Review Special Issues

Bacteriophages—a new hope or a huge problem in the food industry

  • Received: 31 July 2019 Accepted: 22 October 2019 Published: 24 October 2019
  • Bacteriophages are viruses that are ubiquitous in nature and infect only bacterial cells. These organisms are characterized by high specificity, an important feature that enables their use in the food industry. Phages are applied in three sectors in the food industry: primary production, biosanitization, and biopreservation. In biosanitization, phages or the enzymes that they produce are mainly used to prevent the formation of biofilms on the surface of equipment used in the production facilities. In the case of biopreservation, phages are used to extend the shelf life of products by combating pathogenic bacteria that spoil the food. Although phages are beneficial in controlling the food quality, they also have negative effects. For instance, the natural ability of phages that are specific to lactic acid bacteria to destroy the starter cultures in dairy production incurs huge financial losses to the dairy industry. In this paper, we discuss how bacteriophages can be either an effective weapon in the fight against bacteria or a bane negatively affecting the quality of food products depending on the type of industry they are used.

    Citation: Marzena Połaska, Barbara Sokołowska. Bacteriophages—a new hope or a huge problem in the food industry[J]. AIMS Microbiology, 2019, 5(4): 324-346. doi: 10.3934/microbiol.2019.4.324

    Related Papers:

    [1] Helene Nalini Chinivasagam, Wiyada Estella, Damien Finn, David G. Mayer, Hugh Rodrigues, Ibrahim Diallo . Broiler farming practices using new or re-used bedding, inclusive of free-range, have no impact on Campylobacter levels, species diversity, Campylobacter community profiles and Campylobacter bacteriophages. AIMS Microbiology, 2024, 10(1): 12-40. doi: 10.3934/microbiol.2024002
    [2] Stephen T. Abedon . Active bacteriophage biocontrol and therapy on sub-millimeter scales towards removal of unwanted bacteria from foods and microbiomes. AIMS Microbiology, 2017, 3(3): 649-688. doi: 10.3934/microbiol.2017.3.649
    [3] Stephen T. Abedon . Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiology, 2017, 3(2): 186-226. doi: 10.3934/microbiol.2017.2.186
    [4] Ariel J. Santiago, Maria L. Burgos-Garay, Leila Kartforosh, Mustafa Mazher, Rodney M. Donlan . Bacteriophage treatment of carbapenemase-producing Klebsiella pneumoniae in a multispecies biofilm: a potential biocontrol strategy for healthcare facilities. AIMS Microbiology, 2020, 6(1): 43-63. doi: 10.3934/microbiol.2020003
    [5] Oluwafolajimi Adesanya, Tolulope Oduselu, Oluwawapelumi Akin-Ajani, Olubusuyi M. Adewumi, Olusegun G. Ademowo . An exegesis of bacteriophage therapy: An emerging player in the fight against anti-microbial resistance. AIMS Microbiology, 2020, 6(3): 204-230. doi: 10.3934/microbiol.2020014
    [6] Esther Menendez, Paula Garcia-Fraile . Plant probiotic bacteria: solutions to feed the world. AIMS Microbiology, 2017, 3(3): 502-524. doi: 10.3934/microbiol.2017.3.502
    [7] Jia Wang, Feiyang Zhao, Huzhi Sun, Qian Wang, Can Zhang, Wenhua Liu, Ling Zou, Qiang Pan, Huiying Ren . Isolation and characterization of the Staphylococcus aureus bacteriophage vB_SauS_SA2. AIMS Microbiology, 2019, 5(3): 285-307. doi: 10.3934/microbiol.2019.3.285
    [8] Oriana Simonetti, Samuele Marasca, Matteo Candelora, Giulio Rizzetto, Giulia Radi, Elisa Molinelli, Lucia Brescini, Oscar Cirioni, Annamaria Offidani . Methicillin-resistant Staphylococcus aureus as a cause of chronic wound infections: Alternative strategies for management. AIMS Microbiology, 2022, 8(2): 125-137. doi: 10.3934/microbiol.2022011
    [9] Natalia Y. Kovalskaya, Eleanor E. Herndon, Juli A. Foster-Frey, David M. Donovan, Rosemarie W. Hammond . Antimicrobial activity of bacteriophage derived triple fusion protein against Staphylococcus aureus. AIMS Microbiology, 2019, 5(2): 158-175. doi: 10.3934/microbiol.2019.2.158
    [10] Chiaki Sugiura, Saki Miyaue, Yuka Shibata, Akiko Matsumoto, Sumio Maeda . Bacteriophage P1vir-induced cell-to-cell plasmid transformation in Escherichia coli. AIMS Microbiology, 2017, 3(4): 784-797. doi: 10.3934/microbiol.2017.4.784
  • Bacteriophages are viruses that are ubiquitous in nature and infect only bacterial cells. These organisms are characterized by high specificity, an important feature that enables their use in the food industry. Phages are applied in three sectors in the food industry: primary production, biosanitization, and biopreservation. In biosanitization, phages or the enzymes that they produce are mainly used to prevent the formation of biofilms on the surface of equipment used in the production facilities. In the case of biopreservation, phages are used to extend the shelf life of products by combating pathogenic bacteria that spoil the food. Although phages are beneficial in controlling the food quality, they also have negative effects. For instance, the natural ability of phages that are specific to lactic acid bacteria to destroy the starter cultures in dairy production incurs huge financial losses to the dairy industry. In this paper, we discuss how bacteriophages can be either an effective weapon in the fight against bacteria or a bane negatively affecting the quality of food products depending on the type of industry they are used.



    Abbreviation LAB: lactic acid bacteria; DP: depolymerase enzyme; MRSA: methicillin-resistant ; EFSA: European Food Safety Authority; WHO: World Health Organization; FDA: Food and Drug Administration; RTE: ready to eat; EPS: extracellular polymeric substances;
    Acknowledgments



    This work was financially supported by Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532 Warsaw, Poland.

    Conflict of interest



    All authors declare no conflicts of interest in this paper.

    [1] Hendrix WR (2002) Bacteriophages: evolution of the majority. Theor Popul Biol 61: 471–480. doi: 10.1006/tpbi.2002.1590
    [2] Hietala V, Horsma-Heikkinen J, Carron A, et al. (2019) The removal of endo- and enterotoxins from bacteriophage preparations. Front Microbiol 10: 1–9. doi: 10.3389/fmicb.2019.00001
    [3] Sarhan WA, Azzazy HM (2015) Phage approved in food, why not as a therapeutic? Expert Rev Anti Infect Ther 13: 91–101. doi: 10.1586/14787210.2015.990383
    [4] Górski A, Międzybrodzki R, Borysowski J, et al. (2012) Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res 83: 41–71. doi: 10.1016/B978-0-12-394438-2.00002-5
    [5] Wittebole X, Roock De S, Opa M (2014) Historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5: 226–235. doi: 10.4161/viru.25991
    [6] Kazi M, Annapure US (2016) Bacteriophage biocontrol of foodborne pathogens. J Food Sci Technol 53: 1355–1362. doi: 10.1007/s13197-015-1996-8
    [7] Gilmore BF (2012) Bacteriophages as anti-infective agents: recent developments and regulatory challenges. Expert Rev Anti Infe Ther 10: 533–535. doi: 10.1586/eri.12.30
    [8] Fernández L, Gutiérrez D, Rodríguez A, et al. (2018) Application of bacteriophages in the agro-food sector: a long way toward approval. Front Cell Infect Microbiol 8: 1–5. doi: 10.3389/fcimb.2018.00001
    [9] Balogh B, Jones JB, Iriarte FB (2010) Phage therapy for plant disease control. Curr Pharm Biotechno 11: 48–57. doi: 10.2174/138920110790725302
    [10] Civerolo EL, Kiel HL (1969) Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology 59: 1966–1967.
    [11] Eman OH, El-Meneisy Afaf ZA (2014) Biocontrol of halo blight of bean caused by pseudomonas phaseolicola. Int J Virol 10: 235–242. doi: 10.3923/ijv.2014.235.242
    [12] Fujiwara A, Fujisawa M, Hamasaki R, et al. (2011) Biocontrol of ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77: 4155–4162. doi: 10.1128/AEM.02847-10
    [13] Born Y, Bosshard L, Duffy B, et al. (2015) Protection of Erwinia amylovora bacteriophage Y2 from UV-induced damage by natural compounds. Bacteriophage 5: 1–5.
    [14] Zaccardelli M, Saccardi A, Gambin E (1992) Xanthomonas campestris pv. pruni bacteriophages on peach trees and their potential use for biological control. Plant Pathogenic Bacteria 8th International Conference 875–878.
    [15] Balogh B, Canteros BI, Stall RE (2008) Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Dis 92: 1048–1052. doi: 10.1094/PDIS-92-7-1048
    [16] Balogh B, Jones JB, Iriarte FB (2010) Phage therapy for plant disease control. Curr Pharm Biotechno 11: 48–57. doi: 10.2174/138920110790725302
    [17] Leverentz B, Conway WS, Alavidze Z (2001) Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Protect 64: 1116–1121. doi: 10.4315/0362-028X-64.8.1116
    [18] Szczepankowska A (2012) Role of CRISPR/cas system in the development of bacteriophage resistance. Adv Virus Res 82: 289–338. doi: 10.1016/B978-0-12-394621-8.00011-X
    [19] Koskella B, Brockhurs MA (2014) Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38: 916–931. doi: 10.1111/1574-6976.12072
    [20] Carrillo LC, Atterbury JR, El-Shibiny A (2005) Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microb 71: 6554–6563. doi: 10.1128/AEM.71.11.6554-6563.2005
    [21] Wagenaar AJ, Van Bergen M, Mueller M (2005) Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109: 275–283. doi: 10.1016/j.vetmic.2005.06.002
    [22] Arthur MT, Kalchayanand N, Agga EG, et al. (2017) Evaluation of bacteriophage application to cattle in lairage at beef processing plants to reduce Escherichia coli O157:H7. Prevalence on hides and carcasses. Foodborne Pathog Dis 14: 17–22. doi: 10.1089/fpd.2016.2189
    [23] Wall KS, Zhang J, Rostagno HM (2010) Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl Environ Microb 76: 48–53. doi: 10.1128/AEM.00785-09
    [24] Bach JS, Johnson PR, Stanford K (2009) Bacteriophages reduce Escherichia coli O157:H7 levels in experimentally inoculated sheep. Can J Animal Sci 89: 285–293. doi: 10.4141/CJAS08083
    [25] Huanga K, Nitin N (2019) Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture 502: 18–25 doi: 10.1016/j.aquaculture.2018.12.026
    [26] Rivas L, Coffey B, McAuliffe O (2010) In vivo and ex vivo evaluations of bacteriophages e11/2 and e4/1c for use in the control of Escherichia coli O157:H7. App Environ Microb 76: 7210–7216. doi: 10.1128/AEM.01530-10
    [27] Hussain MA, Liu H, Wang Q (2017) Use of encapsulated bacteriophages to enhance farm to fork food safety. Crit Rev Food Sci 57: 2801–2810. doi: 10.1080/10408398.2015.1069729
    [28] Murthy K, Engelhardt R (2012) Encapsulated bacteriophage formulation. United States Patent 2012/0258175 A1. 2012-10-11.
    [29] Stanford K, Mcallister AT, Niu DY (2010) Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in Feedlot Cattle. J Food Protect 73: 1304–1312. doi: 10.4315/0362-028X-73.7.1304
    [30] Saez AC, Zhang J, Rostagno MH, et al. (2011) Direct feeding of microencapsulated bacteriophages to reduce Salmonella colonization in pigs. Foodborne Pathog Dis 8: 1241–1248. doi: 10.1089/fpd.2011.0868
    [31] Ma Y, Pacan CJ, Wang Q (2008) Microencapsulation of bacteriophage felix O1 into chitosan- alginate microspheres for oral delivery. Appl Environ Microb 74: 4799–4805. doi: 10.1128/AEM.00246-08
    [32] EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control) (2017) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 15: 5077.
    [33] Word Health Organzation (2019) Food safety. Available from: https://www.who.int/news-room/fact-sheets/detail/food-safety.
    [34] Moye ZD, Woolstone J, Sulakvelidze A (2018) Bacteriophage Applications for Food Production and Processing. Viruses 10: 1–22.
    [35] Endersen L, O'Mahony J, Hill C, et al. (2014) Phage Therapy in the Food Industry. Annu. Rev Food Sci Technol 5: 327–349. doi: 10.1146/annurev-food-030713-092415
    [36] de Melo AG, Levesque S, Moineau S (2018) Phages as friends and enemies in food processing. Curr Opin Biotechnol 49: 185–190. doi: 10.1016/j.copbio.2017.09.004
    [37] Atterbury RJ, Connerton PL, Dodd CE, et al. (2003) Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl Environ Microb 69: 6302–6306. doi: 10.1128/AEM.69.10.6302-6306.2003
    [38] Goode D, Allen VM, Barrow PA (2003) Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microb 69: 5032–5036. doi: 10.1128/AEM.69.8.5032-5036.2003
    [39] Bigwood T, Hudson JA, Billington C (2009) Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages. FEMS Microbiol Lett 291: 59–64. doi: 10.1111/j.1574-6968.2008.01435.x
    [40] Orquera S, Golz G, Hertwig S, et al. (2012) Control of Campylobacter spp. and Yersinia enterocolitica by virulent bacteriophages. J Mol Genet Med 6: 273–278.
    [41] O'Flynn G, Ross RP, Fitzgerald GF, et al. (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl Environ Microb 70: 3417–3424. doi: 10.1128/AEM.70.6.3417-3424.2004
    [42] Abuladze T, Li M, Menetrez MY, et al. (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microb 74: 6230–6238. doi: 10.1128/AEM.01465-08
    [43] Sharma M, Patel JR, Conway WS, et al. (2009) Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupe and lettuce. J Food Prot 72: 1481–1485. doi: 10.4315/0362-028X-72.7.1481
    [44] Carter CD, Parks A, Abuladze T, et al. (2012) Bacteriophage cocktail significantly reduced Escherichia coli O157H:7contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage 2: 178–185. doi: 10.4161/bact.22825
    [45] Boyacioglu O, Sharma M, Sulakvelidze A, et al. (2013) Biocontrol of Escherichia coli O157: H7 on fresh-cut leafy greens. Bacteriophage 3: 1–6.
    [46] Viazis S, Akhtar M, Feirtag J, et al. (2011) Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiol 28: 149–157.
    [47] Patel J, Sharma M, Millner P, et al. (2011) Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog Dis 8: 541–546. doi: 10.1089/fpd.2010.0734
    [48] Carlton RM, Noordman WH, Biswas B, et al. (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharm 43: 301–312. doi: 10.1016/j.yrtph.2005.08.005
    [49] Holck A, Berg J (2009) Inhibition of Listeria monocytogenes in cooked ham by virulent bacteriophages and protective cultures. Appl Environ Microbiol 75: 6944–6946 . doi: 10.1128/AEM.00926-09
    [50] Soni KA, Nannapaneni R., Hagens S (2010) Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage listex p100. Foodborne Pathog Dis 7: 427–434 . doi: 10.1089/fpd.2009.0432
    [51] Soni KA, Desai M, Oladunjoye A, et al. (2012) Reduction of Listeria monocytogenes in queso fresco cheese by a combination of listericidal and listeriostatic GRAS antimicrobials. Int J Food Microbiol 155: 82–88. doi: 10.1016/j.ijfoodmicro.2012.01.010
    [52] Chibeu A, Agius L, Gao A, et al. (2013) Efficacy of bacteriophage LISTEXTM P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int J Food Microbiol 167: 208–214. doi: 10.1016/j.ijfoodmicro.2013.08.018
    [53] Figueiredo ACL, Almeida RCC (2017) Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against Listeria monocytogenes in ready-to-eat sliced pork ham. Braz J Microbiol 48: 724–729. doi: 10.1016/j.bjm.2017.02.010
    [54] Guenther S, Loessner MJ (2011) Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage 1: 94–100. doi: 10.4161/bact.1.2.15662
    [55] Bigot B, Lee WJ, McIntyre L, et al. (2011) Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol 28: 1448–1452. doi: 10.1016/j.fm.2011.07.001
    [56] Modi R, Hirvi Y, Hill A, et al. (2001) Effect of phage on survival of Salmonella Enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J Food Protect 64: 927–933. doi: 10.4315/0362-028X-64.7.927
    [57] Leverentz B, Conway WS, Camp MJ, et al. (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69: 4519–4526. doi: 10.1128/AEM.69.8.4519-4526.2003
    [58] Whichard JM, Sriranganathan N, Pierson FW, et al. (2003) Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J Food Prot 66: 220–225. doi: 10.4315/0362-028X-66.2.220
    [59] Guenther S, Herzig O, Fieseler L, et al. (2012) Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol 154: 66–72. doi: 10.1016/j.ijfoodmicro.2011.12.023
    [60] Spricigo DA, Bardina C, Cortés P, et al. (2013) Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int J Food Microbiol 165: 169–174. doi: 10.1016/j.ijfoodmicro.2013.05.009
    [61] Farber JM, Peterkin PI (1991) Listeria monocytogenes, a foodborne pathogen. Microbiol Rev 55: 476–511.
    [62] Leistner L, Gorris LGM (1995) Food preservation by hurdle technology. Trends Food Sci Technol 6: 41–46 . doi: 10.1016/S0924-2244(00)88941-4
    [63] Phages as probiotics. Available from: http://intralytix.com/index.php?page=pro.
    [64] Proteon Pharmaceuticals. Available from: https://www.proteonpharma.com.
    [65] Schmelcher M, Loessner JM (2016) Bacteriophage endolysins: applications for food safety. Curr Opin Biotechnol 37: 76–87. doi: 10.1016/j.copbio.2015.10.005
    [66] Gutiérrez D, Rodríguez-Rubio L, Martíne B, et al. (2016) Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol 7: 1–16.
    [67] Da Silva Felício MT, Hald T, Liebana E, et al. (2015) Risk ranking of pathogens in ready-to-eat unprocessed foods of non-animal origin (FoNAO) in the EU: initial evaluation using outbreak data (2007–2011). Int J Food Microbiol 16: 9–19.
    [68] Beuchat LR (2002) Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect 4: 413–423. doi: 10.1016/S1286-4579(02)01555-1
    [69] Siringan P, Connerton PL, Payne RJ (2011) Bacteriophage-mediated dispersal of Campylobacter jejuni biofilms. Appl Environ Microb 77: 3320–3326. doi: 10.1128/AEM.02704-10
    [70] Soni KA, Nannapaneni R, Hagens S (2010) Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage listex p100. Foodborne Pathog Dis 7: 427–434. doi: 10.1089/fpd.2009.0432
    [71] Sutherland IW, Hughes KA, Skillman LC, et al. (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232: 1–6. doi: 10.1016/S0378-1097(04)00041-2
    [72] Maszewska A (2015) Phage associated polysaccharide depolymerases–characteristics and application. Postep Hig Med Dos 69: 690–702. doi: 10.5604/17322693.1157422
    [73] Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and phage- derived proteins--application approaches. Curr Med Chem 22: 1757–1773. doi: 10.2174/0929867322666150209152851
    [74] Lehman SM (2007) Development of a bacteriophage-based biopesticide for fire blight. PhD Thesis. Department of Biological Sciences, Brock University, Canada.
    [75] Hughes KA, Sutherland IW, Jones MV (1998) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144: 3039–3047. doi: 10.1099/00221287-144-11-3039
    [76] Chai Z, Wang J, Tao S, et al. (2014) Application of bacteriophage-borne enzyme combined with chlorine dioxide on controlling bacterial biofilm. LWT Food Sci Technol 59: 1159–1165. doi: 10.1016/j.lwt.2014.06.033
    [77] Love JM, Bhandari D, Dobson CR, et al. (2018) Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics 7: 1–25.
    [78] Gutierrez D, Ruas-Madiedo P, Martınez B (2014) Effective removal of Staphylococcal biofilms by the endolysin LysH5. PloS One 9: 1–8.
    [79] Oliveira H, Thiagarajan V, Walmagh M (2014) A thermostable Salmonella phage endolysin Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PloS One 9: 1–11.
    [80] Obeso MJ, Martínez B, Rodríguez A, et al. (2008) Lytic activity of the recombinant staphylococcal bacteriophage ΦH5 endolysin active against Staphylococcus aureus in milk. Int J Food Microbiol 128: 212–218. doi: 10.1016/j.ijfoodmicro.2008.08.010
    [81] Olsen NMC, Thiran E, Hasler T, et al. (2018) Synergistic removal of static and dynamic Staphylococcus aureus biofilms by combined treatment with a bacteriophage endolysin and a polysaccharide depolymerase. Viruses 10: 2–17.
    [82] Yoyeon Ch, Son B, Ryu S (2019) Effective removal of staphylococcal biofilms on various food contact surfaces by Staphylococcus aureus phage endolysin LysCSA13. Food Microbiol 84: 1–7.
    [83] Zhang H, Bao H, Billington C (2012) Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Food Microbiol 31: 133–136. doi: 10.1016/j.fm.2012.01.005
    [84] Van Nassau TJ, Lenz CA, Scherzinger AS (2017) Combination of endolysins and high pressure to inactivate Listeria monocytogenes. Food Microbiol 68: 81–88. doi: 10.1016/j.fm.2017.06.005
    [85] Gaeng S, Scherer S, Neve H (2000) Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microb 66: 2951–2958. doi: 10.1128/AEM.66.7.2951-2958.2000
    [86] Garneau EJ, Moineau S (2001) Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 10: 1–10.
    [87] Atamer Z, Samtlebe M, Neve H, et al. (2013) Review: elimination of bacteriophages in whey and whey products. Front Microbiol 4: 1–9.
    [88] Mercanti D, Carminati D, Reinheimer JA, et al. (2011) Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. Int J Food Microbiol 144: 503–510. doi: 10.1016/j.ijfoodmicro.2010.11.009
    [89] Tahir A, Asif M, Abbas Z (2017) Three bacteriophages SA, SA2 and SNAF can control growth of milk isolated Staphylococcal species. Pak J Zool 49: 425–759. doi: 10.17582/journal.pjz/2017.49.2.425.434
    [90] Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13: 1763–1786. doi: 10.3390/s130201763
  • This article has been cited by:

    1. Graça Pinto, Carina Almeida, Joana Azeredo, Bacteriophages to control Shiga toxin-producing E. coli – safety and regulatory challenges, 2020, 40, 0738-8551, 1081, 10.1080/07388551.2020.1805719
    2. Pierre Ledormand, Nathalie Desmasures, Marion Dalmasso, Phage community involvement in fermented beverages: an open door to technological advances?, 2020, 1040-8398, 1, 10.1080/10408398.2020.1790497
    3. Iwona Kawacka, Agnieszka Olejnik-Schmidt, Marcin Schmidt, Anna Sip, Effectiveness of Phage-Based Inhibition of Listeria monocytogenes in Food Products and Food Processing Environments, 2020, 8, 2076-2607, 1764, 10.3390/microorganisms8111764
    4. O.V. Naumenko, S.G. Danylenko, K.V. Kopylova, S.M. Gunko, Influence of Physical-Chemical Factors of Phages Isolated in Dairy Processing Plants of Ukraine, 2020, 82, 10280987, 84, 10.15407/microbiolj82.06.084
    5. Amrita Patil, Rajashri Banerji, Poonam Kanojiya, Santosh Koratkar, Sunil Saroj, Bacteriophages for ESKAPE: role in pathogenicity and measures of control, 2021, 1478-7210, 1, 10.1080/14787210.2021.1858800
    6. Viviane C. Oliveira, Ana P. Macedo, Luís D. R. Melo, Sílvio B. Santos, Paula R. S. Hermann, Cláudia H. Silva-Lovato, Helena F. O. Paranhos, Denise Andrade, Evandro Watanabe, Bacteriophage Cocktail-Mediated Inhibition of Pseudomonas aeruginosa Biofilm on Endotracheal Tube Surface, 2021, 10, 2079-6382, 78, 10.3390/antibiotics10010078
    7. Abdulkerim Karaynir, Hanife Salih, Bülent Bozdoğan, Özgür Güçlü, Dilek Keskin, Isolation and characterization of Brochothrix phage ADU4, 2022, 321, 01681702, 198902, 10.1016/j.virusres.2022.198902
    8. Samat Serikovich Issabekov, Nazym Syrymkyzy Syrym, Aidar Adilkhanovich Sambetbayev, Kuantar Daulenovich Alikhanov, Bolat Amanbaevich Yespembetov, Prospects of bacteriophage collections in disinfectant applications, 2022, 22310916, 220, 10.14202/vetworld.2022.220-231
    9. Jean Pierre González-Gómez, Berenice González-Torres, Pedro Javier Guerrero-Medina, Osvaldo López-Cuevas, Cristóbal Chaidez, María Guadalupe Avila-Novoa, Melesio Gutiérrez-Lomelí, Efficacy of Novel Bacteriophages against Escherichia coli Biofilms on Stainless Steel, 2021, 10, 2079-6382, 1150, 10.3390/antibiotics10101150
    10. Mateusz Wdowiak, Patryk A. Mierzejewski, Rafał Zbonikowski, Bartłomiej Bończak, Jan Paczesny, Congo red protects bacteriophages against UV irradiation and allows for the simultaneous use of phages and UV for membrane sterilization, 2023, 9, 2053-1400, 696, 10.1039/D2EW00913G
    11. Aleksandra Duda-Chodak, Tomasz Tarko, Katarzyna Petka-Poniatowska, Antimicrobial Compounds in Food Packaging, 2023, 24, 1422-0067, 2457, 10.3390/ijms24032457
    12. Emanuele Serro Pottker, Laura Beatriz Rodrigues, Karen Apellanis Borges, Suyene Oltramari de Souza, Thales Quedi Furian, Carlos Tadeu Pippi Salle, Hamilton Luiz de Souza Moraes, Vladimir Pinheiro do Nascimento, Bacteriophages as an alternative for biological control of biofilm-forming Salmonella enterica, 2022, 1082-0132, 108201322211443, 10.1177/10820132221144341
    13. Severin Michael Steffan, Golshan Shakeri, Jens Andre Hammerl, Corinna Kehrenberg, Elisa Peh, Manfred Rohde, Claudia Jackel, Madeleine Plotz, Sophie Kittler, Isolation and Characterization of Group III Campylobacter jejuni–Specific Bacteriophages From Germany and Their Suitability for Use in Food Production, 2021, 12, 1664-302X, 10.3389/fmicb.2021.761223
    14. Yuanling Huang, Wenhui Wang, Zhihao Zhang, Yufeng Gu, Anxiong Huang, Junhao Wang, Haihong Hao, Phage Products for Fighting Antimicrobial Resistance, 2022, 10, 2076-2607, 1324, 10.3390/microorganisms10071324
    15. Julie Torruellas Garcia, Sarah Ballarin, Neel Balusa, Melissa Bell, Samia Caballero, Joshua Chan, Maria Farez, Ashley Guillen-Tapia, Kristin Parent, Nashrah Pierre-Louis, Victoria Polishuk, Bhavya Soni, Sundharraman Subramanian, Katie Crump, John J. Dennehy, Complete Genome Sequences of Genamy16 and NovaSharks, Two Gordonia rubripertincta Bacteriophages Isolated from Soil in Southeastern Florida, 2022, 11, 2576-098X, 10.1128/mra.00973-22
    16. Maryam Yazdanizad, Maryam Montazeri, Ali Akbar Saboor Yaraghi, Ramin Mazaheri Nezhad Fard, Isolation of bacteriophages from wastewaters on clinical Streptococcus species, 2022, 17, 1746-0794, 359, 10.2217/fvl-2021-0089
    17. Eda ESMER, Rumeysa BAYRAK, Yağmur KÜÇÜKDUMAN, Pervin BAŞARAN AKOCAK, Gıda teknolojilerinde inovatif bir yaklaşım olarak “Bakteriyofajlar”, 2021, 2148-2683, 10.31590/ejosat.832904
    18. Mary Garvey, Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety, 2022, 11, 2079-6382, 1324, 10.3390/antibiotics11101324
    19. Lee Call, Stephen Nayfach, Nikos C. Kyrpides, Illuminating the Virosphere Through Global Metagenomics, 2021, 4, 2574-3414, 369, 10.1146/annurev-biodatasci-012221-095114
    20. Bharat Jhunjhunwala, Prophylactic use of natural phage cocktail for plants and potential for human applications, 2021, 8, 2394-546X, 203, 10.18231/j.ijmr.2021.042
    21. Michał Wójcicki, Agnieszka Chmielarczyk, Olga Świder, Paulina Średnicka, Magdalena Strus, Tomasz Kasperski, Dziyana Shymialevich, Hanna Cieślak, Paulina Emanowicz, Monika Kowalczyk, Barbara Sokołowska, Edyta Juszczuk-Kubiak, Bacterial Pathogens in the Food Industry: Antibiotic Resistance and Virulence Factors of Salmonella enterica Strains Isolated from Food Chain Links, 2022, 11, 2076-0817, 1323, 10.3390/pathogens11111323
    22. Şeyma Betül ENCU, Esra ACAR SOYKUT, İbrahim ÇAKIR, GELENEKSEL YOĞURTLARDAN İZOLE EDİLEN LAKTİK ASİT BAKTERİLERİNİN MALDI TOF MS BİOTYPER SİSTEMİ İLE TANIMLANMASI VE BAZI STARTER KÜLTÜR ÖZELLİKLERİNİN BELİRLENMESİ, 2022, 1300-3070, 1059, 10.15237/gida.GD22088
    23. Qisen Xiang, Liyuan Niu, Yanhong Bai, 2022, Chapter 4, 978-981-16-1826-0, 75, 10.1007/978-981-16-1827-7_4
    24. Varee Tyagi, Bhaswati Bhattacharya, 2021, Chapter 9, 978-3-030-76812-6, 239, 10.1007/978-3-030-76813-3_9
    25. Yifeng Ding, Chenxi Huang, Wenjuan Zhu, Zhiwei Li, Yu Zhang, Jia Wang, Hui Pan, Huihui Li, Xiaohong Wang, Characterization of a novel Jerseyvirus phage T102 and its inhibition effect on biofilms of multidrug-resistant Salmonella, 2023, 326, 01681702, 199054, 10.1016/j.virusres.2023.199054
    26. Abdallah Abdelsattar, Alyaa Dawooud, Nouran Rezk, Salsabil Makky, Anan Safwat, Philip Richards, Ayman El-Shibiny, How to Train Your Phage: The Recent Efforts in Phage Training, 2021, 1, 2673-8449, 70, 10.3390/biologics1020005
    27. Jian Li, Feng Zhao, Wenyao Zhan, Zhiqi Li, Liang Zou, Qi Zhao, Challenges for the application of bacteriophages as effective antibacterial agents in the food industry, 2022, 102, 0022-5142, 461, 10.1002/jsfa.11505
    28. Michał Wójcicki, Olga Świder, Iwona Gientka, Stanisław Błażejak, Paulina Średnicka, Dziyana Shymialevich, Hanna Cieślak, Artur Wardaszka, Paulina Emanowicz, Barbara Sokołowska, Edyta Juszczuk-Kubiak, Effectiveness of a Phage Cocktail as a Potential Biocontrol Agent against Saprophytic Bacteria in Ready-To-Eat Plant-Based Food, 2023, 15, 1999-4915, 172, 10.3390/v15010172
    29. Michał Wójcicki, Paulina Średnicka, Stanisław Błażejak, Iwona Gientka, Monika Kowalczyk, Paulina Emanowicz, Olga Świder, Barbara Sokołowska, Edyta Juszczuk-Kubiak, Characterization and Genome Study of Novel Lytic Bacteriophages against Prevailing Saprophytic Bacterial Microflora of Minimally Processed Plant-Based Food Products, 2021, 22, 1422-0067, 12460, 10.3390/ijms222212460
    30. Malak Almutairi, Mohammed Imam, Nouf Alammari, Radwan Hafiz, Faizal Patel, Sulaiman Alajel, Using Phages to Reduce Salmonella Prevalence in Chicken Meat: A Systematic Review, 2022, 3, 2641-6530, 15, 10.1089/phage.2021.0017
    31. Mohammed Mijbas Mohammed Alomari, Marta Dec, Renata Urban-Chmiel, Bacteriophages as an Alternative Method for Control of Zoonotic and Foodborne Pathogens, 2021, 13, 1999-4915, 2348, 10.3390/v13122348
    32. Mohammad Reza Esmaeil Zadeh, Mohammad Kazem Sharifi Yazdi, Zahra Rajabi, Farzaneh Amin Harati, Farhad Nikkhahi, Sara Sharifi Yazdi, Gholamreza Hassanpour, Alireza Monadi Sefidan, Mohammad Mehdi Soltan Dallal, Evaluation of Specific Bacteriophage Against Salmonella infantis and Its Antibacterial Effects Compared to Ciprofloxacin in In Vitro Conditions, 2022, 30, 2676-6264, 154, 10.30699/jambs.30.139.154
    33. Chanyoung Lee, Hyeongsoon Kim, Sangryeol Ryu, Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends, 2022, 1040-8398, 1, 10.1080/10408398.2022.2059442
    34. Ramesh Nachimuthu, Madhav Madurantakam Royam, Prasanth Manohar, Sebastian Leptihn, Application of bacteriophages and endolysins in aquaculture as a biocontrol measure, 2021, 160, 10499644, 104678, 10.1016/j.biocontrol.2021.104678
    35. Tianhao Li, Xuehui Zhao, Xuejian Wang, Zijian Wang, Changqing Tian, Wenjing Shi, Yumei Qi, Huilin Wei, Chen Song, Huiwen Xue, Huitian Gou, Characterization and Preliminary Application of Phage Isolated From Listeria monocytogenes, 2022, 9, 2297-1769, 10.3389/fvets.2022.946814
    36. Sim Yee Chen, Melissa Harrison, Eng Khoon Ng, Dominic Sauvageau, Anastasia Elias, Immobilized Reporter Phage on Electrospun Polymer Fibers for Improved Capture and Detection of Escherichia coli O157:H7, 2021, 1, 2692-1944, 1085, 10.1021/acsfoodscitech.1c00101
    37. Diana Alves, Tânia Grainha, Maria Olívia Pereira, Susana Patrícia Lopes, Antimicrobial materials for endotracheal tubes: A review on the last two decades of technological progress, 2023, 158, 17427061, 32, 10.1016/j.actbio.2023.01.001
    38. Nabanita Giri, Bacteriophage Structure, Classification, Assembly and Phage Therapy, 2021, 18, 24562602, 239, 10.13005/bbra/2911
    39. Su Jin Jo, Sang Guen Kim, Young Min Lee, Sib Sankar Giri, Jeong Woo Kang, Sung Bin Lee, Won Joon Jung, Mae Hyun Hwang, Jaehong Park, Chi Cheng, Eunjung Roh, Se Chang Park, Evaluation of the Antimicrobial Potential and Characterization of Novel T7-Like Erwinia Bacteriophages, 2023, 12, 2079-7737, 180, 10.3390/biology12020180
    40. Jacek Osek, Beata Lachtara, Kinga Wieczorek, Listeria monocytogenes – How This Pathogen Survives in Food-Production Environments?, 2022, 13, 1664-302X, 10.3389/fmicb.2022.866462
    41. Ranjana Kumari, Lakshmi E. Jayachandran, Sanjay Kumar, 2022, 9781119901013, 59, 10.1002/9781119901198.ch3
    42. Md. Rashedul Islam, Carlos E. Martinez-Soto, Janet T. Lin, Cezar M. Khursigara, Shai Barbut, Hany Anany, A systematic review from basics to omics on bacteriophage applications in poultry production and processing, 2021, 1040-8398, 1, 10.1080/10408398.2021.1984200
    43. Lourenço Pinto de Rezende, Joana Barbosa, Paula Teixeira, Analysis of Alternative Shelf Life-Extending Protocols and Their Effect on the Preservation of Seafood Products, 2022, 11, 2304-8158, 1100, 10.3390/foods11081100
    44. Christina Schubert, Sabina Fischer, Kathrin Dorsch, Lutz Teßmer, Jörg Hinrichs, Zeynep Atamer, Microencapsulation of Bacteriophages for the Delivery to and Modulation of the Human Gut Microbiota through Milk and Cereal Products, 2022, 12, 2076-3417, 6299, 10.3390/app12136299
    45. Arnold Au, Helen Lee, Terry Ye, Uday Dave, Azizur Rahman, Bacteriophages: Combating Antimicrobial Resistance in Food-Borne Bacteria Prevalent in Agriculture, 2021, 10, 2076-2607, 46, 10.3390/microorganisms10010046
    46. Meg Allom, Harrchun Panchalingam, M. Katouli, D. İpek Kurtböke, Human pathogenic bacteria on fresh produce and their control using bacteriophage treatment: an E. coli example from the Sunshine Coast region, 2022, 43, 1324-4272, 194, 10.1071/MA22059
    47. Maryanne Kuek, Sarah K. McLean, Enzo A. Palombo, Application of bacteriophages in food production and their potential as biocontrol agents in the organic farming industry, 2022, 165, 10499644, 104817, 10.1016/j.biocontrol.2021.104817
    48. Karen Hon, Sha Liu, Sophie Camens, George Spyro Bouras, Alkis James Psaltis, Peter-John Wormald, Sarah Vreugde, APTC-EC-2A: A Lytic Phage Targeting Multidrug Resistant E. coli Planktonic Cells and Biofilms, 2022, 10, 2076-2607, 102, 10.3390/microorganisms10010102
    49. Michał Wójcicki, Olga Świder, Kamila J. Daniluk, Paulina Średnicka, Monika Akimowicz, Marek Ł. Roszko, Barbara Sokołowska, Edyta Juszczuk-Kubiak, Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella—A Review, 2021, 10, 2076-0817, 801, 10.3390/pathogens10070801
    50. Michael A. Cook, Gerard D. Wright, The past, present, and future of antibiotics, 2022, 14, 1946-6234, 10.1126/scitranslmed.abo7793
    51. Miloud Sabri, Kaoutar El Handi, Franco Valentini, Angelo De Stradis, El Hassan Achbani, Rachid Benkirane, Grégory Resch, Toufic Elbeaino, Identification and Characterization of Erwinia Phage IT22: A New Bacteriophage-Based Biocontrol against Erwinia amylovora, 2022, 14, 1999-4915, 2455, 10.3390/v14112455
    52. Lynn M. McMullen, 2023, 9780128194706, 455, 10.1016/B978-0-12-819470-6.00059-7
    53. MING XU, RUIRUI MA, CAN ZHANG, XUECHENG HUANG, XIN GAO, RUIRUI LV, XIA CHEN, Inactivation of Lactobacillus Bacteriophages by Dual Chemical Treatments, 2023, 72, 2544-4646, 21, 10.33073/pjm-2023-004
    54. Addisu D. Teklemariam, Rashad Al Hindi, Ishtiaq Qadri, Mona G. Alharbi, Anwar M. Hashem, Abdullah A. Alrefaei, Najlaa A. Basamad, Shafiul Haque, Turki Alamri, Steve Harakeh, Phage cocktails – an emerging approach for the control of bacterial infection with major emphasis on foodborne pathogens, 2023, 0264-8725, 1, 10.1080/02648725.2023.2178870
    55. Patricia Castellano, Constanza Melian, Carla Burgos, Graciela Vignolo, 2023, 10434526, 10.1016/bs.afnr.2023.02.002
    56. Aleksandra Maria Kocot, Yves Briers, Magdalena Plotka, Phages and engineered lysins as an effective tool to combat Gram‐negative foodborne pathogens, 2023, 1541-4337, 10.1111/1541-4337.13145
    57. Gio Kim, Jae Hyung Kim, Minsik Kim, Potential of bacteriophage PCT27 to reduce the use of agrochemicals to control Pectobacterium carotovorum subsp. Carotovorum in Chinese cabbage (Brassica pekinensis), 2023, 154, 09567135, 109985, 10.1016/j.foodcont.2023.109985
    58. Madeleine S. Gundersen, Alexander W. Fiedler, Ingrid Bakke, Olav Vadstein, The impact of phage treatment on bacterial community structure is minor compared to antibiotics, 2023, 13, 2045-2322, 10.1038/s41598-023-48434-5
    59. Angelle P. Britton, Kaitlyn A. Visser, Véronique M. A. Ongenae, Peipei Zhang, Heather Wassink, Thomas A. Doerksen, Catherine A. Welke, Karlene H. Lynch, Marco J. van Belkum, Jonathan J. Dennis, Xianqin Yang, Dennis Claessen, Ariane Briegel, Leah A. Martin-Visscher, Vincenzina Fusco, Characterization of Bacteriophage cd2, a Siphophage Infecting Carnobacterium divergens and a Representative Species of a New Genus of Phage, 2023, 11, 2165-0497, 10.1128/spectrum.00973-23
    60. Sarunpron Khruengsai, Pattaraporn Phoopanasaeng, Teerapong Sripahco, Nattakan Soykeabkaew, Patcharee Pripdeevech, Application of chitosan films incorporated with Zanthoxylum limonella essential oil for extending shelf life of pork, 2024, 262, 01418130, 129703, 10.1016/j.ijbiomac.2024.129703
    61. Alexander da Silva Vale, Natan Wiele, Maria Clara Manzoki, Bruna Leal Maske, Denisse Tatiana Molina-Aulestia, Jéssica A. Viesser, Carlos Ricardo Soccol, Gilberto Vinícius de Melo Pereira, 2024, Chapter 8, 978-3-031-71999-8, 221, 10.1007/978-3-031-72000-0_8
    62. Tsepo Ramatla, Taole Ramaili, Kgaugelo E. Lekota, Rendani Ndou, Nthabiseng Mphuti, Carlos Bezuidenhout, Oriel Thekisoe, A systematic review and meta-analysis on prevalence and antimicrobial resistance profile of Escherichia coli isolated from water in africa (2000–2021), 2023, 9, 24058440, e16123, 10.1016/j.heliyon.2023.e16123
    63. Barbara Sionek, Aleksandra Szydłowska, Danuta Kołożyn-Krajewska, The Role of Microorganisms and Their Antibacterial Compounds in Food Biopreservation, 2024, 14, 2076-3417, 5557, 10.3390/app14135557
    64. Lorico DS. Lapitan, Bren Mark B. Felisilda, Cristina E. Tiangco, Ammu Rosin Jose, Advances in Bioreceptor Layer Engineering in Nanomaterial‐based Sensing of Pseudomonas Aeruginosa and its Metabolites, 2024, 1861-4728, 10.1002/asia.202400090
    65. Catherine W. Y. Wong, Siyun Wang, Transcriptional Response of Salmonella enterica to Bacteriophage Treatments with Differential Multiplicities of Infection, 2024, 4, 2673-8007, 390, 10.3390/applmicrobiol4010027
    66. Paul Gulig, Scott Swindle, Mark Fields, Daniel Eisenman, A Review of Clinical Trials Involving Genetically Modified Bacteria, Bacteriophages and Their Associated Risk Assessments, 2024, 1535-6760, 10.1089/apb.2024.0002
    67. Maria J. Costa, Lorenzo M. Pastrana, José A. Teixeira, Sanna M. Sillankorva, Miguel A. Cerqueira, Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives, 2023, 15, 1999-4915, 1271, 10.3390/v15061271
    68. Bo Chen, Zhichao Huang, Xiaoming Yuan, Chun Li, Juan Wang, Moutong Chen, Liang Xue, Jumei Zhang, Qingping Wu, Yu Ding, Isolation and characterization of two phages against emetic Bacillus cereus and their potential applications, 2024, 5, 2643-8429, 2305, 10.1002/fft2.425
    69. Nacim Barache, Yanath Belguesmia, Beatriz Martinez, Bruce S. Seal, Djamel Drider, Bacteriocins and Bacteriophages as Dual Biological Players for Food Safety Applications, 2024, 4, 2673-8392, 79, 10.3390/encyclopedia4010007
    70. Naomi Oyenuga, José Francisco Cobo-Díaz, Avelino Alvarez-Ordóñez, Elena-Alexandra Alexa, Overview of Antimicrobial Resistant ESKAPEE Pathogens in Food Sources and Their Implications from a One Health Perspective, 2024, 12, 2076-2607, 2084, 10.3390/microorganisms12102084
    71. Mujib Abdulkadir Abdurahman, İnci Durukan, Tuba Dinçer, Serap Pektaş, Ersin Karataş, Ali Osman Kiliç, Staphylococcus aureus Bacteriophage 52 Endolysin Exhibits Anti-Biofilm and Broad Antibacterial Activity Against Gram-Positive Bacteria, 2023, 42, 1572-3887, 596, 10.1007/s10930-023-10145-1
    72. Mahdi Asghari Ozma, Seyyed Reza Moaddab, Hedayat Hosseini, Ehsaneh Khodadadi, Reza Ghotaslou, Mohammad Asgharzadeh, Amin Abbasi, Fadhil S Kamounah, Leili Aghebati Maleki, Khudaverdi Ganbarov, Hossein Samadi Kafil, A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics, 2023, 1040-8398, 1, 10.1080/10408398.2023.2214818
    73. Bokyung Son, Youna Kim, Booyoung Yu, Minsuk Kong, Isolation and Characterization of a Weizmannia coagulans Bacteriophage Youna2 and Its Endolysin PlyYouna2, 2023, 33, 1017-7825, 1050, 10.4014/jmb.2303.03021
    74. Yen-Te Liao, Kan-Ju Ho, Yujie Zhang, Alexandra Salvador, Vivian C. H. Wu, A new Rogue-like Escherichia phage UDF157lw to control Escherichia coli O157:H7, 2024, 14, 1664-302X, 10.3389/fmicb.2023.1302032
    75. Marisa Gómez-Galindo, Pilar Truchado, Ana Allende, Maria I. Gil, Optimization of the Use of a Commercial Phage-Based Product as a Control Strategy of Listeria monocytogenes in the Fresh-Cut Industry, 2023, 12, 2304-8158, 3171, 10.3390/foods12173171
    76. Rahele Sadeghzadeh, Fatemeh Rafieian, Mahdi Keshani, Zahra Salehi, Seid Mahdi Jafari, Novel strategies to control the biofilm formation by Pseudomonas aeruginosa in the food industry, 2024, 10, 26668335, 100481, 10.1016/j.fufo.2024.100481
    77. Saranya Somasundaram, Vignesh Sounderrajan, Rohini Tamilanban, 2024, Chapter 7, 978-981-97-1776-7, 101, 10.1007/978-981-97-1777-4_7
    78. Taylor Thompson, Valerie Kilders, Nicole Widmar, Paul Ebner, Consumer acceptance of bacteriophage technology for microbial control, 2024, 14, 2045-2322, 10.1038/s41598-024-75721-6
    79. Kevin A. Burke, Caitlin D. Urick, Nino Mzhavia, Mikeljon P. Nikolich, Andrey A. Filippov, Correlation of Pseudomonas aeruginosa Phage Resistance with the Numbers and Types of Antiphage Systems, 2024, 25, 1422-0067, 1424, 10.3390/ijms25031424
    80. Dasol Choi, Wendy Bedale, Suraj Chetty, Jae‐Hyuk Yu, Comprehensive review of clean‐label antimicrobials used in dairy products, 2024, 23, 1541-4337, 10.1111/1541-4337.13263
    81. Aaron R. Bodie, Corliss A. O’Bryan, Elena G. Olson, Steven C. Ricke, Natural Antimicrobials for Listeria monocytogenes in Ready-to-Eat Meats: Current Challenges and Future Prospects, 2023, 11, 2076-2607, 1301, 10.3390/microorganisms11051301
    82. Nida Firdous, Shabbir Ahmad, Umar Farooq, Aliza Batool, Muhammad Usman, Muhammad Sibt-e-Abbas, Zafar Iqbal, Muhammad Asim Ijaz Sidhu, Tahira Siddique, 2024, chapter 8, 9798369308196, 175, 10.4018/979-8-3693-0819-6.ch008
    83. Michał Wójcicki, Olga Świder, Paulina Średnicka, Dziyana Shymialevich, Tomasz Ilczuk, Łukasz Koperski, Hanna Cieślak, Barbara Sokołowska, Edyta Juszczuk-Kubiak, Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food, 2023, 24, 1422-0067, 10134, 10.3390/ijms241210134
    84. Ramya Juliet, Archana Loganathan, Ayyanraj Neeravi, Yamuna Devi Bakthavatchalam, Balaji Veeraraghavan, Prasanth Manohar, Ramesh Nachimuthu, Characterization of Salmonella phage of the genus Kayfunavirus isolated from sewage infecting clinical strains of Salmonella enterica, 2024, 15, 1664-302X, 10.3389/fmicb.2024.1391777
    85. Manoj Choudhary, Jorge Pereira, Edwin B. Davidson, James Colee, Swadeshmukul Santra, Jeffrey B. Jones, Mathews L. Paret, Improved Persistence of Bacteriophage Formulation with Nano N-Acetylcysteine–Zinc Sulfide and Tomato Bacterial Spot Disease Control, 2023, 107, 0191-2917, 3933, 10.1094/PDIS-02-23-0255-RE
    86. Smita Ghosh, Priyanka Kar, Sudipta Chakrabarti, Shrabani Pradhan, Keshab Chandra Mondal, Kuntal Ghosh, Pathogenicity of Vibrio harveyi and its biocontrol using bacteriophages, 2023, 3, 2662-7655, 552, 10.1007/s43393-023-00178-z
    87. Kirupa Sankar Muthuvelu, Baranitharan Ethiraj, Shreyasi Pramnik, N. Keerthish Raj, Swethaa Venkataraman, Devi Sri Rajendran, Priyadharshini Bharathi, Elakiya Palanisamy, Anusri Sathiya Narayanan, Vinoth Kumar Vaidyanathan, Shanmugaprakash Muthusamy, Biopreservative technologies of food: an alternative to chemical preservation and recent developments, 2023, 32, 1226-7708, 1337, 10.1007/s10068-023-01336-8
    88. Alka Rohilla, Vikram Kumar, Jayesh J. Ahire, Unveiling the persistent threat: recent insights into Listeria monocytogenes adaptation, biofilm formation, and pathogenicity in foodborne infections, 2024, 61, 0022-1155, 1428, 10.1007/s13197-023-05918-6
    89. Ilona Grygiel, Olaf Bajrak, Michał Wójcicki, Klaudia Krusiec, Ewa Jończyk-Matysiak, Andrzej Górski, Joanna Majewska, Sławomir Letkiewicz, Comprehensive Approaches to Combatting Acinetobacter baumannii Biofilms: From Biofilm Structure to Phage-Based Therapies, 2024, 13, 2079-6382, 1064, 10.3390/antibiotics13111064
    90. Dziyana Shymialevich, Michał Wójcicki, Olga Świder, Paulina Średnicka, Barbara Sokołowska, Characterization and Genome Study of a Newly Isolated Temperate Phage Belonging to a New Genus Targeting Alicyclobacillus acidoterrestris, 2023, 14, 2073-4425, 1303, 10.3390/genes14061303
    91. Mykola Kukhtyn, Orysia Tsisaryk, Volodymyr Salata, Halyna Koval, Vira Klymyk, Bioconservation of hard rent cheese using bacteriophages, 2024, 2024, 2786-8974, 47, 10.31548/humanhealth.3.2024.74
    92. Xiao Wang, Jingjing Tang, Wen Dang, Zhen Xie, Fuhua Zhang, Xinwei Hao, Sihuai Sun, Xuan Liu, Yi Luo, Mengyuan Li, Yanchao Gu, Yao Wang, Qiwei Chen, Xihui Shen, Lei Xu, David T. Pride, Isolation and Characterization of Three Pseudomonas aeruginosa Viruses with Therapeutic Potential, 2023, 11, 2165-0497, 10.1128/spectrum.04636-22
    93. Leontina Grigore-Gurgu, Florentina Ionela Bucur, Octavian Augustin Mihalache, Anca Ioana Nicolau, Comprehensive Review on the Biocontrol of Listeria monocytogenes in Food Products, 2024, 13, 2304-8158, 734, 10.3390/foods13050734
    94. Fabian Kunisch, Claudia Campobasso, Jeroen Wagemans, Selma Yildirim, Benjamin K. Chan, Christoph Schaudinn, Rob Lavigne, Paul E. Turner, Michael J. Raschke, Andrej Trampuz, Mercedes Gonzalez Moreno, Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs, 2024, 15, 2041-1723, 10.1038/s41467-024-52595-w
    95. Ahmed Elfadadny, Rokaia F. Ragab, Manar A. Abou Shehata, Medhat R. Elfadadny, Ahmed Farag, Ayman H. Abd El-Aziz, Hazim O. Khalifa, Exploring Bacteriophage Applications in Medicine and Beyond, 2024, 69, 2813-9054, 167, 10.3390/amh69030016
    96. Kokkarambath Vannadil Suchithra, Asif Hameed, Punchappady Devasya Rekha, Ananthapadmanabha Bhagwath Arun, Description and host-range determination of phage PseuPha1, a new species of Pakpunavirus infecting multidrug-resistant clinical strains of Pseudomonas aeruginosa, 2023, 585, 00426822, 222, 10.1016/j.virol.2023.06.009
    97. Claire N. Schamp, Nitin Dhowlaghar, Lauren K. Hudson, Daniel W. Bryan, Qixin Zhong, Elizabeth M. Fozo, Ahmed Gaballa, Martin Wiedmann, Thomas G. Denes, Edward G. Dudley, Selection of mutant Listeria phages under food-relevant conditions can enhance application potential , 2023, 89, 0099-2240, 10.1128/aem.01007-23
    98. Satoru Tomita, Takashi Inaoka, Akihito Endo, Sanae Okada, Raw material–dependent changes in bacterial and compositional profiles are involved in insufficient pH decrease in natural lactic fermentation of Brassica rapa leaves, 2024, 437, 03088146, 137934, 10.1016/j.foodchem.2023.137934
    99. Rachel Samson, Mahesh Dharne, Krishna Khairnar, Bacteriophages: Status quo and emerging trends toward one health approach, 2024, 908, 00489697, 168461, 10.1016/j.scitotenv.2023.168461
    100. Candan Gungor, Nurhan Ertas Onmaz, Dursun Alp Gundog, Gonca Tuluce Yavas, Kursat Koskeroglu, Guven Gungor, Four novel bacteriophages from slaughterhouse: Their potency on control of biofilm-forming MDR S. aureus in beef model, 2024, 156, 09567135, 110146, 10.1016/j.foodcont.2023.110146
    101. Rui Liu, Chenxi Huang, 2024, Chapter 5, 978-0-85466-707-9, 10.5772/intechopen.1005294
    102. Shanshan Liu, Siew‐Young Quek, Kang Huang, An Ecofriendly Nature‐Inspired Microcarrier for Enhancing Delivery, Stability, and Biocidal Efficacy of Phage‐Based Biopesticides, 2024, 20, 1613-6810, 10.1002/smll.202403465
    103. Maryanne Kuek, Sarah K. McLean, Enzo A. Palombo, Control of Escherichia coli in Fresh-Cut Mixed Vegetables Using a Combination of Bacteriophage and Carvacrol, 2023, 12, 2079-6382, 1579, 10.3390/antibiotics12111579
    104. Paweł Pniewski, Krzysztof Anusz, Ireneusz Białobrzewski, Martyna Puchalska, Michał Tracz, Radosław Kożuszek, Jan Wiśniewski, Joanna Zarzyńska, Agnieszka Jackowska-Tracz, The Influence of Storage Temperature and Packaging Technology on the Durability of Ready-to-Eat Preservative-Free Meat Bars with Dried Plasma, 2023, 12, 2304-8158, 4372, 10.3390/foods12234372
    105. Catherine M. Logue, Alessandra De Cesare, Elina Tast-Lahti, Marianne Chemaly, Cyrielle Payen, Jeff LeJeune, Kang Zhou, 2024, 108, 9780443293924, 289, 10.1016/bs.afnr.2023.11.001
    106. Petros Ioannou, Stella Baliou, George Samonis, Bacteriophages in Infectious Diseases and Beyond—A Narrative Review, 2023, 12, 2079-6382, 1012, 10.3390/antibiotics12061012
    107. Huan Peng, Irene A. Chen, Udi Qimron, Engineering Phages to Fight Multidrug-Resistant Bacteria, 2024, 0009-2665, 10.1021/acs.chemrev.4c00681
    108. Javad Aliakbarlu, Leila Manafi, Negar Mortazavi, Lin Lin, Ata Kaboudari, The antibacterial activity of endolysins against food-borne pathogenic bacteria in vitro and foods , 2025, 1040-8398, 1, 10.1080/10408398.2025.2458742
    109. Sada Raza, Bartłomiej Bończak, Nataliia Atamas, Aneta Karpińska, Tomasz Ratajczyk, Marcin Łoś, Robert Hołyst, Jan Paczesny, The activity of indigo carmine against bacteriophages: an edible antiphage agent, 2025, 109, 1432-0614, 10.1007/s00253-025-13414-4
    110. T.G. Villa, L. Feijoo-Siota, J.L.R. Rama, A. Sánchez-Pérez, T. de Miguel-Bouzas, 2025, 9780323907477, 681, 10.1016/B978-0-323-90747-7.00044-2
    111. Rafail Fokas, Zoi Kotsiri, Apostolos Vantarakis, Can Bacteriophages Be Effectively Utilized for Disinfection in Animal-Derived Food Products? A Systematic Review, 2025, 14, 2076-0817, 291, 10.3390/pathogens14030291
    112. Slavica Vesković, 2025, Chapter 4, 978-3-031-85088-2, 133, 10.1007/978-3-031-85089-9_4
    113. Mebratu Melaku, Junhong Wang, Yining Xie, Awais Ali, Bao Yi, Teng Ma, Ruqing Zhong, Liang Chen, Hongfu Zhang, Reviving hope: Phage therapy application for antimicrobial resistance in farm animal production over the past decade, 2025, 324, 03778401, 116333, 10.1016/j.anifeedsci.2025.116333
    114. Rivera-Lopez Edwin Omar, N.Tirko Natasha, G.Dudley Edward, Regulatory Landscape and the Potential of Bacteriophage Applications in the United States’ Food Industry, 2025, 0362028X, 100510, 10.1016/j.jfp.2025.100510
    115. Silvina Alicia Pujato, Mariángeles Briggiler-Marcó, Diego Javier Mercanti, 2025, 10434526, 10.1016/bs.afnr.2025.04.008
    116. Elene Lomadze, György Schneider, Szilvia Papp, Dominika Bali, Roberta Princz-Tóth, Tamás Kovács, Characterizations of Newly Isolated Erwinia amylovora Loessnervirus-like Bacteriophages from Hungary, 2025, 17, 1999-4915, 677, 10.3390/v17050677
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(11131) PDF downloads(1500) Cited by(116)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog