()[1g()])dα. (2.17)
    (iv)nmrσ()g()dαkkλ1(rσ()[rσ()ζ()rσ(kλ1)ζ(kλ1)]ζ()[1g()])dα+k+λ2k(rσ()[rσ()ζ()rσ(k+λ2)ζ(k+λ2)]ζ()[1g()])dα. (2.18)

    Corollary 2.2. We get [47,Theorems 8,10,21 and 22], if we put α=1 and ϕ()= in Corollary 2.1 [(i),(ii),(iii),(iv)] simultaneously.

    Corollary 2.3. In Corollary 2.1 taking T=Z, the results (2.15)–(2.18) will be equivalent to

    (i)n1=mr(+1)g()α1m+λ11=mr(+1)+n1=nλ2r(+1)α1.
    (ii)n1=mr(+1)g()α1k+λ21=kλ1r(+1)α1.
    (iii)n1=mr(+1)g()α1m+λ11=m(r(+1)[r(+1)ζ()r(a+λ1+1)ζ(m+λ1)]ζ()[1g()])α1+n1=nλ2(r(+1)[r(+1)ζ()r(nλ2+1)ζ(nλ2)]ζ()[1g()])α1.
    (iv)n1=mr(+1)g())α1k1=kλ1(r(+1)[r(+1)ζ()r(kλ1+1)ζ(kλ1)]ζ()[1g()]))α1+k+λ21=k(r(+1)[r(+1)ζ()r(k+λ2+1)ζ(k+λ2)]ζ()[1g()]))α1.

    Theorem 2.2. Under the assumptions in Lemma 2.1 with 0g()ζ() and λ1, λ2 be defined as

    (Λ7)

    m+λ1mζ()Δα=kmg()Δα,
    nnλ2ζ()Δα=nkg()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()g()Δα=m+λ1mϕ()ζ()Δα+nnλ2ϕ()ζ()Δα, (2.19)

    then

    nmrσ()g()Δαm+λ1mrσ()ζ()Δα+nnλ2rσ()ζ()Δα. (2.20)

    (Λ8)

    kkλ1ζ()Δα=kmg()Δα,
    k+λ2kζ()Δα=nkg()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()g()Δα=k+λ2kλ1ϕ()ζ()Δα, (2.21)

    then

    nmrσ()g()Δαk+λ2kλ1rσ()ζ()Δα. (2.22)

    If rσ/ζAHk2[m,n] and (2.19), (2.21) satisfied, we get the reverse of (2.20) and (2.22).

    Proof. By using Theorem 2.1 [(Λ3),(Λ4)] and by putting gg/h and ffh, we get the proof of (Λ7) and (Λ8).

    Corollary 2.4. In Theorem 2.2 [(Λ7),(Λ8)], assuming T=R, the following results obtains:

    (i)nmrσ()g()dαm+λ1mrσ()ζ()dα+nnλ2rσ()ζ()dα. (2.23)
    (ii)nmrσ()g()dαk+λ2kλ1rσ()ζ()dα. (2.24)

    Corollary 2.5. In Corollary 2.4 [(i),(ii)], when we put α=1 and ϕ()= then [47,Theorems 16 and 17] gotten.

    Corollary 2.6. In (2.23) and (2.24) letting T=Z, gets

    (i)n1=mr(+1)g()α1m+λ11=mr(+1)h()+n1=nλ2r(+1)h()α1.
    (ii)n1=mr(+1)g()α1k+λ21=kλ1r(+1)ζ()α1.

    Theorem 2.3. Using the same conditions in Lemma 2.3. Letting w:[m,n]TR be integrable with 0g()w() [m,n]T and

    (Λ9)m+λ1mw()ζ()Δα=kmζ()g()Δα,
    nnλ2w()ζ()Δα=nkζ()g()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=m+λ1mϕ()w()ζ()Δα+nnλ2ϕ()w()ζ()Δα, (2.25)

    then

    nmrσ()g()Δαm+λ1mrσ()w()Δα+nnλ2rσ()w()Δα. (2.26)
    (Λ10)kkλ1w()ζ()Δα=kmζ()g()Δα,
    k+λ2kw()ζ()Δα=nkζ()g()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=k+λ2kλ1ϕ()w()ζ()Δα, (2.27)
    nmrσ()g()Δαk+λ2kλ1rσ()w()Δα. (2.28)

    The inequalities in (2.26) and (2.28) are reversible if rσ/ζAHc2[a,b] and (2.25), (2.27) hold.

    Proof. In Theorem 2.1 [(Λ3),(Λ4)], ζ changes wq, g changes g/w and r changes rw.

    Corollary 2.7. In (2.26) and (2.28). Letting T=R, we have

    (i)nmrσ()g()dαm+λ1mrσ()w()dα+nnλ2rσ()w()dα. (2.29)
    (ii)nmrσ()g()dαk+λ2kλ1rσ()w()dα. (2.30)

    Corollary 2.8. In Corollary 2.7 [(i),(ii)], letting α=1 and ϕ()= we get [47,Theorems 18 and 19].

    Corollary 2.9. In (2.29) and (2.30), crossing T=Z, gets

    (i)n1=mr(+1)g()α1m+λ11=mr(+1)w()+n1=nλ2r(+1)w()α1.
    (ii)n1=mr(+1)g()α1k+λ21=kλ1r(+1)w()α1.

    Theorem 2.4. Using the same conditions in Lemma 2.1, and Theorem 2.1 [(Λ3),(Λ4)] with ψ:[m,n]TR be a integrable: 0ψ()g()1ψ().

    (Λ11) If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=m+λ1mϕ()ζ()Δαkm|ϕ()mλ1|ζ()ψ()Δα+nnλ2ϕ()ζ()Δα+nk|ϕ()n+λ2|ζ()ψ()Δα, (2.31)

    then

    nmrσ()g()Δαm+λ1mrσ()Δαkm|rσ()ζ()rσ(m+λ1)ζ(m+λ1)|ζ()ψ()Δα+nnλ2rσ()Δα+nk|rσ()ζ()rσ(nλ2)ζ(nλ2)|ζ()ψ()Δα. (2.32)

    (Λ12) If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=kkλ1ϕ()ζ()Δαkm|ϕ()k+λ1|ζ()ψ()Δα+nk|ϕ()kλ1|ζ()ψ()Δα, (2.33)

    then

    nmrσ()g()Δαk+λ2kλ1rσ()Δα+km|rσ()ζ()rσ(kλ1)ζ(kλ1)|ζ()ψ()Δαnk|rσ()ζ()rσ(k+λ2)ζ(k+λ2)|ζ()ψ()Δα. (2.34)

    If rσ/ζAHk2[m,n] and (2.31) and (2.33) satisfied, we get the reverse of (2.32) and (2.34).

    Proof. The same steps of Theorem 2.1 [(Λ3),(Λ4)] with Lemma 2.1, R1/ζ:[m,k]TR nonincreasing, R1/ζ:[k,n]TR nondecreasing.

    Corollary 2.10. In Theorem 2.4 [(Λ11),(Λ12)], letting T=R we get:

    (i)nmrσ()g()dαm+λ1mrσ()dαkm|rσ()ζ()rσ(m+λ1)ζ(m+λ1)|ζ()ψ()dα+nnλ2rσ()dα+nk|rσ()ζ()rσ(nλ2)ζ(nλ2)|ζ()ψ()dα. (2.35)
    (ii)nmrσ()g()dαk+λ2kλ1rσ()dα+km|rσ()ζ()rσ(kλ1)ζ(kλ1)|ζ()ψ()dαnk|rσ()ζ()rσ(k+λ2)ζ(k+λ2)|ζ()ψ()dα. (2.36)

    Corollary 2.11. In (2.35) and (2.36), we put α=1, with ϕ()= we get [47,Theorems 23 and 24].

    Corollary 2.12. Our results (2.35) and (2.36), by using T=Z gets

    (i)n1=mr(+1)g()α1m+λ11=mr(+1)α1k1=m|r(+1)ζ()r(m+λ1+1)ζ(m+λ1)|ζ()ψ()ˆ+n1=nλ2r(+1)α1+n1=k|r(+1)ζ()r(nλ2+1)ζ(nλ2)|ζ()ψ()α1.
    (ii)n1=mr(+1)g()α1k+λ21=kλ1r(+1)α1+k1=m|r(+1)ζ()r(kλ1+1)ζ(kλ1)|ζ()ψ()α1n1=k|r(+1)ζ()r(k+λ2+1)ζ(k+λ2)|h()ψ()α1.

    In this work, we explore new generalizations of the integral Steffensen inequality given in [38,39,43] by the utilization of the α-conformable derivatives and integrals, A few of these results are generalised to time scales. We also obtained the discrete and continuous case of our main results, in order to gain some fresh inequalities as specific cases.

    The authors extend their appreciation to the Research Supporting Project number (RSP-2022/167), King Saud University, Riyadh, Saudi Arabia.

    The authors declare no conflict of interest.



    [1] G. W. Leibnitz, Letter from Hanover, Mathematische Schriften, 2 (1695), 301–302.
    [2] S. G. Samko, Fractional integrals and derivatives: Theory and applications, USA: Gordon and Breach Science Publishers, 1993.
    [3] K. S. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, Newyork: John wiley and Sons, Inc., 1993.
    [4] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1998.
    [5] R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional order systems: Modelling and control applications, World Scientific Publishing Co. Pte. Ltd., 2010.
    [6] J. Bai, X. C. Feng, Fractional-order anisotropic diffusion for image denoising. IEEE T. Image Process, 16 (2007), 2492–2502. https://doi.org/10.1109/TIP.2007.904971 doi: 10.1109/TIP.2007.904971
    [7] S. N. Rao, M. Khuddush, M. Singh, M. Z. Meetei, Infinite-time blowup and global solutions for a semilinear Klein Gordan equation with logarithmic nonlinearity, Appl. Math. Sci. Eng., 31 (2023), 2270134. https://doi.org/10.1080/27690911.2023.2270134 doi: 10.1080/27690911.2023.2270134
    [8] H. Liu, H. Yuan, Q. Liu, J. Hou, H. Zeng, S. Kwong, A hybrid compression framework for color attributes of static 3D point clouds. IEEE T. Circ. Syst. Vid. Technol., 32 (2022), 1564–1577. https://doi.org/10.1109/TCSVT.2021.3069838 doi: 10.1109/TCSVT.2021.3069838
    [9] T. Guo, H. Yuan, L. Wang, T. Wang, Rate-distortion optimized quantization for geometry-based point cloud compression, J. Electron Imaging, 32 (2023), 013047. https://doi.org/10.1117/1.JEI.32.1.013047 doi: 10.1117/1.JEI.32.1.013047
    [10] J. F. Gˊomez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hernˊandez, D. Baleanu, R. F. Escobar-Jimˊenez, M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville-Caputo operators with local and non-local Kernels, Entropy, 18 (2016), 402. https://doi.org/10.3390/e18080402 doi: 10.3390/e18080402
    [11] A. El-Ajou, M. Al-Smadi, M. N. Oqielat, S. Momani, S. Hadid, Smooth expansion to solve high-order linear conformable fractional PDEs via residual power series method: Applications to physical and engineering equations, Ain Shams Eng. J., 11 (2020), 1243–1254. https://doi.org/10.1016/j.asej.2020.03.016 doi: 10.1016/j.asej.2020.03.016
    [12] A. Burqan, A. El-Ajou, R. Saadeh, M. Al-Smadi, A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations, Alex. Eng. J., 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020 doi: 10.1016/j.aej.2021.07.020
    [13] E. Salah, A. Qazza, R. Saadeh, A. El-Ajou, A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system, AIMS Mathematics, 8 (2023), 1713–1736. 1713-1736. https://doi.org/10.3934/math.2023088 doi: 10.3934/math.2023088
    [14] A. El-Ajou, Z. Al-Zhour, A vector series solution for a class of hyperbolic system of Caputo time-fractional partial differential equations with variable coefficients, Front. Phys., 9 (2021), 525250. https://doi.org/10.3389/fphy.2021.525250 doi: 10.3389/fphy.2021.525250
    [15] A. El-Ajou, O. A. Arqub, S. Momani, D. Baleanu, A. Alsaedi, A novel expansion iterative method for solving linear partial differential equations of fractional order, Appl. Math. Comput., 257 (2015), 119–133. https://doi.org/10.1016/j.amc.2014.12.121 doi: 10.1016/j.amc.2014.12.121
    [16] H. M. He, J. G. Peng, H. Y. Li, Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds, U.P.B. Sci. Bull. Ser. A, 84 (2022), 25–36.
    [17] Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
    [18] X. Zhou, X. Liu, G. Zhang, L. Jia, X. Wang, Z. Zhao, An iterative threshold algorithm of log-sum regularization for sparse problem, IEEE T. Circ. Syst. Vid. Technol., 33 (2023), 4728–4740. https://doi.org/10.1109/TCSVT.2023.3247944 doi: 10.1109/TCSVT.2023.3247944
    [19] Q. Wang, Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method, Appl. Math. Comput., 182 (2006), 1048–1055. https://doi.org/10.1016/j.amc.2006.05.004 doi: 10.1016/j.amc.2006.05.004
    [20] M. Kurulay, Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method, Adv. Differ. Equ., 2012 (2012), 187. https://doi.org/10.1186/1687-1847-2012-187 doi: 10.1186/1687-1847-2012-187
    [21] R. P. Agarwal, F. Mofarreh, R. Shah, W. Luangboon, K. Nonlaopon, An analytical technique, based on natural transform to solve fractional-order parabolic equations, Entropy, 23 (2021), 1086. https://doi.org/10.3390/e23081086 doi: 10.3390/e23081086
    [22] A. A. Arafa, A. M. S. Hagag, Q-homotopy analysis transform method applied to fractional Kundu-Eckhaus equation and fractional massive Thirring model arising in quantum field theory, Asian-Eur. J. Math., 12 (2019), 1950045. https://doi.org/10.1142/S1793557119500451 doi: 10.1142/S1793557119500451
    [23] J. J. H. He, An elementary introduction to the homotopy perturbation method, Comput. Math. Appl., 57 (2009), 410–412. https://doi.org/10.1016/j.camwa.2008.06.003 doi: 10.1016/j.camwa.2008.06.003
    [24] F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, Int. J. Opt. Control, 6 (2016), 75–83. https://doi.org/10.11121/ijocta.01.2016.00317 doi: 10.11121/ijocta.01.2016.00317
    [25] Z. Odibat, S. Momani, V. S. Erturk, Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comput., 197 (2008), 467–477. https://doi.org/10.1016/j.amc.2007.07.068 doi: 10.1016/j.amc.2007.07.068
    [26] M. Singh, Approximation of the time-fractional Klein-Gordon equation using the integral and projected differential transform methods, Int. J. Math. Eng. Manag. Sci., 8 (2023), 672–687. https://doi.org/10.33889/IJMEMS.2023.8.4.039 doi: 10.33889/IJMEMS.2023.8.4.039
    [27] N. H. Aljahdaly, R. P. Agarwal, R. Shah, T. Botmart, Analysis of the time fractional-order coupled burgers equations with non-singular kernel operators, Mathematics, 9 (2021), 2326. https://doi.org/10.3390/math9182326 doi: 10.3390/math9182326
    [28] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Backlund transformation. Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
    [29] L. Wang, Y. Ma, Z. Meng, Haar wavelet method for solving fractional partial differential equations numerically, Appl. Math. Comput., 227 (2014), 66–76. https://doi.org/10.1016/j.amc.2013.11.004 doi: 10.1016/j.amc.2013.11.004
    [30] K. Nonlaopon, M. Naeem, A. M. Zidan, R. Shah, A. Alsanad, A. Gumaei, Numerical investigation of the time fractional Whitham-Broer-Kaup equation involving without singular kernel operators, Complexity, 2021 (2021), 7979365. https://doi.org/10.1155/2021/7979365 doi: 10.1155/2021/7979365
    [31] P. Sunthrayuth, R. Shah, A. M. Zidan, S. Khan, J. Kafle, The analysis of fractional-order Navier-Stokes model arising in the unsteady flow of a viscous fluid via Shehu transform, J. Funct. Spaces, 2021 (2021), 1029196. https://doi.org/10.1155/2021/1029196 doi: 10.1155/2021/1029196
    [32] A. Sohail, K. Maqbool, R. Ellahi, Stability analysis for fractional-order partial differential equations by means of space spectral time Adams Bashforth Moulton method, Numer. Meth. Partial Differ. Equ., 34 (2018), 19–29. https://doi.org/10.1002/num.22171 doi: 10.1002/num.22171
    [33] F. Mirzaee, N. Samadyar, On the numerical solution of stochastic quadratic integral equations via operational matrix method, Math. Method. Appl. Sci., 41 (2018), 4465–4479. https://doi.org/10.1002/mma.4907 doi: 10.1002/mma.4907
    [34] M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, In: Handbook of mathematical fluid dynamics, 3 (2005), 161–244. https://doi.org/10.1016/S1874-5792(05)80006-0
    [35] G. Adomian, Analytical solution of Navier-Stokes flow of a viscous compressible fluid, Found. Phys. Lett., 8 (1995), 389–400. https://doi.org/10.1007/BF02187819 doi: 10.1007/BF02187819
    [36] M. Krasnoschok, V. Pata, S. V. Siryk, N. Vasylyeva, A subdiffusive Navier-Stokes-Voigt system, Phys. D Nonlinear Phenom., 409 (2020), 132503. https://doi.org/10.1016/j.physd.2020.132503 doi: 10.1016/j.physd.2020.132503
    [37] M. I. Herreros, S. Lig¨uˊerzana, Rigid body motion in viscous flows using the finite element method, Phys. Fluids, 32 (2020), 123311. https://doi.org/10.1063/5.0029242 doi: 10.1063/5.0029242
    [38] M. El-Shahed, A. Salem, On the generalized Navier-Stokes equations, Appl. Math. Comput., 156 (2004), 287–293. https://doi.org/10.1016/j.amc.2003.07.022 doi: 10.1016/j.amc.2003.07.022
    [39] Z. Z. Ganji, D. D. Ganji, A. D. Ganji, M. Rostamian, Analytical solution of time-fractional Navier-Stokes equation in polar coordinate by homotopy perturbation method, Numer. Method. Partial Differ. Equ., 26 (2010), 117–124. https://doi.org/10.1002/num.20420 doi: 10.1002/num.20420
    [40] D. Kumar, J. Singh, S. Kumar, A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid, J. Assoc. Arab. Univ. Basic Appl. Sci., 17 (2015), 14–19. https://doi.org/10.1016/j.jaubas.2014.01.001 doi: 10.1016/j.jaubas.2014.01.001
    [41] S. Maitama, Analytical solution of time-fractional Navier-Stokes equation by natural homotopy perturbation method, Prog. Fract. Differ. Appl., 4 (2018), 123–131. https://doi.org/10.18576/pfda/040206 doi: 10.18576/pfda/040206
    [42] G. A. Birajdar, Numerical solution of time fractional Navier-Stokes equation by discrete Adomian decomposition method, Nonlinear Eng., 3 (2014), 21–26. https://doi.org/10.1515/nleng-2012-0004 doi: 10.1515/nleng-2012-0004
    [43] Hajira, H. Khan, A. Khan, P. Kumam, D. Baleanu, M. Arif, An approximate analytical solution of the Navier-Stokes equations with Caputo operators and Elzaki transform decomposition method, Adv. Differ. Equ., 2020 (2020), 622. https://doi.org/10.1186/s13662-020-03058-1 doi: 10.1186/s13662-020-03058-1
    [44] Y. M. Chu, N. A. Shah, P. Agarwal, J. D. Chung, Analysis of fractional multi-dimensional Navier-Stokes equation, Adv. Differ. Equ., 2021 (2021), 91. https://doi.org/10.1186/s13662-021-03250-x doi: 10.1186/s13662-021-03250-x
    [45] B. K. Singh, P. Kumar, FRDTM for numerical simulatin of multi-dimensional Navier-Stokes equation, Ain Shams Eng. J., 9 (2018), 827–834. https://doi.org/10.1016/j.asej.2016.04.009 doi: 10.1016/j.asej.2016.04.009
    [46] E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of fractional-order Navier-Stokes equations by a novel Approach, J. Funct. Spaces, 2022 (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
    [47] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier, 2006.
    [48] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [49] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92.
    [50] Z. H. Khan, W. A. Khan, N-Transform-properties and applications, NUST J. Eng. Sci., 1 (2008), 127–133.
    [51] D. Loonker, P. K. Banerji, Solution of fractional ordinary differential equations by natural transform, Int. J. Math. Eng. Sci., 2 (2013), 1–7.
    [52] A. Khalouta, A. Kadem, A new numerical technique for solving fractional Bratu's initial value problems in the Caputo and Caputo-Fabrizio sense, J. Appl. Math. Comput. Mech., 19 (2020), 43–56. https://doi.org/10.17512/jamcm.2020.1.04 doi: 10.17512/jamcm.2020.1.04
    [53] V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316 (2006), 753–763. https://doi.org/10.1016/j.jmaa.2005.05.009 doi: 10.1016/j.jmaa.2005.05.009
    [54] A. Ghorbani, Beyond Adomian's polynomials: He's polynomials, Chaos Soliton. Fract., 39 (2009), 1486–1492. https://doi.org/10.1016/j.chaos.2007.06.034 doi: 10.1016/j.chaos.2007.06.034
  • This article has been cited by:

    1. Ahmed A. El-Deeb, Clemente Cesarano, On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales, 2022, 11, 2075-1680, 336, 10.3390/axioms11070336
    2. Ahmed A. El-Deeb, Dumitru Baleanu, Jan Awrejcewicz, (Δ∇)∇-Pachpatte Dynamic Inequalities Associated with Leibniz Integral Rule on Time Scales with Applications, 2022, 14, 2073-8994, 1867, 10.3390/sym14091867
    3. Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim, On some dynamic inequalities of Hilbert's-type on time scales, 2023, 8, 2473-6988, 3378, 10.3934/math.2023174
    4. Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu, Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales, 2022, 7, 2473-6988, 14099, 10.3934/math.2022777
    5. Ahmed A. El-Deeb, Dumitru Baleanu, Clemente Cesarano, Ahmed Abdeldaim, On Some Important Dynamic Inequalities of Hardy–Hilbert-Type on Timescales, 2022, 14, 2073-8994, 1421, 10.3390/sym14071421
    6. Hassan M. El-Owaidy, Ahmed A. El-Deeb, Samer D. Makharesh, Dumitru Baleanu, Clemente Cesarano, On Some Important Class of Dynamic Hilbert’s-Type Inequalities on Time Scales, 2022, 14, 2073-8994, 1395, 10.3390/sym14071395
    7. Ahmed A. El-Deeb, Alaa A. El-Bary, Jan Awrejcewicz, On Some Dynamic (ΔΔ)∇- Gronwall–Bellman–Pachpatte-Type Inequalities on Time Scales and Its Applications, 2022, 14, 2073-8994, 1902, 10.3390/sym14091902
    8. Asfand Fahad, Saad Ihsaan Butt, Josip Pečarić, Marjan Praljak, Generalized Taylor’s Formula and Steffensen’s Inequality, 2023, 11, 2227-7390, 3570, 10.3390/math11163570
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1566) PDF downloads(99) Cited by(6)

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog