Editorial Special Issues

Editorial: Mathematical Modeling to Solve the Problems in Life Sciences

  • Citation: Sourav Kumar Sasmal, Yasuhiro Takeuchi. Editorial: Mathematical Modeling to Solve the Problems in Life Sciences[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 2967-2969. doi: 10.3934/mbe.2020167

    Related Papers:

    [1] Thomas Torku, Abdul Khaliq, Fathalla Rihan . SEINN: A deep learning algorithm for the stochastic epidemic model. Mathematical Biosciences and Engineering, 2023, 20(9): 16330-16361. doi: 10.3934/mbe.2023729
    [2] Giorgos Minas, David A Rand . Parameter sensitivity analysis for biochemical reaction networks. Mathematical Biosciences and Engineering, 2019, 16(5): 3965-3987. doi: 10.3934/mbe.2019196
    [3] Tianfang Hou, Guijie Lan, Sanling Yuan, Tonghua Zhang . Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate. Mathematical Biosciences and Engineering, 2022, 19(4): 4217-4236. doi: 10.3934/mbe.2022195
    [4] Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445
    [5] Sheng-I Chen, Chia-Yuan Wu . A stochastic programming model of vaccine preparation and administration for seasonal influenza interventions. Mathematical Biosciences and Engineering, 2020, 17(4): 2984-2997. doi: 10.3934/mbe.2020169
    [6] Shengnan Zhao, Sanling Yuan . A coral reef benthic system with grazing intensity and immigrated macroalgae in deterministic and stochastic environments. Mathematical Biosciences and Engineering, 2022, 19(4): 3449-3471. doi: 10.3934/mbe.2022159
    [7] David F. Anderson, Tung D. Nguyen . Results on stochastic reaction networks with non-mass action kinetics. Mathematical Biosciences and Engineering, 2019, 16(4): 2118-2140. doi: 10.3934/mbe.2019103
    [8] Yangjun Ma, Maoxing Liu, Qiang Hou, Jinqing Zhao . Modelling seasonal HFMD with the recessive infection in Shandong, China. Mathematical Biosciences and Engineering, 2013, 10(4): 1159-1171. doi: 10.3934/mbe.2013.10.1159
    [9] Damilola Olabode, Jordan Culp, Allison Fisher, Angela Tower, Dylan Hull-Nye, Xueying Wang . Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China. Mathematical Biosciences and Engineering, 2021, 18(1): 950-967. doi: 10.3934/mbe.2021050
    [10] Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247




  • [1] K. Okuwa, H. T. Kuniya, Mathematical analysis for an age-structured SIRS epidemic model, Math. Biosci. Eng., 16(2019), 6071-6102. doi: 10.3934/mbe.2019304
    [2] J. Cui, Y. Zhang, Z. Feng, S. Guo, Y. Zhang, Influence of asymptomatic infections for the effectiveness of facemasks during pandemic influenza, Math. Biosci. Eng., 16(2019), 3936-3946. doi: 10.3934/mbe.2019194
    [3] Y. Tsubouchi, Y. Takeuchi, S. Nakaoka, Calculation of final size for vector-transmitted epidemic model, Math. Biosci. Eng., 16(2019), 2219-2232. doi: 10.3934/mbe.2019109
    [4] X. Yu, Z. Chen, L. Qi, Comparative study of SARIMA and NARX models in predicting the incidence of schistosomiasis in China, Math. Biosci. Eng., 16(2019), 2266-2276. doi: 10.3934/mbe.2019112
    [5] A. Guazzini, E. Imbimbo, F. Stefanelli, F. Bagnoli, E. Venturino, Quantifying fairness to overcome selfishness: A behavioural model to describe the evolution and stabilization of inter-group bias using the Ultimatum Game, Math. Biosci. Eng., 16(2019), 3718-3733. doi: 10.3934/mbe.2019184
    [6] K. Sato, Effects of cyclic allele dominance rules and spatial structure on the dynamics of cyclic competition models, Math. Biosci. Eng., 17(2020), 1479-1494. doi: 10.3934/mbe.2020076
    [7] S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model, Math. Biosci. Eng., 16(2019), 5146-5179. doi: 10.3934/mbe.2019258
    [8] B. Saha, Chance of extinction of populations in food chain model under demographic stochasticity, Math. Biosci. Eng., 16(2019), 3537-3560. doi: 10.3934/mbe.2019177
    [9] S. K. Sasmal, J. Banerjee, Y. Takeuchi, Dynamics and spatio-temporal patterns in a prey-predator system with aposematic prey, Math. Biosci. Eng., 16(2019), 3864-3884. doi: 10.3934/mbe.2019191
    [10] K. Manna, M. Banerjee, Stability of Hopf-bifurcating limit cycles in a diffusion-driven preypredator system with Allee effect and time delay, Math. Biosci. Eng., 16(2019), 2411-2446. doi: 10.3934/mbe.2019121
    [11] C. Xu, M. Liao, P. Li, Q. Xiao, S. Yuan, A new method to investigate almost periodic solutions for an Nicholson's blowflies model with time-varying delays and a linear harvesting term, Math. Biosci. Eng., 16(2019), 3830-3840. doi: 10.3934/mbe.2019189
    [12] S. Biswas, P. K. Tiwari, Y. Kang, S. Pal, Effects of zooplankton selectivity on phytoplankton in an ecosystem affected by free-viruses and environmental toxins, Math. Biosci. Eng., 17(2020), 1272-1317. doi: 10.3934/mbe.2020065
    [13] Y. Hong, W. Ma, Sufficient and necessary conditions for global attractivity and stability of a class of discrete Hopfield-type neural networks with time delays, Math. Biosci. Eng., 16(2019), 4936-4946. doi: 10.3934/mbe.2019249
  • This article has been cited by:

    1. Amy D. Hagerman, Bruce A. McCarl, Jianhong Mu, 2010, 9780471761303, 10.1002/9780470087923.hhs696
    2. Jose Faro, Bernardo von Haeften, Rui Gardner, Emilio Faro, A Sensitivity Analysis Comparison of Three Models for the Dynamics of Germinal Centers, 2019, 10, 1664-3224, 10.3389/fimmu.2019.02038
    3. S. Pant, B. Fabrèges, J-F. Gerbeau, I. E. Vignon-Clementel, A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis, 2014, 30, 20407939, 1614, 10.1002/cnm.2692
    4. H. T. Banks, Sava Dediu, Stacey L. Ernstberger, Franz Kappel, Generalized sensitivities and optimal experimental design, 2010, 18, 0928-0219, 10.1515/jiip.2010.002
    5. H.T. Banks, Kathleen Holm, Nathan C. Wanner, Ariel Cintrón-Arias, Grace M. Kepler, Jeffrey D. Wetherington, A mathematical model for the first-pass dynamics of antibiotics acting on the cardiovascular system, 2009, 50, 08957177, 959, 10.1016/j.mcm.2009.02.007
    6. H. T. Banks, S. Dediu, S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, 2007, 15, 0928-0219, 10.1515/jiip.2007.038
    7. H.T. Banks, Jared Catenacci, Shuhua Hu, Stochastic vs. Deterministic Models for Systems with Delays, 2013, 46, 14746670, 61, 10.3182/20130925-3-FR-4043.00022
    8. H. Thomas Banks, Marie Davidian, John R. Samuels, Karyn L. Sutton, 2009, Chapter 11, 978-90-481-2312-4, 249, 10.1007/978-90-481-2313-1_11
    9. Chloe Audebert, Petru Bucur, Mohamed Bekheit, Eric Vibert, Irene E. Vignon-Clementel, Jean-Frédéric Gerbeau, Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling, 2017, 314, 00457825, 102, 10.1016/j.cma.2016.07.009
    10. Sanjay Pant, Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems, 2018, 15, 1742-5689, 20170871, 10.1098/rsif.2017.0871
    11. Chloe Audebert, Irene E. Vignon-Clementel, Model and methods to assess hepatic function from indocyanine green fluorescence dynamical measurements of liver tissue, 2018, 115, 09280987, 304, 10.1016/j.ejps.2018.01.008
    12. A comparison of computational efficiencies of stochastic algorithms in terms of two infection models, 2012, 9, 1551-0018, 487, 10.3934/mbe.2012.9.487
    13. H. T. Banks, M. Davidian, Shuhua Hu, Grace M. Kepler, E. S. Rosenberg, Modelling HIV immune response and validation with clinical data, 2008, 2, 1751-3758, 357, 10.1080/17513750701813184
    14. Tejas Ghadiyali, Kalpesh Lad, Jayesh Dhodiya, 2018, Chapter 6, 978-981-10-6601-6, 51, 10.1007/978-981-10-6602-3_6
    15. Multiple endemic states in age-structured SIR epidemic models, 2012, 9, 1551-0018, 577, 10.3934/mbe.2012.9.577
    16. H. T. Banks, Jared Catenacci, Shuhua Hu, A Comparison of Stochastic Systems with Different Types of Delays, 2013, 31, 0736-2994, 913, 10.1080/07362994.2013.806217
    17. Nonlinear stochastic Markov processes and modeling uncertainty in populations, 2012, 9, 1551-0018, 1, 10.3934/mbe.2012.9.1
    18. Mohammad Munir, Generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test, 2018, 300, 00255564, 14, 10.1016/j.mbs.2018.03.014
    19. Angelie Reandelar Ferrolino, Victoria May Paguio Mendoza, 2019, 2192, 0094-243X, 060008, 10.1063/1.5139154
    20. D. F. Yusupov, G. Abdullayeva, O. Aliev, S. Hamrayeva, 2021, 2402, 0094-243X, 050002, 10.1063/5.0071987
    21. José Faro, Emilio Faro, 2022, Chapter 10, 978-1-0716-1735-9, 111, 10.1007/978-1-0716-1736-6_10
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4411) PDF downloads(397) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog