We give the approximate solution of the Riccati/Logistic differential equations (RDE/LDE). The suggested approach depends on the homotopy perturbation method developed with the Chebyshev series (CHPM). A study of the convergence analysis of CHPM is presented. The residual error function is calculated and used as a basic criterion in evaluating the accuracy and efficiency of the given numerical technique. We use the exact solution and the Runge-Kutta method of fourth order for comparison with the results of the method used. Through these results, we can confirm that the applied method is an easy and effective tool for the numerical simulation of such models. Illustrative models are given to confirm the validity and usefulness of the proposed procedure.
Citation: M. M. Khader, A. M. Shloof, Halema Ali Hamead. Numerical investigation based on the Chebyshev-HPM for Riccati/Logistic differential equations[J]. AIMS Mathematics, 2025, 10(4): 7906-7919. doi: 10.3934/math.2025363
We give the approximate solution of the Riccati/Logistic differential equations (RDE/LDE). The suggested approach depends on the homotopy perturbation method developed with the Chebyshev series (CHPM). A study of the convergence analysis of CHPM is presented. The residual error function is calculated and used as a basic criterion in evaluating the accuracy and efficiency of the given numerical technique. We use the exact solution and the Runge-Kutta method of fourth order for comparison with the results of the method used. Through these results, we can confirm that the applied method is an easy and effective tool for the numerical simulation of such models. Illustrative models are given to confirm the validity and usefulness of the proposed procedure.
| [1] | I. Lasiecka, R. Triggiani, Differential and algebraic Riccati equations with application to boundary/point control problems: continuous theory and approximation theory, Berlin: Springer, 1991. |
| [2] | W. T. Reid, Riccati differential equations, mathematics in science and engineering, New York: Academic Press, 1972. |
| [3] |
Y. Tan, S. Abbasbandy, Homotopy analysis method for quadratic Riccati differential equation, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 539–546. https://doi.org/10.1016/j.cnsns.2006.06.006 doi: 10.1016/j.cnsns.2006.06.006
|
| [4] |
H. Jafari, H. Tajadodi, He's variational iteration method for solving fractional Riccati differential equation, Int. J. Differ. Equ., 2010 (2010), 764738. https://doi.org/10.1155/2010/764738 doi: 10.1155/2010/764738
|
| [5] |
F. Dubois, A. Saidi, Unconditionally stable scheme for Riccati equation, ESAIM Proc., 8 (2000), 39–52. https://doi.org/10.1051/proc:2000003 doi: 10.1051/proc:2000003
|
| [6] | H. Pastijn, Chaotic growth with the logistic model of P.-F. verhulst, In: Understanding complex systems, Berlin: Springer, 2006. https://doi.org/10.1007/3-540-32023-7_1 |
| [7] | M. Ausloos, The Logistic map and the route to chaos: from the beginnings to modern applications XVI, 2006. |
| [8] |
T. A. J. Al-Griffi, A. S. J. Al-Saif, Yang transform-homotopy perturbation method for solving a non-Newtonian viscoelastic fluid flow on the turbine disk, ZAMM, 2022 (2022), e202100116. https://doi.org/10.1002/zamm.202100116 doi: 10.1002/zamm.202100116
|
| [9] |
H. Aminikhah, M. Hemmatnezhad, An efficient method for quadratic Riccati differential equation, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 835–839. https://doi.org/10.1016/j.cnsns.2009.05.009 doi: 10.1016/j.cnsns.2009.05.009
|
| [10] |
M. S. Abdul-Wahab, A. J. A. Al-Saif, Chebyshev-homotopy perturbation method for studying the flow and heat transfer of a Non-Newtonian fluid flow on the turbine disk, Basrah Res. Sci., 50 (2024), 150. https://doi.org/10.56714/bjrs.50.1.13 doi: 10.56714/bjrs.50.1.13
|
| [11] |
K. Pal, V. G. Gupta, H. Singh, V. Pawar, Enlightenment of heat diffusion using new homotopy perturbation method, J. Appl. Sci. Eng., 27 (2023), 2213–2216. http://doi.org/10.6180/jase.202403_27(3).0007 doi: 10.6180/jase.202403_27(3).0007
|
| [12] |
J. Wu, Y. Zhang, L. Chen, Z. Luo, A Chebyshev interval method for nonlinear dynamic systems under uncertainty, Math. Model., 37 (2013), 4578–4591. https://doi.org/10.1016/j.apm.2012.09.073 doi: 10.1016/j.apm.2012.09.073
|
| [13] |
F. Wang, Q. Zhao, Z. Chen, C. M. Fan, Localized Chebyshev collocation method for solving elliptic partial differential equations in arbitrary 2D domains, Appl. Math. Comput., 397 (2021), 125903. https://doi.org/10.1016/j.amc.2020.125903 doi: 10.1016/j.amc.2020.125903
|
| [14] |
Y. M. Hamada, A new accurate numerical method based on shifted Chebyshev series for nuclear reactor dynamical systems, Sci. Technol. Nucl. Install., 15 (2018), 7105245. https://doi.org/10.1155/2018/7105245 doi: 10.1155/2018/7105245
|
| [15] |
M. Izadi, S. Y$\ddot{u}$zba, D. Baleanu, Taylor-Chebyshev approximation technique to solve the 1D and 2D nonlinear Burger's equations, Math. Sci., 16 (2022), 459–471. https://doi.org/10.1007/s40096-021-00433-1 doi: 10.1007/s40096-021-00433-1
|
| [16] |
M. M. Khader, M. Adel, Modeling and numerical simulation for covering the fractional Covid-19 model using spectral collocation-optimization algorithms, Fractal Fract., 6 (2022), 363. https://doi.org/10.3390/fractalfract6070363 doi: 10.3390/fractalfract6070363
|
| [17] |
M. M. Khader, Numerical study for unsteady Casson fluid flow with heat flux using a spectral collocation method, Indian J. Phys., 96 (2021), 777–786. https://doi.org/10.1007/s12648-021-02025-0 doi: 10.1007/s12648-021-02025-0
|
| [18] |
A. M. Shloof, N. Senu, A. Ahmadian, M. N. L. Nik, S. Soheil, Solving fractal-fractional differential equations using an operational matrix of derivatives via Hilfer fractal-fractional derivative sense, Appl. Numer. Math., 178 (2022), 386–403. https://doi.org/10.1016/j.apnum.2022.02.006 doi: 10.1016/j.apnum.2022.02.006
|
| [19] | M. H. Mudde, Chebyshev approximation, Master's thesis/essay, University of Groningen, Netherlands, Faculty of Science and Engineering, 2017. |
| [20] |
H. C. Thacher, Conversion of a power to a series of Chebyshev polynomials, Commun. ACM, 7 (1964), 181–182. https://doi.org/10.1145/363958.363998 doi: 10.1145/363958.363998
|
| [21] |
M. S. Abdul-Wahab, A. J. A. Al-Saif, Studying the effects of electro-osmotic and several parameters on blood flow in stenotic arteries using CAGHPM, PDE Appl. Math., 11 (2024), 100767. https://doi.org/10.1016/j.padiff.2024.100767 doi: 10.1016/j.padiff.2024.100767
|
| [22] |
M. M. Khader, Numerical treatment for solving fractional Riccati differential equation, J. Egyptian Math. Soc., 21 (2013), 32–37. https://doi.org/10.1016/j.joems.2012.09.005 doi: 10.1016/j.joems.2012.09.005
|
| [23] |
M. M. Khader, M. Adel, Numerical approach for solving the Riccati and Logistic equations via QLM-rational Legendre collocation method, Comp. Appl. Math., 39 (2020), 166. https://doi.org/10.1007/s40314-020-01207-6 doi: 10.1007/s40314-020-01207-6
|
| [24] |
M. M. Khader, Numerical treatment for solving fractional Logistic differential equation, Differ. Equ. Dyn. Syst., 24 (2016), 99–107. https://doi.org/10.1007/s12591-014-0207-9 doi: 10.1007/s12591-014-0207-9
|
| [25] |
A. M. A. El-Sayed, A. E. M. El-Mesiry, H. A. A. El-Saka, On the fractional-order Logistic equation, Appl. Math. Lett., 20 (2007), 817–823. https://doi.org/10.1016/j.aml.2006.08.013 doi: 10.1016/j.aml.2006.08.013
|