Gas flow through pipeline networks can be described using
Citation: Yogiraj Mantri, Michael Herty, Sebastian Noelle. Well-balanced scheme for gas-flow in pipeline networks[J]. Networks and Heterogeneous Media, 2019, 14(4): 659-676. doi: 10.3934/nhm.2019026
[1] | Lorenza D'Elia . $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17(1): 15-45. doi: 10.3934/nhm.2021022 |
[2] | Andrea Braides, Valeria Chiadò Piat . Non convex homogenization problems for singular structures. Networks and Heterogeneous Media, 2008, 3(3): 489-508. doi: 10.3934/nhm.2008.3.489 |
[3] | Patrick Henning . Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7(3): 503-524. doi: 10.3934/nhm.2012.7.503 |
[4] | Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115 |
[5] | Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321 |
[6] | Fabio Camilli, Claudio Marchi . On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks and Heterogeneous Media, 2011, 6(1): 61-75. doi: 10.3934/nhm.2011.6.61 |
[7] | Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . Homogenization of variational functionals with nonstandard growth in perforated domains. Networks and Heterogeneous Media, 2010, 5(2): 189-215. doi: 10.3934/nhm.2010.5.189 |
[8] | Antonio DeSimone, Martin Kružík . Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8(2): 481-499. doi: 10.3934/nhm.2013.8.481 |
[9] | Liselott Flodén, Jens Persson . Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks and Heterogeneous Media, 2016, 11(4): 627-653. doi: 10.3934/nhm.2016012 |
[10] | Peter Bella, Arianna Giunti . Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13(1): 155-176. doi: 10.3934/nhm.2018007 |
Gas flow through pipeline networks can be described using
In this paper, for a bounded domain
$ Fε(u):={∫Ω{A(xε)∇u⋅∇u+|u|2}dx,if u∈H10(Ω),∞,if u∈L2(Ω)∖H10(Ω). $ | (1) |
The conductivity
$ ess-infy∈Yd(min{A(y)ξ⋅ξ:ξ∈Rd,|ξ|=1})≥0. $ | (2) |
This condition holds true when the conductivity energy density has missing derivatives. This occurs, for example, when the quadratic form associated to
$ Aξ⋅ξ:=A′ξ′⋅ξ′forξ=(ξ′,ξd)∈Rd−1×R, $ |
where
$ ess-infy∈Yd(min{A(y)ξ⋅ξ:ξ∈Rd,|ξ|=1})>0, $ | (3) |
combined with the boundedness implies a compactness result of the conductivity functional
$ u∈H10(Ω)↦∫ΩA(xε)∇u⋅∇udx $ |
for the
$ ∫ΩA∗∇u⋅∇udx, $ |
where the matrix-valued function
$ A∗λ⋅λ:=min{∫YdA(y)(λ+∇v(y))⋅(λ+∇v(y))dy:v∈H1per(Yd)}. $ | (4) |
The
$ Fε(u)=∫Ωf(xε,Du)dx,foru∈W1,p(Ω;Rm), $ | (5) |
where
In this paper, we investigate the
$ Fε(u)≥∫Ω|u|2dx. $ |
This estimate guarantees that
$ V:={∫YdA1/2(y)Φ(y)dy:Φ∈L2per(Yd;Rd)withdiv(A1/2(y)Φ(y))=0inD′(Rd)} $ |
agrees with the space
the
$ F0(u):={∫Ω{A∗∇u⋅∇u+|u|2}dx,if u∈H10(Ω),∞,if u∈L2(Ω)∖H10(Ω), $ | (6) |
where the homogenized matrix
$ A∗λ⋅λ:=inf{∫YdA(y)(λ+∇v(y))⋅(λ+∇v(y))dy:v∈H1per(Yd)}. $ | (7) |
We need to make assumption (H1) since for any sequence
In the
In the present scalar case, we enlighten assumptions (H1) and (H2) which are the key ingredients to obtain the general
The lack of assumption (H1) may induce a degenerate asymptotic behaviour of the functional
The paper is organized as follows. In Section 2, we prove a general
Notation.
● For
●
●
● Throughout, the variable
● We write
$ uε⇀⇀u0 $ |
with
●
$ F1(f)(λ):=∫Re−2πiλxf(x)dx. $ |
Definition 1.1. Let
i)
ii)
Such a sequence
Recall that the weak topology of
In this section, we will prove the main result of this paper. As previously announced, up to a subsequence, the sequence of functionals
Theorem 2.1. Let
$ V:={∫YdA1/2(y)Φ(y)dy:Φ∈L2per(Yd;Rd)withdiv(A1/2(y)Φ(y))=0inD′(Rd)} $ | (8) |
agrees with the space
Then,
$ FεΓ(L2)−w⇀F0, $ |
where
Proof. We split the proof into two steps which are an adaptation of [11,Theorem 3.3] using the sole assumptions (H1) and (H2) in the general setting of conductivity.
Step 1 -
Consider a sequence
$ lim infε→0Fε(uε)≥F0(u). $ | (9) |
If the lower limit is
$ Fε(uε)≤C. $ | (10) |
As
$ uε⇀⇀u0. $ | (11) |
Assumption (H1) ensures that
$ u0(x,y)=u(x)is independent ofy, $ | (12) |
where, according to the link between two-scale and weak
$ uε⇀uweakly inL2(Ω). $ |
Since all the components of the matrix
$ A(xε)∇uε⇀⇀σ0(x,y)withσ0∈L2(Ω×Yd;Rd), $ |
and also
$ A1/2(xε)∇uε⇀⇀Θ0(x,y)withΘ0∈L2(Ω×Yd;Rd). $ | (13) |
In particular
$ εA(xε)∇uε⇀⇀0. $ | (14) |
Consider
$ div(A1/2(y)Φ(y))=0inD′(Rd), $ | (15) |
or equivalently,
$ ∫YdA1/2(y)Φ(y)⋅∇ψ(y)dy=0∀ψ∈H1per(Yd). $ |
Take also
$ ∫ΩA1/2(xε)∇uε⋅Φ(xε)φ(x)dx=−∫ΩuεA1/2(xε)Φ(xε)⋅∇φ(x)dx. $ |
By using [1,Lemma 5.7],
$ ∫Ω×YdΘ0(x,y)⋅Φ(y)φ(x)dxdy=−∫Ω×Ydu(x)A1/2(y)Φ(y)⋅∇φ(x)dxdy. $ | (16) |
We prove that the target function
$ N:=∫YdA1/2(y)Φ(y)dy, $ | (17) |
and varying
$ ∫Ω×YdΘ0(x,y)⋅Φ(y)φ(x)dxdy=−∫Ωu(x)N⋅∇φ(x)dx $ |
Since the integral in the left-hand side is bounded by a constant times
$ ∫Ωu(x)N⋅∇φ(x)dx=∫Ωg(x)φ(x)dx, $ |
which implies that
$ N⋅∇u∈L2(Ω). $ | (18) |
In view of assumption (H2),
$ u∈H1(Ω). $ | (19) |
This combined with equality 16 leads us to
$ ∫Ω×YdΘ0(x,y)⋅Φ(y)φ(x)dxdy=∫Ω×YdA1/2(y)∇u(x)⋅Φ(y)φ(x)dxdy. $ | (20) |
By density, the last equality holds if the test functions
$ divy(A1/2(y)ψ(x,y))=0inD′(Rd), $ |
or equivalently,
$ ∫Ω×Ydψ(x,y)⋅A1/2(y)∇yv(x,y)dxdy=0∀v∈L2(Ω;H1per(Yd)). $ |
The
$ K:={A1/2(y)∇yv(x,y):v∈L2(Ω;H1per(Yd))}. $ |
Thus, the equality 20 yields
$ Θ0(x,y)=A1/2(y)∇u(x)+S(x,y) $ |
for some
$ A1/2(y)∇yvn(x,y)→S(x,y)strongly inL2(Ω;L2per(Yd;Rd)). $ |
Due to the lower semi-continuity property of two-scale convergence (see [1,Proposition 1.6]), we get
$ lim infε→0‖A1/2(x/ε)∇uε‖2L2(Ω;Rd)≥‖Θ0‖2L2(Ω×Yd;Rd)=limn‖A1/2(y)(∇xu(x)+∇yvn)‖2L2(Ω×Yd;Rd). $ |
Then, by the weak
$ lim infε→0Fε(uε)≥limn∫Ω×YdA(y)(∇xu(x)+∇yvn(x,y))⋅(∇xu(x)+∇yvn(x,y))dxdy+∫Ω|u|2dx≥∫Ωinf{∫YdA(y)(∇xu(x)+∇yv(y))⋅(∇xu(x)+∇yv(y))dy:v∈H1per(Yd)}dx+∫Ω|u|2dx. $ |
Recalling the definition 7, we immediately conclude that
$ lim infε→0Fε(uε)≥∫Ω{A∗∇u⋅∇u+|u|2}dx, $ |
provided that
It remains to prove that the target function
$ ∫Ω×YdΘ0(x,y)⋅Φ(y)φ(x)dxdy=∫ΩN⋅∇u(x)φ(x)dx−∫∂ΩN⋅ν(x)u(x)φ(x)dH, $ | (21) |
where
$ ∫∂ΩN⋅ν(x)u(x)φ(x)dH=0, $ |
which leads to
$ N⋅ν(x0)u(x0)=0. $ | (22) |
In view of assumption (H2) and the arbitrariness of
$ u∈H10(Ω). $ |
This concludes the proof of the
Step 2 -
We use the same arguments of [12,Theorem 2.4] which can easily extend to the conductivity setting. We just give an idea of the proof, which is based on a perturbation argument. For
$ Aδ:=A+δId, $ |
where
$ Fδ(u):={∫Ω{A∗δ∇u⋅∇u+|u|2}dx,ifu∈H10(Ω),∞,ifu∈L2(Ω)∖H10(Ω), $ |
for the strong topology of
$ F0(u)≤Fδ(u)≤lim infεj→0∫Ω{Aδ(xεj)∇uεj⋅∇uεj+|uεj|2}dx≤lim infεj→0∫Ω{A(xεj)∇uεj⋅∇uεj+|uεj|2}dx+O(δ)=F0(u)+O(δ). $ |
It follows that
$ limδ→0A∗δ=A∗. $ | (23) |
Thanks to the Lebesgue dominated convergence theorem and in view of 23, we get that
Now, let us show that
$ limε→0Fε(¯uε)=F0(u), $ |
which proves the
The next proposition provides a characterization of Assumption
Proposition 1. Assumption
$ Ker(A∗)=V⊥. $ |
Proof. Consider
$ H1λ(Yd):={u∈H1loc(Rd):∇uisYd-periodic and∫Yd∇u(y)dy=λ}. $ |
Recall that
$ 0=A∗λ⋅λ=inf{∫YdA(y)∇u(y)⋅∇u(y)dy:u∈H1λ(Yd)}. $ |
Then, there exists a sequence
$ limn→∞∫YdA(y)∇un(y)⋅∇un(y)dy=0, $ |
which implies that
$ A1/2∇un→0strongly inL2(Yd;Rd). $ | (24) |
Now, take
$ ∫YdA1/2(y)∇un(y)⋅Φ(y)dy=∫Yd∇un(y)⋅A1/2(y)Φ(y)dy=λ⋅∫YdA1/2(y)Φ(y)dy+∫Yd∇vn(y)⋅A1/2(y)Φ(y)dy=λ⋅∫YdA1/2(y)Φ(y)dy, $ | (25) |
where the last equality is obtained by integrating by parts the second integral combined with the fact that
$ 0=λ⋅(∫YdA1/2(y)Φ(y)dy), $ |
for any
$ Ker(A∗)⊆V⊥. $ |
Conversely, by 23 we already know that
$ limδ→0A∗δ=A∗, $ |
where
$ A∗δλ⋅λ=min{∫YdAδ(y)∇uδ(y)⋅∇uδ(y)dy:uδ∈H1λ(Yd)}. $ | (26) |
Let
$ A∗δλ⋅λ=∫YdAδ(y)∇¯uδ(y)⋅∇¯uδ(y)dy=∫Yd|A1/2δ(y)∇¯uδ(y)|2dy≤C, $ |
which implies that the sequence
Now, we show that
$ A(y)=R(y)D(y)RT(y)for a.e. y∈Yd, $ |
where
$ A1/2δ(y)=R(y)(D(y)+δId)1/2RT(y)for a.e. y∈Yd, $ |
which implies that
Now, passing to the limit as
$ div(A1/2δΦδ)=div(Aδ∇¯uδ)=0in D′(Rd), $ |
we have
$ div(A1/2Φ)=0in D′(Rd). $ |
This along with
$ A∗δλ=∫YdAδ(y)∇¯uδ(y)dy=∫YdA1/2δ(y)Φδ(y)dy. $ |
Hence, taking into account the strong convergence of
$ A∗λ=limδ→0A∗δλ=limδ→0∫YdA1/2δ(y)Φδ(y)dy=∫YdA1/2(y)Φ(y)dy, $ |
which implies that
$ A∗λ⋅λ=0, $ |
so that, since
$ V⊥⊆Ker(A∗), $ |
which concludes the proof.
In this section we provide a geometric setting for which assumptions (H1) and (H2) are fulfilled. We focus on a
$ Z1=(0,θ)×(0,1)d−1andZ2=(θ,1)×(0,1)d−1, $ |
where
$ Z#i:=Int(⋃k∈Zd(¯Zi+k))fori=1,2. $ |
Let
$ X1:=(0,θ)×Rd−1andX2:=(θ,1)×Rd−1, $ |
and we denote by
The anisotropic phases are described by two constant, symmetric and non-negative matrices
$ A(y1):=χ(y1)A1+(1−χ(y1))A2fory1∈R, $ | (27) |
where
We are interested in two-phase mixtures in
$ A1=ξ⊗ξandA2is positive definite, $ | (28) |
for some
Proposition 2. Let
From Theorem 2.1, we easily deduce that the energy
Proof. Firstly, let us prove assumption (H1). We adapt the proof of Step 1 of [11,Theorem 3.3] to two-dimensional laminates. In our context, the algebra involved is different due to the scalar setting.
Denote by
$ 0=−limε→0ε∫ΩA(xε)∇uε⋅Φ(x,xε)dx=limε→0∫Ωuεdivy(A1Φ(x,y))(x,xε)dx=∫Ω×Z#1u10(x,y)divy(A1Φ(x,y))dxdy=−∫Ω×Z#1A1∇yu10(x,y)⋅Φ(x,y)dxdy, $ |
so that
$ A1∇yu10(x,y)≡0inΩ×Z#1. $ | (29) |
Similarly, taking
$ A2∇yu20(x,y)≡0inΩ×Z#2. $ | (30) |
Due to 29, in phase
$ ∇yu10∈Ker(A1)=Span(ξ⊥), $ |
where
$ u10(x,y)=θ1(x,ξ⊥⋅y)a.e.(x,y)∈Ω×X1, $ | (31) |
for some function
$ u20(x,y)=θ2(x)a.e.(x,y)∈Ω×X2, $ | (32) |
for some function
$ (A1−A2)Φ⋅e1=0on∂Z#1. $ | (33) |
Note that condition 33 is necessary for
$ 0=−limε→0ε∫ΩA(y)∇uε⋅Φφ(x,xε)dx=limε→0∫Ωuεdivy(A(y)Φφ(x,y))(x,xε)dx=∫Ω×Z1u10(x,y)divy(A1Φφ(x,y))dxdy+∫Ω×Z2θ2(x)divy(A2Φφ(x,y))dxdy. $ |
Take now
$ φ#(x,y):=∑k∈Z2φ(x,y+k) $ |
as new test function. Then, we obtain
$ 0=∫Ω×Z1u10(x,y)divy(A1Φφ#(x,y))dxdy+∫Ω×Z2θ2(x)divy(A2Φφ#(x,y))dxdy=∑k∈Z2∫Ω×(Z1+k)u10(x,y)divy(A1Φφ(x,y))dxdy+∑k∈Z2∫Ω×(Z2+k)θ2(x)divy(A2Φφ(x,y))dxdy=∫Ω×Z#1u10(x,y)divy(A1Φφ(x,y))dxdy+∫Ω×Z#2θ2(x)divy(A2Φφ(x,y))dxdy. $ | (34) |
Recall that
$ Φ∈R2↦(A1e1⋅Φ,A2e1⋅Φ)∈R2 $ |
is one-to-one. Hence, for any
$ A1Φ⋅e1=A2Φ⋅e1=f. $ | (35) |
In view of the arbitrariness of
$ A1e1⋅Φ=A2e1⋅Φ=1on∂Z#1. $ | (36) |
Since
$ 0=∫Ω×∂Zv0(x,y)φ(x,y)dxdHy, $ |
where we have set
$ v0(x,⋅)=0on∂Z. $ | (37) |
Recall that
$ θ1(x,ξ1y2)=θ2(x)on∂Z. $ |
Since
We prove assumption (H2). The proof is a variant of the Step 2 of [11,Theorem 3.4]. For arbitrary
$ A1/2(y)Φ(y):=χ(y1)αξ+(1−χ(y1))(αξ+βe2)for a.e.y∈R2. $ | (38) |
Such a vector field
$ N:=∫Y2A1/2(y)Φ(y)dy=αξ+(1−θ)βe2. $ |
Hence, due to
From Proposition 1, it immediately follows that the homogenized matrix
We are going to deal with three-dimensional laminates where both phases are degenerate. We assume that the symmetric and non-negative matrices
$ Ker(Ai)=Span(ηi)fori=1,2. $ | (39) |
The following proposition gives the algebraic conditions so that assumptions required by Theorem 2.1 are satisfied.
Proposition 3. Let
Invoking again Theorem 2.1, the energy
Proof. We first show assumption (H1). The proof is an adaptation of the first step of [11,Theorem 3.3]. Same arguments as in the proof of Proposition 2 show that
$ Ai∇yui0(x,y)≡0inΩ×Z#ifori=1,2. $ | (40) |
In view of 39 and 40, in phase
$ ui0(x,y)=θi(x,ηi⋅y)a.e.(x,y)∈Ω×Xi, $ | (41) |
for some function
$ 0=−limε→0ε∫ΩA(y)∇uε⋅Φφ(x,xε)dx=∫Ω×Z1u10(x,y)divy(A1Φφ(x,y))dxdy+∫Ω×Z2u20(x,y)divy(A2Φφ(x,y))dxdy. $ | (42) |
Take
$ φ#(x,y):=∑k∈Z3φ(x,y+k) $ |
as test function in 42, we get
$ ∫Ω×Z#1u10(x,y)divy(A1Φφ(x,y))dxdy+∫Ω×Z#2u20(x,y)divy(A2Φφ(x,y))dxdy=0. $ | (43) |
Since the vectors
$ Φ∈R3↦(A1e1⋅Φ,A2e1⋅Φ)∈R2 $ |
is surjective. In particular, for any
$ A1Φ⋅e1=A2Φ⋅e1=f. $ | (44) |
In view of the arbitrariness of
$ ∫Ω×∂Z[u10(x,y)−u20(x,y)]φ(x,y)dxdHy=0, $ |
which implies that
$ u10(x,⋅)=u20(x,⋅)on∂Z. $ | (45) |
Fix
$ θ1(x,b1y2+c1y3)=θ2(x,b2y2+c2y3)on∂Z, $ | (46) |
with
$ z1:=b1y2+c1y3,z2:=b2y2+c2y3, $ |
is a change of variables so that 46 becomes
$ θ1(x,z1)=θ2(x,z2)a.e.z1,z2∈R. $ |
This implies that
It remains to prove assumption (H2). To this end, let
$ E:={(ξ1,ξ2)∈R3×R3:(ξ1−ξ2)⋅e1=0,ξ1⋅η1=0,ξ2⋅η2=0}. $ | (47) |
For
$ A1/2(y)Φ(y):=χ(y1)ξ1+(1−χ(y1))ξ2a.e.y∈R3. $ | (48) |
The existence of such a vector field
$ N:=∫Y3A1/2(y)Φ(y)dy=θξ1+(1−θ)ξ2. $ |
Note that
$ (ξ1,ξ2)∈R3×R3↦((ξ1−ξ2)⋅e1,ξ1⋅η1,ξ2⋅η2)∈R3. $ |
If we identify the pair
$ Mf:=(100−100a1b1c1000000a2b2c2), $ |
with
Now, let
$ (ξ1,ξ2)∈E↦θξ1+(1−θ)ξ2∈R3. $ |
Let us show that
$ (ξ1,θθ−1ξ1). $ | (49) |
In view of the definition of
$ (ξ1−θθ−1ξ1)⋅e1=0,ξ1⋅η1=0,θθ−1ξ1⋅η2=0. $ |
This combined with the linear independence of
$ ξ1∈{e1,η1,η2}⊥={0}. $ |
Hence,
Thanks to Proposition 1, the homogenized matrix
In this section we are going to construct a counter-example of two-dimensional laminates with two degenerate phases, where the lack of assumption (H1) provides an anomalous asymptotic behaviour of the functional
Let
$ A1=e1⊗e1andA2=ce1⊗e1, $ |
for some positive constant
$ A(y2):=χ(y2)A1+(1−χ(y2))A2=a(y2)e1⊗e1fory2∈R, $ | (50) |
with
$ a(y2):=χ(y2)+c(1−χ(y2))≥1. $ | (51) |
Thus, the energy
$ \mathscr{F}_{\varepsilon}(u)=\left\{∫Ω[a(x2ε)(∂u∂x1)2+|u|2]dx, if u∈H10((0,1)x1;L2(0,1)x2),∞, if u∈L2(Ω)∖H10((0,1)x1;L2(0,1)x2).\right.$ | (52) |
We denote by
$ (f∗1g)(x1,x2)=∫Rf(x1−t,x2)g(t,x2)dt. $ |
Throughout this section,
$ cθ:=cθ+1−θ, $ | (53) |
where
Proposition 4. Let
$ F(u):={∫10dx2∫R1ˆk0(λ1)|F2(u)(λ1,x2)|2dλ1,if u∈H10((0,1)x1;L2(0,1)x2),∞,if u∈L2(Ω)∖H10((0,1)x1;L2(0,1)x2), $ |
where
$ ˆk0(λ1):=∫1014π2a(y2)λ21+1dy2. $ | (54) |
The
$\mathscr{F}(u):=\left\{∫10dx2∫R{ccθ(∂u∂x1)2(x1,x2)+[√αu(x1,x2)+(h∗1u)(x1,x2)]2}dx1, if u∈H10((0,1)x1;L2(0,1)x2),∞, if u∈L2(Ω)∖H10((0,1)x1;L2(0,1)x2),\right.$ | (55) |
where
$ F2(h)(λ1):=√α+f(λ1)−√α, $ | (56) |
where
$ α:=c2θ+1−θc2θ>0,f(λ1):=(c−1)2θ(θ−1)c2θ1cθ4π2λ21+1. $ | (57) |
Moreover, any two-scale limit
Remark 1. From 57, we can deduce that
$ α+f(λ1)=1c2θ(cθ4π2λ21+1){(c2θ+1−θ)cθ4π2λ21+[(c−1)θ+1]2}>0, $ |
for any
Proof. We divide the proof into three steps.
Step 1 -
Consider a sequence
$ lim infε→0Fε(uε)≥F(u). $ | (58) |
If the lower limit is
$ Fε(uε)≤C. $ | (59) |
It follows that the sequence
$ uε⇀⇀u0. $ | (60) |
In view of 51, we know that
$ ∂uε∂x1⇀⇀σ0(x,y)withσ0∈L2(Ω×Y2). $ | (61) |
In particular,
$ ε∂uε∂x1⇀⇀0. $ | (62) |
Take
$ ε∫Ω∂uε∂x1φ(x,xε)dx=−∫Ωuε(ε∂φ∂x1(x,xε)+∂φ∂y1(x,xε))dx. $ |
Passing to the limit in both terms with the help of 60 and 62 leads to
$ 0=−∫Ω×Y2u0(x,y)∂φ∂y1(x,y)dxdy, $ |
which implies that
$ u0(x,y)is independent ofy1. $ | (63) |
Due to the link between two-scale and weak
$ uε⇀u(x)=∫Y1u0(x,y2)dy2weakly in L2(Ω). $ | (64) |
Now consider
$ ∂φ∂y1(x,y)=0. $ | (65) |
Since
$ ∫Ω∂uε∂x1φ(x,y)dx=−∫Ωuε∂φ∂x1(x,y)dx. $ |
In view of the convergences 60 and 61 together with 63, we can pass to the two-scale limit in the previous expression and we obtain
$ ∫Ω×Y2σ0(x,y)φ(x,y)dxdy=−∫Ω×Y2u0(x,y2)∂φ∂x1(x,y)dxdy. $ | (66) |
Varying
$ ∫Ω×Y2u0(x,y2)∂φ∂x1(x,y)dxdy=∫Ω×Y2g(x,y)φ(x,y)dxdy, $ |
which yields
$ ∂u0∂x1(x,y2)∈L2(Ω×Y1). $ | (67) |
Then, an integration by parts with respect to
$ ∫Ω×Y2σ0(x,y)φ(x,y)dxdy=∫Ω×Y2∂u0∂x1(x,y2)φ(x,y)dxdy−∫10dx2∫Y2[u0(1,x2,y2)φ(1,x2,y)−u0(0,x2,y2)φ(0,x2,y)]dy. $ |
Since for any
$ ∫10dx2∫Y2[u0(1,x2,y2)φ(1,x2,y)−u0(0,x2,y2)φ(0,x2,y)]dy=0, $ |
which implies that
$ u0(1,x2,y2)=u0(0,x2,y2)=0a.e.(x2,y2)∈(0,1)×Y1. $ |
This combined with 67 yields
$ u0(x1,x2,y2)∈H10((0,1)x1;L2((0,1)x2×Y1)). $ |
Finally, an integration by parts with respect to
$ ∫Ω×Y2(σ0(x,y)−∂u0∂x1(x,y2))φ(x,y)dxdy=0. $ |
Since the orthogonal of divergence-free functions is the gradients, from the previous equality we deduce that there exists
$ σ0(x,y)=∂u0∂x1(x,y2)+∂˜u∂y1(x,y). $ | (68) |
Now, we show that
$ lim infε→0∫Ωa(x2ε)(∂uε∂x1)2dx≥∫Ω×Y2a(y2)(∂u0∂x1(x,y2)+∂˜u∂y1(x,y))2dxdy. $ | (69) |
To this end, set
$ σε:=∂uε∂x1. $ |
Since
$ ‖a−ak‖L2(Y1)→0as k→∞, $ | (70) |
hence, by periodicity, we also have
$ ‖a(x2ε)−ak(x2ε)‖L2(Ω)≤C‖a−ak‖L2(Y1), $ | (71) |
for some positive constant
$ ψn(x,y)→σ0(x,y)strongly in L2(Ω×Y2). $ | (72) |
From the inequality
$ ∫Ωa(x2ε)(σε−ψn(x,xε))2dx≥0, $ |
we get
$ ∫Ωa(x2ε)σ2εdx≥2∫Ωa(x2ε)σεψn(x,xε)dx−∫Ωa(x2ε)ψ2n(x,xε)dx=2∫Ω(a(x2ε)−ak(x2ε))σεψn(x,xε)dx+2∫Ωak(x2ε)σεψn(x,xε)dx−∫Ωa(x2ε)ψ2n(x,xε)dx. $ | (73) |
In view of 71, the first integral on the right-hand side of 73 can be estimated as
$ |∫Ω(a(x2ε)−ak(x2ε))σεψn(x,xε)dx|≤C‖a−ak‖L2(Y1)‖ψn‖L∞(Ω)‖σε‖L2(Ω)≤C‖a−ak‖L2(Y1). $ |
Hence, passing to the limit as
$ lim infε→0∫Ωa(x2ε)σ2εdx≥−C‖a−ak‖L2(Y1)+2limε→0∫Ωak(x2ε)σεψn(x,xε)dx−limε→0∫Ωa(x2ε)ψ2n(x,xε)dxdy=2∫Ω×Y2ak(y2)σ0(x,y)ψn(x,y)dxdy−C‖a−ak‖L2(Y1)−∫Ω×Y2a(y2)ψ2n(x,y)dxdy. $ |
Thanks to 70, we take the limit as
$ lim infε→0∫Ωa(x2ε)σ2εdx≥2∫Ω×Y2a(y2)σ0(x,y)ψn(x,y)dxdy−∫Ω×Y2a(y2)ψ2n(x,y)dxdy, $ |
so that in view of 72, passing to the limit as
$ lim infε→0∫Ωa(x2ε)σ2εdx≥∫Ω×Y2a(y2)σ20(x,y)dxdy. $ |
This combined with 68 proves 69.
By 63, we already know that
$ ∫Ω×Y2a(y2)(∂u0∂x1(x,y2)+∂˜u∂y1(x,y))2dxdy=∫Ωdx∫Y1a(y2)dy2∫Y1(∂u0∂x1(x,y2)+∂˜u∂y1(x,y))2dy1≥∫Ωdx∫Y1a(y2)dy2(∫Y1[∂u0∂x1(x,y2)+∂˜u∂y1(x,y)]dy1)2=∫Ωdx∫Y1a(y2)(∂u0∂x1)2(x,y2)dy2. $ |
This combined with 69 implies that
$ lim infε→0∫Ωa(x2ε)(∂uε∂x1)2dx≥∫Ωdx∫Y1a(y2)(∂u0∂x1)2(x,y2)dy2. $ | (74) |
Now, we extend the functions in
$ lim infε→0Fε(uε)≥∫10dx2∫Y1dy2∫R[a(y2)(∂u0∂x1)2(x1,x2,y2)+|u0|2(x1,x2,y2)]dx1. $ | (75) |
We minimize the right-hand side with respect to
$ ∫10dx2∫Y1dy2∫R[a(y2)∂u0∂x1(x1,x2,y2)∂v∂x1(x1,x2,y2)+u0(x1,x2,y2)v(x1,x2,y2)]dx1=0 $ |
for any
$ −a(y2)∂2u0∂x21(x1,x2,y2)+u0(x1,x2,y2)=b(x1,x2)inD′(R) $ | (76) |
for a.e.
$ F2(u0)(λ1,x2,y2)=F2(b)(λ1,x2)4π2a(y2)λ21+1a.e.(λ1,x2,y2)∈R×(0,1)×Y1. $ | (77) |
Note that 77 proves in particular that the two-scale limit
In light of the definition 54 of
$ F2(u)(λ1,x2)=ˆk0(λ1)F2(b)(λ1,x2)a.e.(λ1,x2)∈R×(0,1). $ | (78) |
By using Plancherel's identity with respect to the variable
$ lim infε→0Fε(uε)≥∫10dx2∫Y1dy2∫R(4π2a(y2)λ21+1)|F2(u0)(λ1,x2,y2)|2dλ1=∫10dx2∫R1ˆk0(λ1)|F2(u)(λ1,x2)|2dλ1, $ |
which proves the
Step 2-
For the proof of the
Lemma 4.1. Let
$ F2(b)(λ1,x2):=1ˆk0(λ1)F2(u)(λ1,x2), $ | (79) |
where
$ {−a(y2)∂2u0∂x21(x1,x2,y2)+u0(x1,x2,y2)=b(x1,x2),x1∈(0,1),u0(0,x2,y2)=u0(1,x2,y2)=0, $ | (80) |
with
Let
$ u0(x1,x2,y2)∈C1([0,1]2;L∞per(Y1)) $ | (81) |
to the problem 80. Taking the Fourier transform
$ F2(u0)(λ1,x2,y2)=F2(u)(λ1,x2)(4π2a(y2)λ21+1)ˆk0(λ1)for(λ1,x2,y2)∈R×[0,1]×Y1, $ | (82) |
where
$ u(x1,x2)=∫Y1u0(x1,x2,y2)dy2for(x1,x2)∈R×(0,1). $ | (83) |
Let
$ uε(x1,x2):=u0(x1,x2,x2ε). $ |
Recall that rapidly oscillating
$ uε⇀uweakly inL2(Ω). $ |
Due to 81, we can apply [1,Lemma 5.5] so that
$ limε→0Fε(uε)=limε→0∫Ω[a(x2ε)(∂u0∂x1)2(x1,x2,x2ε)+|u0(x1,x2,x2ε)|2]dx=∫Ωdx∫Y1[a(y2)(∂u0∂x1)2(x1,x2,y2)+|u0(x1,x2,y2)|2]dy2 =∫10dx2∫Y1dy2∫R[a(y2)(∂u0∂x1)2(x1,x2,y2)+|u0(x1,x2,y2)|2]dx1, $ | (84) |
where the function
$ ∫10dx2∫Y1dy2∫R[a(y2)(∂u0∂x1)2(x1,x2,y2)+|u0(x1,x2,y2)|2]dx1=∫10dx2∫Y1dy2∫R(4π2a(y2)λ21+1)|F2(u0)(λ1,x2,y2)|2dλ1=∫10dx2∫R1ˆk0(λ1)|F2(u)(λ1,x2)|2dλ1. $ |
This together with 84 implies that, for
$ limε→0Fε(uε)=∫10dx2∫R1ˆk0(λ1)|F2(u)(λ1,x2)|2dλ1, $ |
which proves the
Now, we extend the previous result to any
$ ‖u‖H10((0,1)x1;L2(0,1)x2):=(‖∂u∂x1‖2L2(Ω)+‖u‖2L2(Ω))1/2. $ |
The associated metric
$ dH10(uk,u)→0implies dBn(uk,u)→0. $ | (85) |
Recall that
$ Γ-lim supε→0Fε(u)≤F(u). $ | (86) |
A direct computation of
$ ˆk0(λ1)=cθ4π2λ21+1(4π2λ21+1)(c4π2λ21+1), $ |
which implies that
$ 1ˆk0(λ1)=ccθ4π2λ21+f(λ1)+α, $ | (87) |
where
$ 1ˆk0(λ1)≤C(4π2λ21+1). $ | (88) |
This combined with the Plancherel identity yields
$ F(u)≤C∫10dx2∫R(4π2λ21+1)|F2(u)(λ1,x2)|2dλ1=C∫10dx2∫R[(∂u∂x1)2(x1,x2)+|u(x1,x2)|2]dx1=C‖u‖2H10((0,1)x1;L2(0,1)x2), $ | (89) |
where
Now, take
$ dH10(uk,u)→0ask→∞. $ | (90) |
In particular, due to 85, we also have that
$ Γ-lim supε→0Fε(u)≤lim infk→∞(Γ-lim supε→0Fε(uk))≤lim infk→∞F(uk)=F(u), $ |
which proves the
Step 3 - Alternative expression of
The proof of the equality between the two expressions of the
Lemma 4.2. Let
$ F2(h∗u)=F2(h)F2(u)a.e. in R. $ | (91) |
By applying Plancherel's identity with respect to
$ ∫R|√αu(x1,x2)+(h∗1u)(x1,x2)|2dx1=∫R|√αF2(u)(λ1,x2)+F2(h∗1u)(λ1,x2)|2dλ1=∫R[α|F2(u)(λ1,x2)|2+2√αRe(F2(u)(λ1,x2)¯F2(h∗1u)(λ1,x2))+|F2(h∗1u)(λ1,x2)|2]dλ1. $ | (92) |
Recall that the Fourier transform of
$ ∫R[α|F2(u)(λ1,x2)|2+2√αRe(F2(u)(λ1,x2)¯F2(h∗1u)(λ1,x2))+|F2(h∗1u)(λ1,x2)|2]dλ1=∫R[α+2√αF2(h)(λ1)+(F2(h)(λ1))2]|F2(u)(λ1,x2)|2dλ1=∫R[√α+F2(h)(λ1)]2|F2(u)(λ1,x2)|2dλ1=∫R[α+f(λ1)]|F2(u)(λ1,x2)|2dλ1. $ | (93) |
On the other hand, by applying Plancherel's identity with respect to
$ ∫Rccθ4π2λ21|F2(u)(λ1,x2)|2dλ1=∫Rccθ(∂u∂x1)2(x1,x2)dx1. $ |
In view of the expansion of
$ \begin{align*} &\int_{0}^{1}dx_2\int_{\mathbb{R}} \frac{1}{\hat{k}_0(\lambda_1)} |{\mathcal{F}}_2(u)(\lambda_1, x_2)|^2d\lambda_1 \\ &\quad = \int_{0}^{1}dx_2 \int_{\mathbb{R}}\left \{\frac{c}{c_\theta}\left (\frac{\partial u}{\partial x_1}\right)^2(x_1, x_2)+[\sqrt{\alpha}u(x_1, x_2) + (h\ast_1u)(x_1, x_2)]^2\right\}dx_1, \end{align*} $ |
which concludes the proof.
Proof of Lemma 4.1. In view of 87, the equality 79 becomes
$ \begin{align} {\mathcal{F}}_2(b)(\lambda_1, x_2 ) & = \left (\frac{c}{c_\theta}4\pi^2\lambda_1^2+\alpha + f(\lambda_1)\right){\mathcal{F}}_2(u)(\lambda_1, x_2)\\ & = {\mathcal{F}}_2 \left (-\frac{c}{c_\theta}\frac{\partial^2 u}{\partial x_1^2} +\alpha u\right)(\lambda_1, x_2) + f(\lambda_1){\mathcal{F}}_2(u)(\lambda_1, x_2). \end{align} $ | (94) |
Since
$ \begin{equation*} \label{fCL1} f(\lambda_1) = \frac{(c-1)^2\theta(\theta-1)}{c^2_\theta}\frac{1}{c_\theta4\pi^2\lambda_1^2 + 1} = O(\lambda_1^{-2})\in C_0(\mathbb{R})\cap L^1(\mathbb{R}), \end{equation*} $ |
the right-hand side of 94 belongs to
$ \begin{equation*} {\mathcal{F}}_2(b)(\cdot, x_2)\in L^2({\mathbb{R}}). \end{equation*} $ |
Applying the Plancherel identity, we obtain that
$ \begin{equation} b(\cdot, x_2)\in L^2(0, 1). \end{equation} $ | (95) |
We show that
$ \begin{equation*} \lim\limits_{t\to 0} \|b(\cdot, x_2+t) - b(\cdot, x_2)\|_{L^2(0, 1)_{x_1}} = 0. \end{equation*} $ |
Thanks to Plancherel's identity, we infer from 79 that
$ \begin{align*} \|b(\cdot, x_2+t) -& b(\cdot, x_2)\|^2_{L^2(0, 1)_{x_1}} = \|{\mathcal{F}}_2(b)(\cdot, x_2+t) - {\mathcal{F}}_2(b)(\cdot, x_2)\|^2_{L^2({\mathbb{R}})_{\lambda_1}}\\ & = \int_{{\mathbb{R}}}\left |\frac{1}{\hat{k}_0(\lambda_1)}\left [{\mathcal{F}}_2(u)(\lambda_1, x_2+t) - {\mathcal{F}}_2(u)(\lambda_1, x_2)\right] \right|^2d\lambda_1. \end{align*} $ |
In view of 88 and thanks to the Plancherel identity, we obtain
$ \begin{align} \|b(\cdot, x_2+t) &- b(\cdot, x_2)\|^2_{L^2(0, 1)_{x_1}}\\ & \leq C^2 \int_{{\mathbb{R}}}\left |(4\pi^2\lambda_1^2+1) ({\mathcal{F}}_2(u)(\lambda_1, x_2+t) - {\mathcal{F}}_2(u)(\lambda_1, x_2)) \right|^2d\lambda_1\\ &\leq C^2\left \|{\mathcal{F}}_2 \left (\frac{\partial u}{\partial x_1}\right) (\cdot, x_2+t ) -{\mathcal{F}}_2\left (\frac{\partial u}{\partial x_1}\right) (\cdot, x_2 ) \right\|^2_{L^2(0, 1)_{\lambda_1}} \\ &\quad+ C^2 \|{\mathcal{F}}_2(u)(\cdot, x_2+t)-{\mathcal{F}}_2(u)(\cdot, x_2)\|^2_{L^2(0, 1)_{\lambda_1}} \\ & = C^2\left \|\frac{\partial u}{\partial x_1}(\cdot, x_2+t ) -\frac{\partial u}{\partial x_1} (\cdot, x_2 ) \right\|^2_{L^2(0, 1)_{x_1}} \\ &\quad +C^2 \|u(\cdot, x_2+t)-u(\cdot, x_2)\|^2_{L^2(0, 1)_{x_1}}. \end{align} $ |
By the Lebesgue dominated convergence theorem and since
$ \begin{equation} b(x_1, x_2)\in C([0, 1]_{x_2}; \quad L^2(0, 1)_{x_1}). \end{equation} $ | (96) |
To conclude the proof, it remains to show the regularity of
$ \begin{equation*} u_0(\cdot, x_2, y_2)\in C^1([0, 1])\qquad\text{a.e.} \quad (x_2, y_2)\in (0, 1)\times Y_1. \end{equation*} $ |
On the other hand, the solution
$ \begin{equation} u_0(x_1, x_2, y_2) : = \int_{0}^{1} G_{y_2}(x_1, s) b(s, x_2)ds, \end{equation} $ | (97) |
where
$ \begin{equation*} G_{y_2}(x_1, s) : = \frac{1}{\sqrt{a(y_2)}\sinh\left (\frac{1}{\sqrt{a(y_2)}}\right) }\sinh\left (\frac{x_1\wedge s}{\sqrt{a(y_2)}}\right)\sinh\left (\frac{1-x_1\vee s}{\sqrt{a(y_2)}}\right). \end{equation*} $ |
This combined with 96 and 97 proves that
$ \begin{equation*} \label{u0isregular} u_0(x_1, x_2, y_2) \in C^1([0, 1]^2, L^\infty_{\rm per}(Y_1)), \end{equation*} $ |
which concludes the proof.
We prove now the Lemma 4.2 that we used in Step
Proof of Lemma 4.2. By the convolution property of the Fourier transform on
$ \begin{equation} h\ast u = \overline{{\mathcal{F}}_2}({\mathcal{F}}_2(h)) \ast \overline{{\mathcal{F}}_2}({\mathcal{F}}_2(h)) = \overline{{\mathcal{F}}_1}({\mathcal{F}}_2(h){\mathcal{F}}_2(u)), \end{equation} $ | (98) |
where
$ \begin{equation*} {\mathcal{F}}_2(h){\mathcal{F}}_2(u) = {\mathcal{F}}_2(h){\mathcal{F}}_1(u)\in L^2(\mathbb{R})\cap L^1({\mathbb{R}}). \end{equation*} $ |
Since
$ \begin{equation*} h\ast u = \overline{{\mathcal{F}}_2}({\mathcal{F}}_2(h){\mathcal{F}}_2(u))\in L^2(\mathbb{R}), \end{equation*} $ |
which yields 91. This concludes the proof.
Remark 2. Thanks to the Beurling-Deny theory of Dirichlet forms [3], Mosco [15, Theorem 4.1.2] has proved that the
$ \begin{equation} F(u) = F_d(u) + \int_{{\Omega}}u^2k(dx) + \int_{({\Omega}\times{\Omega})\setminus{\rm diag}} (u(x)-u(y))^2j(dx, dy), \end{equation} $ | (99) |
where
$ \begin{equation*} T(0) = 0, \qquad\text{and}\qquad \forall x, y\in{\mathbb{R}}, \quad |T(x)-T(y)|\leq |x-y|, \end{equation*} $ |
we have
In the present context, we do not know if the
We are going to give an explicit expression of the homogenized matrix
Set
$ \begin{equation} a: = (1-\theta) A_1 e_1\cdot e_1 + \theta A_2e_1\cdot e_1, \end{equation} $ | (100) |
with
Proposition 5. Let
$ \begin{equation} A^\ast = \theta A_1+(1-\theta)A_2 -\frac{\theta(1-\theta)}{a} (A_2-A_1)e_1\otimes (A_2-A_1)e_1. \end{equation} $ | (101) |
If
$ \begin{equation} A^\ast = \theta A_1+(1-\theta)A_2. \end{equation} $ | (102) |
Furthermore, if one of the following conditions is satisfied:
i) in two dimensions,
ii) in three dimensions,
then
Remark 3. The condition
Proof. Assume that
$ \begin{equation} \lim\limits_{\delta\to 0} A^\ast_\delta = A^\ast, \end{equation} $ | (103) |
where, for
$ \begin{equation*} A_\delta(y_1) = \chi(y_1) A_1^\delta + (1-\chi(y_1)) A_2 ^\delta\qquad\text{for} \quad y_1\in{\mathbb{R}}, \end{equation*} $ |
with
$ \begin{equation} A^\ast_\delta = \theta A_1^\delta+(1-\theta)A_2^\delta -\frac{\theta(1-\theta)}{(1-\theta)A_1^\delta e_1\cdot e_1 + \theta A_2^\delta e_1\cdot e_1 } (A_2^\delta-A_1^\delta)e_1\otimes (A_2^\delta-A_1^\delta)e_1. \end{equation} $ | (104) |
If
We prove that
$ \begin{align} |(A_2-A_1)e_1\cdot x| &\leq |A_2e_1\cdot x|+ |A_1e_1\cdot x|\\ &\leq (A_2e_1\cdot e_1)^{1/2}(A_2x\cdot x)^{1/2} + (A_1e_1\cdot e_1)^{1/2}(A_1x\cdot x)^{1/2}. \end{align} $ | (105) |
This combined with the definition 101 of
$ \begin{align} A^\ast x\cdot x& = \theta (A_1 x\cdot x) + (1-\theta)(A_2 x\cdot x) - \theta(1-\theta)a^{-1}\left |(A_2-A_1)e_1\cdot x\right|^2\\ &\geq \theta (A_1x\cdot x) +(1-\theta) (A_2 x\cdot x)\\ &\quad-\theta(1-\theta)a^{-1}[(A_2e_1\cdot e_1)^{1/2} (A_2x\cdot x)^{1/2}+ (A_1e_1\cdot e_1)^{1/2} (A_1x\cdot x)^{1/2} ]^2\\ & = a^{-1} [a \theta (A_1x\cdot x) +a (1-\theta) (A_2 x\cdot x) -\theta(1-\theta)(A_2e_1\cdot e_1)( A_2x\cdot x)\\ & \quad -\theta(1-\theta)(A_1e_1\cdot e_1)(A_1x\cdot x)\\ & \quad - 2\theta(1-\theta)(A_2e_1\cdot e_1)^{1/2}( A_2x\cdot x)^{1/2}(A_1e_1\cdot e_1)^{1/2}(A_1x\cdot x)^{1/2}]. \end{align} $ | (106) |
In view of definition 100 of
$ \begin{align} &a \theta( A_1x\cdot x) +a (1-\theta)( A_2 x\cdot x)\\& = \theta (1-\theta)(A_1 e_1\cdot e_1)(A_1 x\cdot x) + \theta^2(A_2 e_1\cdot e_1)(A_1 x\cdot x)\\ &\quad+ (1-\theta)^2 (A_1 e_1\cdot e_1)(A_2 x\cdot x)\\ &\quad + \theta(1-\theta)(A_2 e_1\cdot e_1)(A_2 x\cdot x). \end{align} $ |
Plugging this equality in 106, we deduce that
$ \begin{align} A^\ast x\cdot x &\geq a^{-1}[\theta^2(A_2 e_1\cdot e_1)(A_1 x\cdot x)+ (1-\theta)^2(A_1 e_1\cdot e_1)(A_2 x\cdot x)\\ & \quad -2\theta(1-\theta)(A_2e_1\cdot e_1)^{1/2}(A_1x\cdot x)^{1/2}(A_1e_1\cdot e_1)^{1/2}( A_2x\cdot x)^{1/2}]\\ & = a^{-1}[\theta (A_2 e_1\cdot e_1)^{1/2}(A_1x\cdot x)^{1/2} -(1-\theta) (A_1 e_1\cdot e_1)^{1/2}(A_2x\cdot x)^{1/2} ]^2\geq 0, \end{align} $ | (107) |
which proves that
Now, assume
$ \begin{equation*} (A_2^\delta -A_1^\delta)e_1 = (A_2-A_1)e_1 = 0, \end{equation*} $ |
which implies that the lamination formula 104 becomes
$ \begin{equation*} A^\ast_\delta = \theta A_1^\delta + (1-\theta)A_2^\delta. \end{equation*} $ |
This combined with the convergence 103 yields to the expression 102 for
To conclude the proof, it remains to prove the positive definiteness of
Case (i).
Assume
$ \begin{equation} |A_2e_1\cdot x| = (A_2e_1\cdot e_1)^{1/2}(A_2x\cdot x)^{1/2} = \|A^{1/2}_2e_1\|\|A^{1/2}_2x\|. \end{equation} $ | (108) |
Recall that the Cauchy-Schwarz inequality is an equality if and only if one of vectors is a scalar multiple of the other. This combined with 108 leads to
$ \begin{equation} x = \alpha e_1 \qquad\text{for some} \quad \alpha\in{\mathbb{R}}. \end{equation} $ | (109) |
From the definition 101 of
$ \begin{equation} A^\ast e_1\cdot e_1 = \frac{1}{a}(A_2 e_1\cdot e_1) (\xi\cdot e_1)^2 > 0. \end{equation} $ | (110) |
Recall that
Case (ii).
Assume that
$ \begin{align} |A_1e_1\cdot x| & = (A_1e_1\cdot e_1)^{1/2}(A_1x\cdot x)^{1/2}, \end{align} $ | (111) |
$ \begin{align} |A_2e_1\cdot x| & = (A_2e_1\cdot e_1)^{1/2}(A_2x\cdot x)^{1/2}. \end{align} $ | (112) |
Let
$ \begin{equation*} p_i(t) : = A_i(x+te_1)\cdot (x+te_1) \qquad\text{for} \quad i = 1, 2. \end{equation*} $ |
In view of 111, the discriminant of
$ \begin{equation} p_1(t_1) = A_1(x+t_1e_1)\cdot (x+t_1e_1) = 0. \end{equation} $ | (113) |
Recall that
$ \begin{equation} x\in{\rm Span}(e_1, \eta_1). \end{equation} $ | (114) |
Similarly, recalling that
$ \begin{equation} x\in{\rm Span}(e_1, \eta_2). \end{equation} $ | (115) |
Since the vectors
$ \begin{equation*} x = \alpha e_1 \qquad\text{for some} \quad \alpha\in{\mathbb{R}}. \end{equation*} $ |
In light of definition 101 of
$ \begin{equation*} A^\ast e_1\cdot e_1 = \frac{1}{a} (A_1e_1\cdot e_1)(A_2e_1\cdot e_1) > 0, \end{equation*} $ |
which implies that
Note that when
$ \begin{equation*} A_1 = e_2\otimes e_2 \quad\text{and}\quad A_2 = I_2. \end{equation*} $ |
Then, it is easy to check that
This problem was pointed out to me by Marc Briane during my stay at Institut National des Sciences Appliquées de Rennes. I thank him for the countless fruitful discussions. My thanks also extend to Valeria Chiadò Piat for useful remarks. The author is also a member of the INdAM-GNAMPA project "Analisi variazionale di modelli non-locali nelle scienze applicate".
Intersection of three pipes at junction O. Right-Zoomed view of the junction with old traces
Phase plot in terms of equilibrium variables with initial state
Momentum for perturbation of order
Momentum for perturbation of order
Momentum for perturbation of order
Momentum for perturbation of order
Conservative variables,
Conservative variables,