Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Review

Wind-blown particulate transport: A review of computational fluid dynamics models

  • The transport of particulate by wind constitutes a relevant phenomenon in environmental sciences and civil engineering, because erosion, transport and deposition of particulate can cause serious problems to human infrastructures. From a mathematical point of view, modeling procedure for this phenomenon requires handling the interaction between different constituents, the transfer of a constituent from the air to the ground and viceversa, and consequently the ground-surface interaction and evolution. Several approaches have been proposed in the literature, according to the specific particulate or application. We here review these contributions focusing in particular on the behavior of sand and snow, which almost share the same mathematical modeling issues, and point out existing links and analogies with wind driven rain. The final aim is then to classify and analyze the different mathematical and computational models in order to facilitate a comparison among them. A first classification of the proposed models can be done distinguishing whether the dispersed phase is treated using a continuous or a particle-based approach, a second one on the basis of the type of equations solved to obtain particulate density and velocity, a third one on the basis of the interaction model between the suspended particles and the transporting fluid.

    Citation: Andrea Lo Giudice, Roberto Nuca, Luigi Preziosi, Nicolas Coste. Wind-blown particulate transport: A review of computational fluid dynamics models[J]. Mathematics in Engineering, 2019, 1(3): 508-547. doi: 10.3934/mine.2019.3.508

    Related Papers:

    [1] Gaozhong Sun, Tongwei Zhao . Lung adenocarcinoma pathology stages related gene identification. Mathematical Biosciences and Engineering, 2020, 17(1): 737-746. doi: 10.3934/mbe.2020038
    [2] Shuyi Cen, Kaiyou Fu, Yue Shi, Hanliang Jiang, Jiawei Shou, Liangkun You, Weidong Han, Hongming Pan, Zhen Liu . A microRNA disease signature associated with lymph node metastasis of lung adenocarcinoma. Mathematical Biosciences and Engineering, 2020, 17(3): 2557-2568. doi: 10.3934/mbe.2020140
    [3] Yuan Yang, Lingshan Zhou, Xi Gou, Guozhi Wu, Ya Zheng, Min Liu, Zhaofeng Chen, Yuping Wang, Rui Ji, Qinghong Guo, Yongning Zhou . Comprehensive analysis to identify DNA damage response-related lncRNA pairs as a prognostic and therapeutic biomarker in gastric cancer. Mathematical Biosciences and Engineering, 2022, 19(1): 595-611. doi: 10.3934/mbe.2022026
    [4] Bin Ma, Lianqun Cao, Yongmin Li . A novel 10-gene immune-related lncRNA signature model for the prognosis of colorectal cancer. Mathematical Biosciences and Engineering, 2021, 18(6): 9743-9760. doi: 10.3934/mbe.2021477
    [5] Ji-Ming Wu, Wang-Ren Qiu, Zi Liu, Zhao-Chun Xu, Shou-Hua Zhang . Integrative approach for classifying male tumors based on DNA methylation 450K data. Mathematical Biosciences and Engineering, 2023, 20(11): 19133-19151. doi: 10.3934/mbe.2023845
    [6] Jinqi He, Wenjing Zhang, Faxiang Li, Yan Yu . Development of metastasis-associated seven gene signature for predicting lung adenocarcinoma prognosis using single-cell RNA sequencing data. Mathematical Biosciences and Engineering, 2021, 18(5): 5959-5977. doi: 10.3934/mbe.2021298
    [7] Mengyang Han, Xiaoli Wang, Yaqi Li, Jianjun Tan, Chunhua Li, Wang Sheng . Identification of coagulation-associated subtypes of lung adenocarcinoma and establishment of prognostic models. Mathematical Biosciences and Engineering, 2023, 20(6): 10626-10658. doi: 10.3934/mbe.2023470
    [8] Yanping Xie, Zhaohui Dong, Junhua Du, Xiaoliang Zang, Huihui Guo, Min Liu, Shengwen Shao . The relationship between mouse lung adenocarcinoma at different stages and the expression level of exosomes in serum. Mathematical Biosciences and Engineering, 2020, 17(2): 1548-1557. doi: 10.3934/mbe.2020080
    [9] Ziyu Wu, Sugui Wang, Qiang Li, Qingsong Zhao, Mingming Shao . Identification of 10 differently expressed lncRNAs as prognostic biomarkers for prostate adenocarcinoma. Mathematical Biosciences and Engineering, 2020, 17(3): 2037-2047. doi: 10.3934/mbe.2020108
    [10] Siqi Hu, Fang Wang, Junjun Yang, Xingxiang Xu . Elevated ADAR expression is significantly linked to shorter overall survival and immune infiltration in patients with lung adenocarcinoma. Mathematical Biosciences and Engineering, 2023, 20(10): 18063-18082. doi: 10.3934/mbe.2023802
  • The transport of particulate by wind constitutes a relevant phenomenon in environmental sciences and civil engineering, because erosion, transport and deposition of particulate can cause serious problems to human infrastructures. From a mathematical point of view, modeling procedure for this phenomenon requires handling the interaction between different constituents, the transfer of a constituent from the air to the ground and viceversa, and consequently the ground-surface interaction and evolution. Several approaches have been proposed in the literature, according to the specific particulate or application. We here review these contributions focusing in particular on the behavior of sand and snow, which almost share the same mathematical modeling issues, and point out existing links and analogies with wind driven rain. The final aim is then to classify and analyze the different mathematical and computational models in order to facilitate a comparison among them. A first classification of the proposed models can be done distinguishing whether the dispersed phase is treated using a continuous or a particle-based approach, a second one on the basis of the type of equations solved to obtain particulate density and velocity, a third one on the basis of the interaction model between the suspended particles and the transporting fluid.


    Baló's concentric sclerosis (BCS) was first described by Marburg [1] in 1906, but became more widely known until 1928 when the Hungarian neuropathologist Josef Baló published a report of a 23-year-old student with right hemiparesis, aphasia, and papilledema, who at autopsy had several lesions of the cerebral white matter, with an unusual concentric pattern of demyelination [2]. Traditionally, BCS is often regarded as a rare variant of multiple sclerosis (MS). Clinically, BCS is most often characterized by an acute onset with steady progression to major disability and death with months, thus resembling Marburg's acute MS [3,4]. Its pathological hallmarks are oligodendrocyte loss and large demyelinated lesions characterized by the annual ring-like alternating pattern of demyelinating and myelin-preserved regions. In [5], the authors found that tissue preconditioning might explain why Baló lesions develop a concentric pattern. According to the tissue preconditioning theory and the analogies between Baló's sclerosis and the Liesegang periodic precipitation phenomenon, Khonsari and Calvez [6] established the following chemotaxis model

    ˜uτ=DΔX˜udiffusion ofactivated macrophagesX(˜χ˜u(ˉu˜u)˜v)chemoattractant attractssurrounding activated macrophages+μ˜u(ˉu˜u)production of activated macrophages,˜ϵΔX˜vdiffusion of chemoattractant=˜α˜v+˜β˜wdegradationproduction of chemoattractant,˜wτ=κ˜uˉu+˜u˜u(ˉw˜w)destruction of oligodendrocytes, (1.1)

    where ˜u, ˜v and ˜w are, respectively, the density of activated macrophages, the concentration of chemoattractants and density of destroyed oligodendrocytes. ˉu and ˉw represent the characteristic densities of macrophages and oligodendrocytes respectively.

    By numerical simulation, the authors in [6,7] indicated that model (1.1) only produces heterogeneous concentric demyelination and homogeneous demyelinated plaques as χ value gradually increases. In addition to the chemoattractant produced by destroyed oligodendrocytes, "classically activated'' M1 microglia also can release cytotoxicity [8]. Therefore we introduce a linear production term into the second equation of model (1.1), and establish the following BCS chemotaxis model with linear production term

    {˜uτ=DΔX˜uX(˜χ˜u(ˉu˜u)˜v)+μ˜u(ˉu˜u),˜ϵΔX˜v+˜α˜v=˜β˜w+˜γ˜u,˜wτ=κ˜uˉu+˜u˜u(ˉw˜w). (1.2)

    Before going to details, let us simplify model (1.2) with the following scaling

    u=˜uˉu,v=μˉu˜ϵD˜v,w=˜wˉw,t=μˉuτ,x=μˉuDX,χ=˜χ˜ϵμ,α=D˜α˜ϵμˉu,β=˜βˉw,γ=˜γˉu,δ=κμ,

    then model (1.2) takes the form

    {ut=Δu(χu(1u)v)+u(1u),xΩ,t>0,Δv+αv=βw+γu,xΩ,t>0,wt=δu1+uu(1w),xΩ,t>0,ηu=ηv=0,xΩ,t>0,u(x,0)=u0(x),w(x,0)=w0(x),xΩ, (1.3)

    where ΩRn(n1) is a smooth bounded domain, η is the outward normal vector to Ω, η=/η, δ balances the speed of the front and the intensity of the macrophages in damaging the myelin. The parameters χ,α and δ are positive constants as well as β,γ are nonnegative constants.

    If δ=0, then model (1.3) is a parabolic-elliptic chemotaxis system with volume-filling effect and logistic source. In order to be more line with biologically realistic mechanisms, Hillen and Painter [9,10] considered the finite size of individual cells-"volume-filling'' and derived volume-filling models

    {ut=(Du(q(u)q(u)u)uq(u)uχ(v)v)+f(u,v),vt=DvΔv+g(u,v). (1.4)

    q(u) is the probability of the cell finding space at its neighbouring location. It is also called the squeezing probability, which reflects the elastic properties of cells. For the linear choice of q(u)=1u, global existence of solutions to model (1.4) in any space dimension are investigated in [9]. Wang and Thomas [11] established the global existence of classical solutions and given necessary and sufficient conditions for spatial pattern formation to a generalized volume-filling chemotaxis model. For a chemotaxis system with generalized volume-filling effect and logistic source, the global boundedness and finite time blow-up of solutions are obtained in [12]. Furthermore, the pattern formation of the volume-filling chemotaxis systems with logistic source and both linear diffusion and nonlinear diffusion are shown in [13,14,15] by the weakly nonlinear analysis. For parabolic-elliptic Keller-Segel volume-filling chemotaxis model with linear squeezing probability, asymptotic behavior of solutions is studied both in the whole space Rn [16] and on bounded domains [17]. Moreover, the boundedness and singularity formation in parabolic-elliptic Keller-Segel volume-filling chemotaxis model with nonlinear squeezing probability are discussed in [18,19].

    Very recently, we [20] investigated the uniform boundedness and global asymptotic stability for the following chemotaxis model of multiple sclerosis

    {ut=Δu(χ(u)v)+u(1u),χ(u)=χu1+u,xΩ,t>0,τvt=Δvβv+αw+γu,xΩ,t>0,wt=δu1+uu(1w),xΩ,t>0,

    subject to the homogeneous Neumann boundary conditions.

    In this paper, we are first devoted to studying the local existence and uniform boundedness of the unique classical solution to system (1.3) by using Neumann heat semigroup arguments, Banach fixed point theorem, parabolic Schauder estimate and elliptic regularity theory. Then we discuss that exponential asymptotic stability of the positive equilibrium point to system (1.3) by constructing Lyapunov function.

    Although, in the pathological mechanism of BCS, the initial data in model (1.3) satisfy 0<u0(x)1,w0(x)=0, we mathematically assume that

    {u0(x)C0(ˉΩ)with0,u0(x)1inΩ,w0(x)C2+ν(ˉΩ)with0<ν<1and0w0(x)1inΩ. (1.5)

    It is because the condition (1.5) implies u(x,t0)>0 for any t0>0 by the strong maximum principle.

    The following theorems give the main results of this paper.

    Theorem 1.1. Assume that the initial data (u0(x),w0(x)) satisfy the condition (1.5). Then model (1.3) possesses a unique global solution (u(x,t),v(x,t),w(x,t)) satisfying

    u(x,t)C0(ˉΩ×[0,))C2,1(ˉΩ×(0,)),v(x,t)C0((0,),C2(ˉΩ)),w(x,t)C2,1(ˉΩ×[0,)), (1.6)

    and

    0<u(x,t)1,0v(x,t)β+γα,w0(x)w(x,t)1,inˉΩ×(0,).

    Moreover, there exist a ν(0,1) and M>0 such that

    uC2+ν,1+ν/2(ˉΩ×[1,))+vC0([1,),C2+ν(ˉΩ))+wCν,1+ν/2(ˉΩ×[1,))M. (1.7)

    Theorem 1.2. Assume that β0,γ0,β+γ>0 and

    χ<{min (1.8)

    Let (u, v, w) be a positive classical solution of the problem (1.3), (1.5). Then

    \begin{equation} \|u(\cdot, t)-u^{\ast}\|_{L^{\infty}(\Omega)}+\|v(\cdot, t)-v^{\ast}\|_{L^{\infty}(\Omega)} +\|w(\cdot, t)-w^{\ast}\|_{L^{\infty}(\Omega)}\rightarrow 0, \; \; \mathit{\text{as}}\, t\rightarrow \infty. \end{equation} (1.9)

    Furthermore, there exist positive constants \lambda = \lambda(\chi, \alpha, \gamma, \delta, n) and C = C(|\Omega|, \chi, \alpha, \beta, \gamma, \delta) such that

    \begin{equation} \|u-u^{\ast}\|_{L^{\infty}(\Omega)}\leq C e^{-\lambda t}, \, \|v-v^{\ast}\|_{L^{\infty}(\Omega)}\leq C e^{-\lambda t}, \, \|w-w^{\ast}\|_{L^{\infty}(\Omega)} \leq C e^{-\lambda t}, \; \; t \gt 0, \end{equation} (1.10)

    where (u^{\ast}, v^{\ast}, w^{\ast}) = (1, \frac{\beta+\gamma}{\alpha}, 1) is the unique positive equilibrium point of the model (1.3).

    The paper is organized as follows. In section 2, we prove the local existence, the boundedness and global existence of a unique classical solution. In section 3, we firstly establish the uniform convergence of the positive global classical solution, then discuss the exponential asymptotic stability of positive equilibrium point in the case of weak chemotactic sensitivity. The paper ends with a brief concluding remarks.

    The aim of this section is to develop the existence and boundedness of a global classical solution by employing Neumann heat semigroup arguments, Banach fixed point theorem, parabolic Schauder estimate and elliptic regularity theory.

    Proof of Theorem 1.1 (ⅰ) Existence. For p\in (1, \infty) , let A denote the sectorial operator defined by

    Au: = -\Delta u \; \mathrm{for}\; u\in D(A): = \Big\{\varphi\in W^{2, p}(\Omega)\Big|\frac{\partial}{\partial \eta}\varphi\Big|_{\partial\Omega} = 0\Big\}.

    \lambda_{1} > 0 denote the first nonzero eigenvalue of -\Delta in \Omega with zero-flux boundary condition. Let A_{1} = -\Delta+\alpha and X^{l} be the domains of fractional powers operator A^{l}, \; l\geq 0 . From the Theorem 1.6.1 in [21], we know that for any p > n and l\in(\frac{n}{2p}, \frac{1}{2}) ,

    \begin{equation} \|z\|_{L^{\infty}(\Omega)}\leq C\|A_{1}^{l}z\|_{ L^{p}(\Omega)}\, \, \mathrm{for\; all}\, \, z\in X^{l}. \end{equation} (2.1)

    We introduce the closed subset

    S: = \left\{u\in X\big| \|u\|_{L^{\infty}((0, T);L^{\infty}(\Omega))}\leq R+1\right\}

    in the space X: = C^{0}([0, T];C^{0}(\bar{\Omega})) , where R is a any positive number satisfying

    \|u_{0}(x)\|_{L^{\infty}(\Omega)}\leq R

    and T > 0 will be specified later. Note F(u) = \frac{u}{1+u} , we consider an auxiliary problem with F(u) replaced by its extension \tilde{F}(u) defined by

    \tilde{F}(u) = \begin{cases} F(u)u\; \; &\text{if}\; \; u\geq 0, \\ -F(-u)(-u)\; \; &\text{if}\; \; u \lt 0. \end{cases}

    Notice that \tilde{F}(u) is a smooth globally Lipshitz function. Given \hat{u}\in S , we define \Psi\hat{u} = u by first writing

    \begin{equation} w(x, t) = (w_{0}(x)-1)e^{-\delta\int_{0}^{t}\tilde{F} (\hat{u})\hat{u}ds}+1, \; \; x\in\Omega, \; t \gt 0, \end{equation} (2.2)

    and

    w_{0}\leq w(x, t)\leq 1, \; \; x\in\Omega, \; t \gt 0,

    then letting v solve

    \begin{equation} \left\{\begin{array}{ll} -\Delta v+\alpha v = \beta w+\gamma \hat{u}, &x\in\Omega, \; t\in(0, T), \\ \partial_{\eta}v = 0, &x\in\partial\Omega, \; t\in(0, T), \\ \end{array} \right. \end{equation} (2.3)

    and finally taking u to be the solution of the linear parabolic problem

    \left\{\begin{array}{ll} u_{t} = \Delta u-\chi \nabla\cdot(\hat{u}(1-\hat{u})\nabla v)+\hat{u}(1-\hat{u}), &x\in\Omega, \; t\in(0, T), \\ \partial_{\eta}u = 0, &x\in\partial\Omega, \; t\in(0, T), \\ u(x, 0) = u_{0}(x), &x\in\Omega.\\ \end{array} \right.

    Applying Agmon-Douglas-Nirenberg Theorem [22,23] for the problem (2.3), there exists a constant C such that

    \begin{equation} \begin{aligned} \|v\|_{W_{p}^{2}(\Omega)}&\leq C(\beta\|w\|_{L^{p}(\Omega)}+\gamma\|\hat{u}\|_{L^{p}(\Omega)})\\ &\leq C(\beta|\Omega|^{\frac{1}{p}}+\gamma (R+1)) \end{aligned} \end{equation} (2.4)

    for all t\in(0, T) . From a variation-of-constants formula, we define

    \Psi(\hat{u}) = e^{t\Delta}u_{0}-\chi\int^{t}_{0}e^{(t-s)\Delta}\nabla\cdot\left(\hat{u}(1-\hat{u})\nabla v(s)\right)ds+\int^{t}_{0}e^{(t-s)\Delta}\hat{u}(s)(1-\hat{u}(s))ds.

    First we shall show that for T small enough

    \|\Psi(\hat{u})\|_{L^{\infty}((0, T);L^{\infty}(\Omega))}\leq R+1

    for any \hat{u}\in S . From the maximum principle, we can give

    \begin{equation} \|e^{t\Delta}u_{0}\|_{L^{\infty}(\Omega)}\leq \|u_{0}\|_{L^{\infty}(\Omega)}, \end{equation} (2.5)

    and

    \begin{equation} \begin{aligned} \int^{t}_{0}\|e^{t\Delta}\hat{u}(s)(1-\hat{u}(s))\|_{L^{\infty} (\Omega)}ds \leq& \int^{t}_{0}\|\hat{u}(s)(1-\hat{u}(s))\|_{L^{\infty} (\Omega)}ds\\ \leq&(R+1)(R+2)T \end{aligned} \end{equation} (2.6)

    for all t\in(0, T) . We use inequalities (2.1) and (2.4) to estimate

    \begin{equation} \begin{aligned} &\chi\int^{t}_{0}\|e^{(t-s)\Delta}\nabla\cdot(\hat{u}(1-\hat{u})\nabla v(s))\|_{L^{\infty}(\Omega)}ds\\ \leq& C\int^{t}_{0}(t-s)^{-l} \|e^{\frac{t-s}{2}\Delta}\nabla\cdot(\hat{u}(1-\hat{u})\nabla v(s))\|_{L^{p}(\Omega)}ds \\ \leq& C\int^{t}_{0}(t-s)^{-l-\frac{1}{2}} \|(\hat{u}(1-\hat{u})\nabla v(s)\|_{L^{p}(\Omega)}ds \\ \leq& C T^{\frac{1}{2}-l}(R+1)(R+2)(\beta|\Omega|^{\frac{1}{p}}+\gamma (R+1)) \end{aligned} \end{equation} (2.7)

    for all t\in(0, T) . This estimate is attributed to T < 1 and the inequality in [24], Lemma 1.3 iv]

    \| e^{t\Delta}\nabla z\|_{L^{p}(\Omega)}\leq C_{1}(1+t^{-\frac{1}{2}})e^{-\lambda_{1}t}\| z\|_{L^{p}(\Omega)}\; \mathrm{for\; all}\; \; z\in C^{\infty}_{c}(\Omega).

    From inequalities (2.5), (2.6) and (2.7) we can deduce that \Psi maps S into itself for T small enough.

    Next we prove that the map \Psi is a contractive on S . For \hat{u}_{1}, \hat{u}_{2}\in S , we estimate

    \begin{align*} \; \; \; \; \; \; \; \; &\|\Psi(\hat{u}_{1})-\Psi(\hat{u}_{2})\|_{L^{\infty}(\Omega)} \\ \leq & \chi \int^{t}_{0}(t-s)^{-l-\frac{1}{2}}\|\left[\hat{u}_{2}(s)(1-\hat{u}_{2}(s))-\hat{u}_{1}(s)(1-\hat{u}_{1}(s))\right] \nabla v_{2}(s)\|_{L^{p}(\Omega)}ds\\ &+\chi \int^{t}_{0}\|\hat{u}_{1}(s)(1-\hat{u}_{1}(s))(\nabla v_{1}(s)- \nabla v_{2}(s))\|_{L^{p}(\Omega)}ds \\ &+\int^{t}_{0}\|e^{(t-s)\Delta}[\hat{u}_{1}(s)(1-\hat{u}_{1}(s))-\hat{u}_{2}(s)(1-\hat{u}_{2}(s))]\|_{L^{\infty}(\Omega)}ds \\ \leq & \chi \int^{t}_{0}(t-s)^{-l-\frac{1}{2}}(2R+1)\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{X}\|\nabla v_{2}(s)\|_{L^{p}(\Omega)}ds\\ &+\chi \int^{t}_{0}(R+1)(R+2)\left(\beta \|w_{1}(s)-w_{2}(s)\|_{L^{p}(\Omega)}+\gamma \|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{L^{p}(\Omega)}\right)ds \\ & +\int^{t}_{0}(2R+1)\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{X}ds \\ \leq & \chi \int^{t}_{0}(t-s)^{-l-\frac{1}{2}}(2R+1)\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{X}\|\nabla v_{2}(s)\|_{L^{p}(\Omega)}ds\\ &+2\beta\delta \chi \int^{t}_{0}(R+1)(R+2)t\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{L^{p}(\Omega)}+\gamma \|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{L^{p}(\Omega)}ds\\ & +\int^{t}_{0}(2R+1)\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{X}ds \\ \leq & \left(C\chi T^{\frac{1}{2}-l}(2R+1)(\beta|\Omega|^{\frac{1}{p}}+\gamma (R+1))+2\beta\delta \chi T(R^{2}+3R+\gamma+2)+T(2R+1)\right)\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{X}. \end{align*}

    Fixing T\in(0, 1) small enough such that

    \left(C\chi T^{\frac{1}{2}-l}(2R+1)(\beta|\Omega|^{\frac{1}{p}}+\gamma (R+1))+2\beta\delta \chi T(R^{2}+3R+\gamma+2)+T(2R+1)\right)\leq \frac{1}{2}.

    It follows from the Banach fixed point theorem that there exists a unique fixed point of \Psi .

    (ⅱ) Regularity. Since the above of T depends on \|u_{0}\|_{L^{\infty}(\Omega)} and \|w_{0}\|_{L^{\infty}(\Omega)} only, it is clear that (u, v, w) can be extended up to some maximal T_{\max}\in(0, \infty] . Let Q_{T} = \Omega \times (0, T] for all T\in (0, T_{\max}) . From u\in C^{0}(\bar{Q}_{T}) , we know that w\in C^{0, 1}(\bar{Q}_{T}) by the expression (2.2) and v\in C^{0}([0, T], W_{p}^{2}(\Omega)) by Agmon-Douglas-Nirenberg Theorem [22,23]. From parabolic L^{p} -estimate and the embedding relation W_{p}^{1}(\Omega)\hookrightarrow C^{\nu}(\bar{\Omega}), \; p > n , we can get u\in W^{2, 1}_{p}(Q_{T}) . By applying the following embedding relation

    \begin{equation} W^{2, 1}_{p}(Q_{T})\hookrightarrow C^{\nu, \nu/2}(\bar{Q}_{T}), \; p \gt \frac{n+2}{2}, \end{equation} (2.8)

    we can derive u(x, t)\in C^{\nu, \nu/2}(\bar{Q}_{T}) with 0 < \nu\leq 2-\frac{n+2}{p} . The conclusion w\in C^{\nu, 1+\nu/2}(\bar{Q}_{T}) can be obtained by substituting u\in C^{\nu, \nu/2}(\bar{Q}_{T}) into the formulation (2.2). The regularity u\in C^{2+\nu, 1+\nu/2}(\bar{Q}_{T}) can be deduced by using further bootstrap argument and the parabolic Schauder estimate. Similarly, we can get v\in C^{0}((0, T), C^{2+\nu}(\bar{\Omega})) by using Agmon-Douglas-Nirenberg Theorem [22,23]. From the regularity of u we have w\in C^{2+\nu, 1+\nu/2}(\bar{Q}_{T}) .

    Moreover, the maximal principle entails that 0 < u(x, t)\leq 1 , 0\leq v(x, t)\leq\frac{\beta+\gamma}{\alpha} . It follows from the positivity of u that \tilde{F}(u) = F(u) and because of the uniqueness of solution we infer the existence of the solution to the original problem.

    (ⅲ) Uniqueness. Suppose (u_{1}, v_{1}, w_{1}) and (u_{2}, v_{2}, w_{2}) are two deferent solutions of model (1.3) in \Omega\times [0, T] . Let U = u_{1}-u_{2} , V = v_{1}-v_{2} , W = w_{1}-w_{2} for t\in (0, T) . Then

    \begin{equation} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\int_{\Omega}U^{2}dx+\int_{\Omega}|\nabla U|^{2}dx\\ \leq& \chi\int_{\Omega}|u_{1}(1-u_{1})-u_{2}(1-u_{2})|\nabla v_{1}||\nabla U|+u_{2}(1-u_{2})|\nabla V||\nabla U| dx\\ &+\int_{\Omega}|u_{1}(1-u_{1})-u_{2}(1-u_{2})||U|dx \\ \leq & \chi\int_{\Omega}|U||\nabla v_{1}||\nabla U|+\frac{1}{4}|\nabla V||\nabla U| dx +\int_{\Omega}|U|^{2}dx \\ \leq &\int_{\Omega}|\nabla U|^{2}dx+\frac{\chi^{2}}{32}\int_{\Omega}|\nabla V|^{2}dx+ \frac{\chi^{2} K^{2}+2}{2}\int_{\Omega}|U|^{2}dx, \end{aligned} \end{equation} (2.9)

    where we have used that |\nabla v_{1}|\leq K results from \nabla v_{1}\in C^{0}([0, T], C^{0}(\bar{\Omega})).

    Similarly, by Young inequality and w_{0}\leq w_{1}\leq 1 , we can estimate

    \begin{equation} \int_{\Omega}|\nabla V|^{2}dx+\frac{\alpha}{2}\int_{\Omega}| V|^{2}dx\leq\frac{\beta^{2}}{\alpha} \int_{\Omega}|W|^{2}dx+\frac{\gamma^{2}}{\alpha} \int_{\Omega}|U|^{2}dx, \end{equation} (2.10)

    and

    \begin{equation} \frac{d}{dt}\int_{\Omega}W^{2}dx\leq \delta\int_{\Omega}|U|^{2}+|W|^{2}dx. \end{equation} (2.11)

    Finally, adding to the inequalities (2.9)–(2.11) yields

    \frac{d}{dt}\left(\int_{\Omega}U^{2}dx+\int_{\Omega}W^{2}dx\right)\leq C\left(\int_{\Omega}U^{2}dx+\int_{\Omega}W^{2}dx\right)\; \mathrm{for\; all}\; t \in (0, T).

    The results U\equiv 0 , W\equiv0 in \Omega\times(0, T) are obtained by Gronwall's lemma. From the inequality (2.10), we have V\equiv 0 . Hence (u_{1}, v_{1}, w_{1}) = (u_{2}, v_{2}, w_{2}) in \Omega\times(0, T) .

    (ⅳ) Uniform estimates. We use the Agmon-Douglas-Nirenberg Theorem [22,23] for the second equation of the model (1.3) to get

    \begin{equation} \|v\|_{C^{0}([t, t+1], W_{p}^{2}(\Omega))}\leq C\left(\|u\|_{L^{p}(\Omega \times [t, t+1])}+\|w\|_{L^{p}(\Omega \times [t, t+1])}\right) \leq C_{2} \end{equation} (2.12)

    for all t\geq 1 and C_{2} is independent of t . From the embedded relationship W_{p}^{1}(\Omega)\hookrightarrow C^{0}({\bar{\Omega}}), \; p > n , the parabolic L^{p} -estimate and the estimation (2.12), we have

    \|u\|_{W_{p}^{2, 1}(\Omega\times[t, t+1])}\leq C_{3}

    for all t\geq 1 . The estimate \|u\|_{C^{\nu, \frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{4} for all t\geq 1 obtained by the embedded relationship (2.8). We can immediately compute \|w\|_{C^{\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{5} for all t\geq 1 according to the regularity of u and the specific expression of w . Further, bootstrapping argument leads to \|v\|_{C^{0}([t, t+1], C^{2+\nu}(\bar{\Omega}))}\leq C_{6} and \|u\|_{C^{2+\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{7} for all t\geq 1 . Thus the uniform estimation (1.7) is proved.

    Remark 2.1. Assume the initial data 0 < u_{0}(x)\leq 1 and w_{0}(x) = 0 . Then the BCS model (1.3) has a unique classical solution.

    In this section we investigate the global asymptotic stability of the unique positive equilibrium point (1, \frac{\beta+\gamma}{\alpha}, 1) to model (1.3). To this end, we first introduce following auxiliary problem

    \begin{equation} \left\{\begin{array}{ll} u_{\epsilon t} = \Delta u_{\epsilon}-\nabla\cdot(u_{\epsilon}(1-u_{\epsilon})\nabla v_{\epsilon})+u_{\epsilon}(1-u_{\epsilon}), & x\in\Omega, \; t \gt 0, \\ -\Delta v_{\epsilon}+\alpha v_{\epsilon} = \beta w_{\epsilon}+\gamma u_{\epsilon}, &x\in\Omega, \; t \gt 0, \\ w_{\epsilon t} = \delta\frac{u_{\epsilon}^{2}+\epsilon}{1+u_{\epsilon}} (1-w_{\epsilon}), &x\in\Omega, \; t \gt 0, \\ \partial_{\eta}u_{\epsilon} = \partial_{\eta}v_{\epsilon} = 0, &x\in\partial\Omega, \; t \gt 0, \\ u_{\epsilon}(x, 0) = u_{0}(x), \; w_{\epsilon}(x, 0) = w_{0}(x), &x\in\Omega. \end{array} \right. \end{equation} (3.1)

    By a similar proof of Theorem 1.1, we get that the problem (3.1) has a unique global classical solution (u_{\epsilon}, v_{\epsilon}, w_{\epsilon}) , and there exist a \nu\in(0, 1) and M_{1} > 0 which is independent of \epsilon such that

    \begin{equation} \|u_{\epsilon}\|_{C^{2+\nu, 1+\nu/2}(\bar{\Omega}\times[1, \infty))}+\|v_{\epsilon}\|_{C^{2+\nu, 1+\nu/2}(\bar{\Omega}\times[1, \infty))} +\|w_{\epsilon}\|_{C^{\nu, 1+\nu/2}(\bar{\Omega}\times[1, \infty))}\leq M_{1}. \end{equation} (3.2)

    Then, motivated by some ideas from [25,26], we construct a Lyapunov function to study the uniform convergence of homogeneous steady state for the problem (3.1).

    Let us give following lemma which is used in the proof of Lemma 3.2.

    Lemma 3.1. Suppose that a nonnegative function f on (1, \infty) is uniformly continuous and \int_{1}^{\infty}f(t)dt < \; \infty . Then f(t)\rightarrow 0 as t\rightarrow \infty.

    Lemma 3.2. Assume that the condition (1.8) is satisfied. Then

    \begin{equation} \|u_{\epsilon}(\cdot, t)-1\|_{L^{2}(\Omega)}+ \|v_{\epsilon}(\cdot, t)-v^{\ast}\|_{L^{2}(\Omega)} +\|w_{\epsilon}(\cdot, t)-1\|_{L^{2}(\Omega)}\rightarrow 0, \; \; t\rightarrow \infty, \end{equation} (3.3)

    where v^{\ast} = \frac{\beta+\gamma}{\alpha} .

    Proof We construct a positive function

    E(t): = \int_{\Omega}(u_{\varepsilon}-1-\ln u_{\epsilon}) +\frac{1}{2\delta\epsilon}\int_{\Omega}(w_{\epsilon}-1)^{2}, \; \; t \gt 0.

    From the problem (3.1) and Young's inequality, we can compute

    \begin{equation} \frac{d}{dt}E(t)\leq {\frac{\chi^{2}}{4}}\int_{\Omega}|\nabla v_{\epsilon}|^{2}dx-\int_{\Omega}(u_{\epsilon}-1)^{2}dx-\int_{\Omega}(w_{\epsilon}-1)^{2}dx, \; \; t \gt 0. \end{equation} (3.4)

    We multiply the second equations in system (3.1) by v_{\epsilon}-v^{\ast} , integrate by parts over \Omega and use Young's inequality to obtain

    \begin{equation} \int_{\Omega}|\nabla v_{\epsilon}|^{2}dx\leq\frac{\gamma^{2}}{2\alpha}\int_{\Omega}(u_{\epsilon}-1)^{2}dx +\frac{\beta^{2}}{2\alpha}\int_{\Omega}(w_{\epsilon}-1)^{2}dx, \; \; t \gt 0, \end{equation} (3.5)

    and

    \begin{equation} \int_{\Omega}(v_{\epsilon}-v^{\ast})^{2}dx\leq\frac{2\gamma^{2}}{\alpha^{2}}\int_{\Omega}(u_{\epsilon}-1)^{2}dx+\frac{2 \beta^{2}}{\alpha^{2}}\int_{\Omega}(w_{\epsilon}-1)^{2}dx, \; \; t \gt 0. \end{equation} (3.6)

    Substituting inequality (3.5) into inequality (3.4) to get

    \begin{equation} \nonumber \frac{d}{dt}E(t)\leq -C_{8}\left(\int_{\Omega}(u_{\epsilon}-1)^{2}dx+\int_{\Omega}(w_{\epsilon}-1)^{2}dx\right), \; \; t \gt 0, \end{equation}

    where C_{8} = \min\left\{1-\frac{\chi^{2}\beta^{2}}{8\alpha}, 1-\frac{\chi^{2}\gamma^{2}}{8\alpha}\right\} > 0.

    Let f(t): = \int_{\Omega}(u_{\epsilon}-1)^{2}+(w_{\epsilon}-1)^{2}dx . Then

    \int_{1}^{\infty}f(t)dt\leq \frac{E(1)}{C_{8}} \lt \infty, \; \; t \gt 1.

    It follows from the uniform estimation (3.2) and the Arzela-Ascoli theorem that f(t) is uniformly continuous in (1, \infty) . Applying Lemma 3.1, we have

    \begin{equation} \int_{\Omega}(u_{\epsilon}(\cdot, t)-1)^{2}+ (w_{\epsilon}(\cdot, t)-1)^{2}dx\rightarrow 0, \; \; t\rightarrow \infty. \end{equation} (3.7)

    Combining inequality (3.6) and the limit (3.7) to obtain

    \int_{\Omega}(v_{\epsilon}(\cdot, t)-v^{\ast})^{2}dx \rightarrow 0, \; \; t\rightarrow \infty.

    Proof of Theorem 1.2 As we all known, each bounded sequence in C^{2+\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times[1, \infty)) is precompact in C^{2, 1}(\bar{\Omega}\times[1, \infty)) . Hence there exists some subsequence \{u_{\epsilon_{n}}\}_{n = 1}^{\infty} satisfying \epsilon_{n}\rightarrow0 as n\rightarrow \infty such that

    \lim\limits_{n\rightarrow \infty}\|u_{\epsilon_{n}}-u_{\ast}\|_{C^{2, 1}(\bar{\Omega}\times[1, \infty))} = 0.

    Similarly, we can get

    \lim\limits_{n\rightarrow \infty}\|v_{\epsilon_{n}}-v_{\ast}\|_{C^{2}(\bar{\Omega})} = 0,

    and

    \lim\limits_{n\rightarrow \infty}\|w_{\epsilon_{n}}-w_{\ast}\|_{C^{0, 1}(\bar{\Omega}\times[1, \infty))} = 0.

    Combining above limiting relations yields that (u_{\ast}, v_{\ast}, w_{\ast}) satisfies model (1.3). The conclusion (u_{\ast}, v_{\ast}, w_{\ast}) = (u, v, w) is directly attributed to the uniqueness of the classical solution of the model (1.3). Furthermore, according to the conclusion, the strong convergence (3.3) and Diagonal line method, we can deduce

    \begin{equation} \|u(\cdot, t)-1\|_{L^{2}(\Omega)}+ \|v(\cdot, t)-v^{\ast}\|_{L^{2}(\Omega)} +\|w(\cdot, t)-1\|_{L^{2}(\Omega)}\rightarrow 0, \; \; t\rightarrow \infty. \end{equation} (3.8)

    By applying Gagliardo-Nirenberg inequality

    \begin{equation} \|z\|_{L^{\infty}}\leq C\|z\|_{L^{2}(\Omega)}^{2/(n+2)}\|z\|_{W^{1, \infty}(\Omega)}^{n/(n+2)}, \; \; z\in W^{1, \infty}(\Omega), \end{equation} (3.9)

    comparison principle of ODE and the convergence (3.8), the uniform convergence (1.9) is obtained immediately.

    Since \lim_{t\rightarrow \infty}\|u(\cdot, t)-1\|_{L^{\infty}(\Omega)} = 0 , so there exists a t_{1} > 0 such that

    \begin{equation} u(x, t)\geq \frac{1}{2}\; \; \mathrm{for\; all}\; \; x\in \Omega, \; \; t \gt t_{1}. \end{equation} (3.10)

    Using the explicit representation formula of w

    w(x, t) = (w_{0}(x)-1)e^{-\delta\int_{0}^{t}F(u)uds}+1, \; \; x\in\Omega, \; t \gt 0

    and the inequality (3.10), we have

    \begin{equation} \|w(\cdot, t)-1\|_{L^{\infty}(\Omega)}\leq e^{-\frac{\delta}{6}(t-t_{1})}, \; \; t \gt t_{1}. \end{equation} (3.11)

    Multiply the first two equations in model (1.3) by u-1 and v-v^{\ast} , respectively, integrate over \Omega and apply Cauchy's inequality, Young's inequality and the inequality (3.10), to find

    \begin{equation} \frac{d}{dt}\int_{\Omega}(u-1)^{2}dx\leq \frac{\chi^{2}}{32}\int_{\Omega}|\nabla v|^{2}dx-\int_{\Omega}(u-1)^{2}dx, \; \; t \gt t_{1}. \end{equation} (3.12)
    \begin{equation} \int_{\Omega}|\nabla v|^{2}dx+\frac{\alpha}{2}\int_{\Omega}(v-v^{\ast})^{2}dx\leq \frac{\beta^{2}}{\alpha}\int_{\Omega}(w-1)^{2}dx +\frac{\gamma^{2}}{\alpha}\int_{\Omega}(u-1)^{2}dx, \; \; t \gt 0. \end{equation} (3.13)

    Combining the estimations (3.11)–(3.13) leads us to the estimate

    \begin{equation} \nonumber \frac{d}{dt}\int_{\Omega}(u-1)^{2}dx\leq \left(\frac{\chi^{2}\gamma^{2}}{32\alpha}-1\right)\int_{\Omega}(u-1)^{2}dx +\frac{\chi^{2}\beta^{2}}{32\alpha}e^{-{\frac{\delta}{3}(t-t_{1})}}, \; \; t \gt t_{1}. \end{equation}

    Let y(t) = \int_{\Omega}(u-1)^{2}dx . Then

    y'(t)\leq \left(\frac{\chi^{2}\gamma^{2}}{32\alpha}-1\right)y(t) +\frac{\chi^{2}\beta^{2}}{32\alpha}e^{-{\frac{\delta}{3}(t-t_{1})}}, \; \; t \gt t_{1}.

    From comparison principle of ODE, we get

    y(t)\leq \left(y(t_{1})-\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}\right) e^{-\left(1-\frac{\chi^{2}\gamma^{2}}{32\alpha}\right)(t-t_{1})} +\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}e^{-\frac{\delta}{3}(t-t_{1})}, \; \; t \gt t_{1}.

    This yields

    \begin{equation} \int_{\Omega}(u-1)^{2}dx\leq C_{9} e^{-\lambda_{2} (t-t_{1})}, \; \; t \gt t_{1}, \end{equation} (3.14)

    where \lambda_{2} = \min\{1-\frac{\chi^{2}\gamma^{2}}{32\alpha}, \frac{\delta}{3}\} and C_{9} = \max\left\{|\Omega|-\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}, \frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}\right\} .

    From the inequalities (3.11), (3.13) and (3.14), we derive

    \begin{equation} \int_{\Omega}\left(v-\frac{\beta+\gamma}{\alpha}\right)^{2}dx\leq C_{10}e^{-\lambda_{2}(t-t_{1})}, \; \; t \gt t_{1}, \end{equation} (3.15)

    where C_{10} = \max\left\{\frac{2\gamma^{2}}{\alpha^{2}}C_{9}, \frac{2\beta^{2}}{\alpha^{2}}\right\} . By employing the uniform estimation (1.7), the inequalities (3.9), (3.14) and (3.15), the exponential decay estimation (1.10) can be obtained.

    The proof is complete.

    In this paper, we mainly study the uniform boundedness of classical solutions and exponential asymptotic stability of the unique positive equilibrium point to the chemotactic cellular model (1.3) for Baló's concentric sclerosis (BCS). For model (1.1), by numerical simulation, Calveza and Khonsarib in [7] shown that demyelination patterns of concentric rings will occur with increasing of chemotactic sensitivity. By the Theorem 1.1 we know that systems (1.1) and (1.2) are {uniformly} bounded and dissipative. By the Theorem 1.2 we also find that the constant equilibrium point of model (1.1) is exponentially asymptotically stable if

    \tilde{\chi} \lt \frac{2}{\bar{w}\tilde{\beta}} \sqrt{\frac{2D\mu\tilde{\alpha}\tilde{\epsilon}}{\bar{u}}},

    and the constant equilibrium point of the model (1.2) is exponentially asymptotically stable if

    \tilde{\chi} \lt 2\sqrt{\frac{2D\mu\tilde{\alpha}\tilde{\epsilon}}{\bar{u}}}\min \left\{\frac{1}{\bar{w}\tilde{\beta}}, \frac{1}{\bar{u}\tilde{\gamma}}\right\}.

    According to a pathological viewpoint of BCS, the above stability results mean that if chemoattractive effect is weak, then the destroyed oligodendrocytes form a homogeneous plaque.

    The authors would like to thank the editors and the anonymous referees for their constructive comments. This research was supported by the National Natural Science Foundation of China (Nos. 11761063, 11661051).

    We have no conflict of interest in this paper.



    [1] Abadie MO, Mendes N (2008) Numerical assessment of turbulence effect on the evaluation of wind-driven rain specific catch ratio. Int Commun Heat Mass Transfer 35: 1253–1261. doi: 10.1016/j.icheatmasstransfer.2008.08.013
    [2] Al-Hajraf S, Rubini P (2001) Three-dimensional homogeneous two-phase flow modelling of drifting sand around an open gate. WIT Trans Eng Sci 30: 309–325.
    [3] Alhajraf S (2000) Numerical simulation of drifting sand, PhD thesis, Cranfield University.
    [4] Anderson RS, Haff PK (1988) Simulation of eolian saltation. Science 241: 820–823. doi: 10.1126/science.241.4867.820
    [5] Anderson RS, Hallet B (1986) Sediment transport by wind: Toward a general model. Geol Soc Am Bull 97: 523–535. doi: 10.1130/0016-7606(1986)97<523:STBWTA>2.0.CO;2
    [6] Andreotti B, Claudin P, Douady S (2002a) Selection of dune shapes and velocities part 1: Dynamics of sand, wind and barchans. Eur Phys J B 28: 321–339.
    [7] Andreotti B, Claudin P, Douady S (2002b) Selection of dune shapes and velocities part 2: A two-dimensional modelling. Eur Phys J B 28: 341–352.
    [8] Andrews M, O'rourke P (1996) The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int J Multiphase Flow 22: 379–402. doi: 10.1016/0301-9322(95)00072-0
    [9] Arastoopour H, Pakdel P, Adewumi M (1990) Hydrodynamic analysis of dilute gas-solids flow in a vertical pipe. Powder Technol 62: 163–170. doi: 10.1016/0032-5910(90)80080-I
    [10] Balachandar S, Eaton J (2010) Turbulent dispersed multiphase flow. Annu Rev Fluid Mech 42: 111–133. doi: 10.1146/annurev.fluid.010908.165243
    [11] Bang B, Nielsen A, Sundsbø P, et al. (1994) Computer simulation of wind speed, wind pressure and snow accumulation around buildings (SNOW-SIM). Energy Build 21: 235–243. doi: 10.1016/0378-7788(94)90039-6
    [12] Barnea E, Mizrahi J (1973) A generalized approach to the fluid dynamics of particulate systems: Part 1. General correlation for fluidization and sedimentation in solid multiparticle systems. Chem Eng J 5: 171–189.
    [13] Benyahia S, Syamlal M, O'Brien TJ (2006) Extension of Hill-Koch-Ladd drag correlation over all ranges of Reynolds number and solids volume fraction. Powder Technol 162: 166–174. doi: 10.1016/j.powtec.2005.12.014
    [14] Beyers J, Sundsbø P (2004) Numerical simulation of three-dimensional, transient snow drifting around a cube. J Wind Eng Ind Aerod 92: 725–747. doi: 10.1016/j.jweia.2004.03.011
    [15] Beyers M, Waechter B (2008) Modeling transient snowdrift development around complex three-dimensional structures. J Wind Eng Ind Aerod 96: 1603–1615. doi: 10.1016/j.jweia.2008.02.032
    [16] Blocken B (2014) 50 years of computational wind engineering: past, present and future. J Wind Eng Ind Aerod 129: 69–102. doi: 10.1016/j.jweia.2014.03.008
    [17] Blocken B, Carmeliet J (2010) Overview of three state-of-the-art wind-driven rain assessment models and comparison based on model theory. Build Environ 45: 691–703. doi: 10.1016/j.buildenv.2009.08.007
    [18] Blocken B, Stathopoulos T, Carmeliet J (2007) CFD simulation of the atmospheric boundary layer: Wall function problems. Atmos Environ 41: 238–252. doi: 10.1016/j.atmosenv.2006.08.019
    [19] Boutanios Z, Jasak H (2017) Two-way coupled Eulerian-Eulerian simulations of drifting snow with viscous treatment of the snow phase. J Wind Eng Ind Aerod 169: 67–76. doi: 10.1016/j.jweia.2017.07.006
    [20] Businger J, Wyngaard J, Izumi Y, et al. (1971) Flux profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189. doi: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
    [21] Canuto C, Lo Giudice A (2018) A multi-timestep robin-robin domain decomposition method for time dependent advection-diffusion problems. App Math Comput (In press).
    [22] Chapman S, Cowling T (1970) The Mathematical Theory of Non-uniform Gases, Cambridge Mathematical Library.
    [23] Chen C, Wood P (1985) A urbulence closure model for dilute gas particle flows. Can J Chem Eng 63: 349–360. Available from: https://doi.org/10.1002/cjce.5450630301.
    [24] Choi E (1992) Simulation of wind-driven-rain around a building. J Wind Eng 52: 60–65.
    [25] Choi E (1997) Numerical modelling of gust effect on wind-driven rain. J Wind Eng Ind Aerod 72: 107–116. doi: 10.1016/S0167-6105(97)00246-8
    [26] Creyssels M, Dupont P, Moctar AOE, et al. (2009) Saltating particles in a turbulent boundary layer: Experiment and theory. J Fluid Mech 625: 47–74. doi: 10.1017/S0022112008005491
    [27] Deen N, Annaland MVS, der Hoef MV, et al. (2007) Review of discrete particle modeling of fluidized beds. Chem Eng Sci 62: 28–44. doi: 10.1016/j.ces.2006.08.014
    [28] Di Felice R (1994) The voidage function for fluid-particle interaction systems. Int J Multiphase Flow 20: 153–159. doi: 10.1016/0301-9322(94)90011-6
    [29] Durán O, Parteli EJ, Herrmann HJ (2010) A continuous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields. Earth Surf Processes Landforms 35: 1591–1600. doi: 10.1002/esp.2070
    [30] Dyer J (1974) A review of flux profile relationships. Boundary-Lay Meteorol 7: 363–372. doi: 10.1007/BF00240838
    [31] Elghobashi S (1991) Particle-laden turbulent flows: Direct simulation and closure models, In: Oliemans, R.V.A. Editor, Computational Fluid Dynamics for the Petrochemical Process Industry, Dordrecht: Springer, 91–104.
    [32] Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52: 309–329. doi: 10.1007/BF00936835
    [33] Ergun S (1952) Fluid flow through packed columns. J Chem Eng Prog 48: 89–94.
    [34] Faber TE (1995) Fluid Dynamics for Physicists, Cambridge University Press.
    [35] Farimani AB, Ferreira AD, Sousa AC (2011) Computational modeling of the wind erosion on a sinusoidal pile using a moving boundary method. Geomorphology 130: 299–311. doi: 10.1016/j.geomorph.2011.04.012
    [36] Gauer P (1999) Blowing and drifting snow in alpine terrain: a physically-based numerical model and related field measurements. PhD thesis, ETH Zurich, Switzerland.
    [37] Germano M, Piomelli U, Moin P, et al. (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3: 1760–1765. doi: 10.1063/1.857955
    [38] Gidaspow D (1994) Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, Academic press.
    [39] Gosman A, Lekakou C, Politis S, et al. (1992) Multidimensional modeling of turbulent two-phase flows in stirred vessels. AIChE J 38: 1946–1956. doi: 10.1002/aic.690381210
    [40] Hangan H (1999) Wind-driven rain studies. A C-FD-E approach. J Wind Eng Ind Aerod 81: 323–331. doi: 10.1016/S0167-6105(99)00027-6
    [41] Ho TD, Dupont P, Ould El Moctar A, et al. (2012) Particle velocity distribution in saltation transport. Phys Rev E 85: 052301. Available from: https://doi.org/10.1103/PhysRevE. 85.052301.
    [42] Ho TD, Valance A, Dupont P, et al. (2011) Scaling laws in aeolian sand transport. Phys Rev Lett 106: 094501. Available from: https://doi.org/10.1103/PhysRevLett.106.094501. doi: 10.1103/PhysRevLett.106.094501
    [43] Ho TD, Valance A, Dupont P, et al. (2014) Aeolian sand transport: Length and height distributions of saltation trajectories. Aeolian Res 12: 65–74. doi: 10.1016/j.aeolia.2013.11.004
    [44] Hrenya CM, Sinclair JL (1997) Effects of particle-phase turbulence in gas-solid flows. AlChE J 43: 853–869. Available from: https://aiche.onlinelibrary.wiley.com/doi/abs/10. 1002/aic.690430402. doi: 10.1002/aic.690430402
    [45] Hsu TJ, Jenkins JT, Liu PL (2004) On two-phase sediment transport: Sheet flow of massive particles. Proc R Soc A 460: 2223–2250. Available from: https://doi.org/10.1098/rspa. 2003.1273. doi: 10.1098/rspa.2003.1273
    [46] Huang S, Li Q (2010a) A new dynamic one-equation subgrid-scale model for large eddy simulations. Int J Numer Methods Eng 81: 835–865.
    [47] Huang S, Li Q (2010b) Numerical simulations of wind-driven rain on building envelopes based on Eulerian multiphase model. J Wind Eng Ind Aerod 98: 843–857.
    [48] Huang S, Li Q (2011) Large eddy simulations of wind-driven rain on tall building facades. J Struct Eng 138: 967–983.
    [49] Iversen J, Greeley R, White BR, et al. (1975) Eolian erosion of the martian surface, part 1: Erosion rate similitude. Icarus 26: 321–331. doi: 10.1016/0019-1035(75)90175-X
    [50] Iversen J, Rasmussen K (1999) The effect of wind speed and bed slope on sand transport. Sedimentology 46: 723–731. Available from: https://doi.org/10.1046/j.1365-3091. 1999.00245.x. doi: 10.1046/j.1365-3091.1999.00245.x
    [51] Jenkins JT, Hanes DM (1998) Collisional sheet flows of sediment driven by a turbulent fluid. J Fluid Mech 370: 29–52. Available from: https://doi.org/10.1017/S0022112098001840. doi: 10.1017/S0022112098001840
    [52] Ji S, Gerber A, Sousa A (2004) A convection-diffusion CFD model for aeolian particle transport. Int J Numer Methods Fluids 45: 797–817. Available from: https://doi.org/10.1002/fld. 724. doi: 10.1002/fld.724
    [53] Jiang H, Dun H, Tong D, et al. (2017) Sand transportation and reverse patterns over leeward face of sand dune. Geomorphology 283: 41–47. doi: 10.1016/j.geomorph.2016.12.030
    [54] Jiang H, Huang N, Zhu Y (2014) Analysis of wind-blown sand movement over transverse dunes. Sci Rep 4: 7114.
    [55] Jones W, Launder B (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transfer 15: 301–314. doi: 10.1016/0017-9310(72)90076-2
    [56] Kang L (2012) Discrete particle model of aeolian sand transport: Comparison of 2D and 2.5D simulations. Geomorphology 139: 536–544.
    [57] Kang L, Guo L (2006) Eulerian-Lagrangian simulation of aeolian sand transport. Powder Technol 162: 111–120. doi: 10.1016/j.powtec.2005.12.002
    [58] Kang L, Liu D (2010) Numerical investigation of particle velocity distributions in aeolian sand transport. Geomorphology 115: 156–171. doi: 10.1016/j.geomorph.2009.10.001
    [59] Kang L, Zou X (2011) Vertical distribution of wind-sand interaction forces in aeolian sand transport. Geomorphology 125: 361–373. doi: 10.1016/j.geomorph.2010.09.025
    [60] Kato M, Launder B (1993) The modeling of turbulent flow around stationary and vibratingsquare cylinders, In: Ninth Symposium on Turbulent Shear Flows, American Society of Mechanical Engineers, 1–6.
    [61] Kobayashi H (2005) The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Phys Fluids 17: 045104. doi: 10.1063/1.1874212
    [62] Kobayashi H, Ham F, Wu X (2008) Application of a local sgs model based on coherent structures to complex geometries. Int J Heat Fluid Flow 29: 640–653. doi: 10.1016/j.ijheatfluidflow.2008.02.008
    [63] Kok JF, Parteli EJ, Michaels TI, et al. (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75: 106901. doi: 10.1088/0034-4885/75/10/106901
    [64] Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl Akad Nauk SSSR 30: 299–303.
    [65] Kubilay A, Carmeliet J, Derome D (2017) Computational fluid dynamics simulations of wind-driven rain on a mid-rise residential building with various types of facade details. J Build Perform Simul 10: 125–143. doi: 10.1080/19401493.2016.1152304
    [66] Kubilay A, Derome D, Blocken B, et al. (2013) CFD simulation and validation of wind-driven rain on a building facade with an Eulerian multiphase model. Build Environ 61: 69–81. doi: 10.1016/j.buildenv.2012.12.005
    [67] Kubilay A, Derome D, Blocken B, et al. (2014) Numerical simulations of wind-driven rain on an array of low-rise cubic buildings and validation by field measurements. Build Environ 81: 283–295. doi: 10.1016/j.buildenv.2014.07.008
    [68] Kubilay A, Derome D, Blocken B, et al. (2015a) Numerical modeling of turbulent dispersion for wind-driven rain on building facades. Environ Fluid Mech 15: 109–133.
    [69] Kubilay A, Derome D, Blocken B, et al. (2015b) Wind-driven rain on two parallel wide buildings: field measurements and CFD simulations. J Wind Eng Ind Aerod 146: 11–28.
    [70] Lakehal D, Mestayer P, Edson J, et al. (1995) Eulero-Lagrangian simulation of raindrop trajectories and impacts within the urban canopy. Atmos Environ 29: 3501–3517. doi: 10.1016/1352-2310(95)00202-A
    [71] Li Z, Wang Y, Zhang Y, et al. (2014) A numerical study of particle motion and two-phase interaction in aeolian sand transport using a coupled large eddy simulation-discrete element method. Sedimentology 61: 319–332. Available from: https://doi.org/10.1111/sed. 12057. doi: 10.1111/sed.12057
    [72] Liston G, Brown R, Dent J (1993) A two-dimensional computational model of turbulent atmospheric surface flows with drifting snow. Ann Glaciol 18: 281–286. doi: 10.3189/S0260305500011654
    [73] Lopes A, Oliveira L, Ferreira AD, et al. (2013) Numerical simulation of sand dune erosion. Environ Fluid Mech 13: 145–168. Available from: https://doi.org/10.1007/s10652-012-9263-2. doi: 10.1007/s10652-012-9263-2
    [74] Lugo J, Rojas-Solorzano L, Curtis J (2012) Numerical simulation of aeolian saltation within the sediment transport layer using granular kinetic theory. Rev Fac Ing 27: 80–96.
    [75] Lun CKK, Savage SB, Jeffrey DJ, et al. (1984) Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J Fluid Mech 140: 223–256. Available from: https://doi.org/10.1017/S0022112084000586. doi: 10.1017/S0022112084000586
    [76] Marval JP, Rojas-Solórzano LR, Curtis JS (2007) Two-dimensional numerical simulation of saltating particles using granular kinetic theory, In: ASME/JSME 2007 5th Joint Fluids Engineering Conference, 929–939.
    [77] Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32: 1598–1605. doi: 10.2514/3.12149
    [78] Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model. Turbul heat mass transfer 4: 625–632.
    [79] Mochida A, Lun I (2008) Prediction of wind environment and thermal comfort at pedestrian level in urban area. J Wind Eng Ind Aerod 96: 1498–1527. doi: 10.1016/j.jweia.2008.02.033
    [80] Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci 151: 163–187.
    [81] Moore I (1995) Numerical modelling of blowing snow around buildings. PhD thesis, University of Leeds.
    [82] Naaim M, Florence N, Martinez H (1998) Numerical simulation of drifting snow: Erosion and deposition models. Ann Glaciol 26: 191–196. doi: 10.3189/1998AoG26-1-191-196
    [83] Nalpanis P,Hunt J,Barrett C (1993) Saltating particles over flat beds. J Fluid Mech 251: 661–685. doi: 10.1017/S0022112093003568
    [84] Okaze T, Niiya H, Nishimura K (2018) Development of a large-eddy simulation coupled with Lagrangian snow transport model. J Wind Eng Ind Aerod 183: 35–43. doi: 10.1016/j.jweia.2018.09.027
    [85] Okaze T, Takano Y, Mochida A, et al. (2015) Development of a new κ–? model to reproduce the aerodynamic effects of snow particles on a flow field. J Wind Eng Ind Aerod 144: 118–124.
    [86] Parteli E, Schwämmle V, Herrmann H, et al. (2006) Profile measurement and simulation of a transverse dune field in the lençóis maranhenses. Geomorphology 81: 29–42. doi: 10.1016/j.geomorph.2006.02.015
    [87] Pasini JM, Jenkins JT (2005) Aeolian transport with collisional suspension. Philos Trans R Soc A 363: 1625–1646. Available from: https://doi.org/10.1098/rsta.2005.1598. doi: 10.1098/rsta.2005.1598
    [88] Patankar N, Joseph D (2001) Modeling and numerical simulation of particulate flows by the Eulerian-Lagrangian approach. Int J Multiphase Flow 27: 1659–1684. doi: 10.1016/S0301-9322(01)00021-0
    [89] Pettersson K, Krajnovic S, Kalagasidis A, et al. (2016) Simulating wind-driven rain on building facades using eulerian multiphase with rain phase turbulence model. Build Environ 106: 1–9. doi: 10.1016/j.buildenv.2016.06.012
    [90] Pischiutta M, Formaggia L, Nobile F (2011) Mathematical modelling for the evolution of aeolian dunes formed by a mixture of sands: Entrainment-deposition formulation. Commun Appl Ind Math 2: 0003777.
    [91] Pomeroy J, Gray D (1990) Saltation of snow. Water Resour Res 26: 1583–1594. doi: 10.1029/WR026i007p01583
    [92] Preziosi L, Fransos D, Bruno L (2015) A multiphase first order model for non-equilibrium sand erosion, transport and sedimentation. Appl Math Lett 45: 69–75. doi: 10.1016/j.aml.2015.01.011
    [93] Sagaut P (2006) Large eddy simulation for incompressible flows: An introduction. Springer Science & Business Media.
    [94] Sato T, Uematsu T, Nakata T, et al. (1993) Three dimensional numerical simulation of snowdrift, In: Murakami, S. Editor, Computational Wind Engineering 1, Elsevier, Oxford, 741–746. Available from: https://doi.org/10.1016/B978-0-444-81688-7.50082-6.
    [95] Sauermann G, Andrade J, Maia L, et al. (2003) Wind velocity and sand transport on a barchan dune. Geomorphology 54: 245–255. doi: 10.1016/S0169-555X(02)00359-8
    [96] Sauermann G, Kroy K, Herrmann HJ (2001) Continuum saltation model for sand dunes. Phys Rev E 64: 031305. doi: 10.1103/PhysRevE.64.031305
    [97] Schlichting H, Gersten K (2016) Boundary-Layer Theory, Springer.
    [98] Shi X, Xi P, Wu J (2015) A lattice Boltzmann-Saltation model and its simulation of aeolian saltation at porous fences. Theor Comput Fluid Dyn 29: 1–20.
    [99] Shih TH, Liou WW, Shabbir A, et al. (1995) A new k-? eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids 24: 227–238.
    [100] Smagorinsky J (1963) General circulation experiments with the primitive equations: I. the basic experiment. Mon Weather Rev 91: 99–164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [101] Sun Q, Wang G, Xu Y (2001) DEM applications to aeolian sediment transport and impact process in saltation. Partl Sci Technol 19: 339–353. doi: 10.1080/02726350290057877
    [102] Sun X, He R, Wu Y (2018) Numerical simulation of snowdrift on a membrane roof and the mechanical performance under snow loads. Cold Reg Sci Technol 150: 15–24. doi: 10.1016/j.coldregions.2017.09.007
    [103] Sundsbø P (1998) Numerical simulations of wind deflection fins to control snow accumulation in building steps. J Wind Eng Ind Aerod 74: 543–552.
    [104] Surry D, Inculet D, Skerlj P, et al. (1994) Wind, rain and the building envelope: A status report of ongoing research at the university of western ontario. J Wind Eng Ind Aerod 53: 19–36. doi: 10.1016/0167-6105(94)90016-7
    [105] Syamlal M, O' Brien T (1987) The derivation of a drag coefficient formula from velocity-voidage correlations. Tech Note, US Department of Energy, Office of Fossil Energy, NETL, Morgantown, WV.
    [106] Thiis TK (2000) A comparison of numerical simulations and full-scale measurements of snowdrifts around buildings. Wind Struct 3: 73–81. doi: 10.12989/was.2000.3.2.073
    [107] Tominaga Y, Okaze T, Mochida A (2011) CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach. Build Environ 46: 899–910. doi: 10.1016/j.buildenv.2010.10.020
    [108] Tong D, Huang N (2012) Numerical simulation of saltating particles in atmospheric boundary layer over flat bed and sand ripples. J Geophys Res Atmos 117. Available from: https://doi. org/10.1029/2011JD017424.
    [109] Uematsu T, Nakata T, Takeuchi K, et al. (1991) Three-dimensional numerical simulation of snowdrift. Cold Reg Sci Technol 20: 65–73. doi: 10.1016/0165-232X(91)90057-N
    [110] Vinkovic I, Aguirre C, Ayrault M, et al. (2006) Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer. Boundary-layer Meteorol 121: 283–311. doi: 10.1007/s10546-006-9072-6
    [111] Wang H, Hou X, Deng Y (2015) Numerical simulations of wind-driven rain on building facades under various oblique winds based on Eulerian multiphase model. J Wind Eng Ind Aerod 142: 82–92. doi: 10.1016/j.jweia.2015.02.006
    [112] Wen C, Yu Y (1966) A generalized method for predicting the minimum fluidization velocity. AIChE J 12: 610–612. doi: 10.1002/aic.690120343
    [113] Werner B (1990) A Steady-State model of Wind-Blown sand transport. J Geol 98: 1–17. Available from: https://doi.org/10.1086/629371. doi: 10.1086/629371
    [114] Wilcox D (2008) Formulation of the k-ω turbulence model revisited. AIAA J 46: 2823–2838. Available from: https://doi.org/10.2514/1.36541. doi: 10.2514/1.36541
    [115] Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26: 1299–1310. doi: 10.2514/3.10041
    [116] Wilcox DC (1998) Turbulence Modeling for CFD, 2nd Edition, DCW industries La Canada, California.
    [117] Xiao F, Guo L, Li D, et al. (2012) Discrete particle simulation of mixed sand transport. Particuology 10: 221–228. doi: 10.1016/j.partic.2011.10.004
    [118] Yakhot V, Orszag S (1986) Renormalization group analysis of turbulence. i. basic theory. J Sci Comput 1: 3–51. Available from: https://doi.org/10.1007/BF01061452.
    [119] Zhou X,Kang L,Gu M,et al. (2016a) Numerical simulation and wind tunnel test for redistribution of snow on a flat roof. J Wind Eng Ind Aerod 153: 92–105.
    [120] Zhou X, Zhang Y, Wang Y, et al. (2016b) 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes. Aeolian Res 21: 45–52.
  • This article has been cited by:

    1. Lu Xu, Chunlai Mu, Qiao Xin, Global boundedness and asymptotic behavior of solutions for a quasilinear chemotaxis model of multiple sclerosis with nonlinear signal secretion, 2023, 28, 1531-3492, 1215, 10.3934/dcdsb.2022118
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8972) PDF downloads(1378) Cited by(17)

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog