Citation: Jizhi Huang, Yong Zhang, Xiaowei Ouyang, Guoyuan Xu. Lagged settlement in sandy cobble strata and earth pressure on shield tunnel[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6209-6230. doi: 10.3934/mbe.2019309
[1] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
[2] | Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048 |
[3] | Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580 |
[4] | Toshikazu Kuniya, Hisashi Inaba . Hopf bifurcation in a chronological age-structured SIR epidemic model with age-dependent infectivity. Mathematical Biosciences and Engineering, 2023, 20(7): 13036-13060. doi: 10.3934/mbe.2023581 |
[5] | Azmy S. Ackleh, Keng Deng, Yixiang Wu . Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences and Engineering, 2016, 13(1): 1-18. doi: 10.3934/mbe.2016.13.1 |
[6] | Churni Gupta, Necibe Tuncer, Maia Martcheva . A network immuno-epidemiological model of HIV and opioid epidemics. Mathematical Biosciences and Engineering, 2023, 20(2): 4040-4068. doi: 10.3934/mbe.2023189 |
[7] | Tsuyoshi Kajiwara, Toru Sasaki, Yoji Otani . Global stability of an age-structured infection model in vivo with two compartments and two routes. Mathematical Biosciences and Engineering, 2022, 19(11): 11047-11070. doi: 10.3934/mbe.2022515 |
[8] | Xiaodan Sun, Yanni Xiao, Zhihang Peng . Modelling HIV superinfection among men who have sex with men. Mathematical Biosciences and Engineering, 2016, 13(1): 171-191. doi: 10.3934/mbe.2016.13.171 |
[9] | Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437 |
[10] | Azizeh Jabbari, Carlos Castillo-Chavez, Fereshteh Nazari, Baojun Song, Hossein Kheiri . A two-strain TB model with multiplelatent stages. Mathematical Biosciences and Engineering, 2016, 13(4): 741-785. doi: 10.3934/mbe.2016017 |
[1] | Y. X. Bai, Research on ground collapse mechanism of shield tunnelling in saturated sandy pebble stratum and corresponding measures, Southwest Jiaotong University, 2012. |
[2] | J. Z. Huang and G. Y. Xu, Study on the constitutive model of sandy pebble soil, Proceedings of China-Europe Conference on Geotechnical Engineering, Springer, Cham, (2018), 26–30. |
[3] | J. Z. Huang, G. Y. Xu, Y. Wang, et al., Equivalent deformation modulus of sandy pebble soil-Mathematical derivation and numerical simulation. Math. Biosci. Eng., 16 (2019), 2756–2774. |
[4] | M. Hu, Numerical method to study the physical and mechanical characteristics of sandy pebble soil and the response caused by shield tunneling, South China University of Technology, 2014. |
[5] | C. He, Y. C. Jiang, Y. Fang, et al., Impact of shield tunneling on adjacent pile foundation in sandy cobble strata. Adv. Struct. Eng. 8 (2013), 1457–1467. |
[6] | C. He, K. Feng and Y. Fang, Surface settlement caused by twin-parallel shield tunnelling in sandy cobble strata, J. Zhejiang Univ.-SCI A, 11 (2012), 858–869. |
[7] | M. N. Wang, L. H. Wei, J. F. Lu, et al., Study of face stability of cobble-soil shield tunnelling at Chengdu metro, Rock Soil Mech., 1 (2011), 99–105. |
[8] | C. L. Li, Method for calculating loosening earth pressure during construction of shield tunnels, Chin. J. Geotech. Eng., 9 (2014), 1714–1720. |
[9] | K. Terzaghi, Stress distribution in dry and in saturated sand above a yielding trap-door, Proceedings of First International Conference on Soil Mechanics and Foundation Engineering. Cambridge, Massachusetts, (1936), 307–311. |
[10] | S. Z. Chen and C. X. Xu, Analysis and consideration of two ground pressure theories, Hydraulic Sci. Technol., 3 (2001), 22–24. |
[11] | J. Wu, S. M. Liao and D. Zhang, Loosening zone and earth pressure around tunnels in sandy soils based on ellipsoid theory of particle flows, Chin. J. Geotech. Eng., 35 (2013), 714–721. |
[12] | Q. M. Gong, R. L. Zhang, S. H. Zhou, et al., Method for calculating loosening earth pressure around tunnels based on ellipsoid theory of particle flows, Chin. J. Geotech. Eng., 39 (2017), 99–105. |
[13] | R. L. Handy, The arch in soil arching. J. Geotech. Eng., 111 (1985), 302–317. |
[14] | Y. R. Zheng and C. Y. Qiu, On the limitations of Protodyakonov's pressure arch theory, Mod. Tunnel Technol., 53 (2016), 1–8. |
[15] | K. Terzaghi, Theoretical soil mechanics, New York: Wiley, 1943. |
[16] | Y. C. Jiang, Y. Fang, C. He, et al., Study on delayed settlement formation induced by shield tunneling in sandy cobble strata, Chin. J. Undergr. Space Eng., 11 (2015), 171–177+265. |
[17] | Y. C. Jiang, Study on the soil disturbance mechanism of shield tunnelling in sandy cobble stratum, Southwest Jiaotong University, 2014. |
[18] | Y. X. Bai, T. Y. Qi, Y. D. Li, et al., Prediction for surface collapse deformation of shield construction based on LSSVM, Chin. J. Rock Mech. Eng., 32 (2013), 3666–3674. |
[19] | J. Du, Z. R. Mei and Y. Z. Chen, Study of failure calculation of tunnel face based on drawing ellipsoid theory, Tunnel Constr., 38 (2018), 1497–1504. |
[20] | B. H. Brady and E. T. Brown, Rock mechanics for underground mining, 3rd ed. New York: Kluwer Academic Publishers, (2005), 454–463. |
[21] | B. H. Brady and E. T. Brown, Rock mechanics: for underground mining. Springer science & business media, 2013 |
[22] | J. P. Guo, D. Liu and R. F. Li, Reconstruction of moving transition equation for ellipsoid drawing theory, Met. Min., 10 (2015), 37–40. |
[23] | R. Kvapil, Sublevel caving. SME mining engineering handbook, 2nd ed. New York: Soc. Min. Engrs., AIME, (1992), 1789–1814. |
[24] | R. F. Li, Several main problems of ellipsoid drawing theory: The necessity of establishing quasi-ellipsoid drawing theory, China Molybdenum Industry, 5 (1994), 39–43. |
[25] | J. P. Giroud, R. Bonaparte, J. F. Beech, et al., Design of soil layer-geosynthetic systems overlying voids, Geotext. Geomembr., 9 (1990), 11–50. |
[26] | W. Zhu, X. C. Zhong and R. Jia, Simulation on relaxation effect of vertical earth pressure for shield tunnels by particle flow code, Chin. J. Geotech. Eng., 30 (2008), 750–754. |
[27] | C. J. Lee, K. H. Chiang, C. M. Kuo, Ground movement and tunnel stability when tunneling in sand ground, J. Chin. Inst. Eng., 27 (2004), 1021–1032. |
[28] | P. J. Lou and Y. Xu, Discussion on Method for calculating loosening earth pressure during construction of shield tunnels, Chin. J. Geotech. Eng., 37 (2015), 1353–1354. |
[29] | C. L. Li, Reply to discussion on Method for calculating loosening earth pressure during construction of shield tunnels, Chin. J. Geotech. Eng., 37 (2015), 1355–1356. |
[30] | A. Marston, The theory of external loads on closed conduits in the light of the latest experiments, Iowa: Iowa Engineering Experiment Station, 1930. |
[31] | R. X. Chen, B. Zhu, Y. M. Chen, et al., Modified Terzaghi loozening earth pressure based on theory of main stress axes rotation, Rock Soil Mech., 31 (2010), 1402–1406. |
1. | E. Numfor, S. Bhattacharya, S. Lenhart, M. Martcheva, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, Optimal Control in Coupled Within-host and Between-host Models, 2014, 9, 0973-5348, 171, 10.1051/mmnp/20149411 | |
2. | Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Traveling wave solutions in a two-group epidemic model with latent period, 2017, 30, 0951-7715, 1287, 10.1088/1361-6544/aa59ae | |
3. | Rony Izhar, Jarkko Routtu, Frida Ben-Ami, Host age modulates within-host parasite competition, 2015, 11, 1744-9561, 20150131, 10.1098/rsbl.2015.0131 | |
4. | Tufail Malik, Abba Gumel, Elamin H. Elbasha, Qualitative analysis of an age- and sex-structured vaccination model for human papillomavirus, 2013, 18, 1553-524X, 2151, 10.3934/dcdsb.2013.18.2151 | |
5. | Robert Rowthorn, Selma Walther, The optimal treatment of an infectious disease with two strains, 2017, 74, 0303-6812, 1753, 10.1007/s00285-016-1074-5 | |
6. | Jemal Mohammed-Awel, Eric Numfor, Ruijun Zhao, Suzanne Lenhart, A new mathematical model studying imperfect vaccination: Optimal control analysis, 2021, 500, 0022247X, 125132, 10.1016/j.jmaa.2021.125132 | |
7. | Mohammad A. Safi, Abba B. Gumel, Elamin H. Elbasha, Qualitative analysis of an age-structured SEIR epidemic model with treatment, 2013, 219, 00963003, 10627, 10.1016/j.amc.2013.03.126 | |
8. | S.M. Garba, M.A. Safi, A.B. Gumel, Cross-immunity-induced backward bifurcation for a model of transmission dynamics of two strains of influenza, 2013, 14, 14681218, 1384, 10.1016/j.nonrwa.2012.10.003 | |
9. | Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba, A multi-group SIR epidemic model with age structure, 2016, 21, 1531-3492, 3515, 10.3934/dcdsb.2016109 | |
10. | Roberto Cavoretto, Simona Collino, Bianca Giardino, Ezio Venturino, A two-strain ecoepidemic competition model, 2015, 8, 1874-1738, 37, 10.1007/s12080-014-0232-x | |
11. | Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati, Mathematical analysis of a SIPC age-structured model of cervical cancer, 2022, 19, 1551-0018, 6013, 10.3934/mbe.2022281 | |
12. | Chin-Lung Li, Chang-Yuan Cheng, Chun-Hsien Li, Global dynamics of two-strain epidemic model with single-strain vaccination in complex networks, 2023, 69, 14681218, 103738, 10.1016/j.nonrwa.2022.103738 | |
13. | S.Y. Tchoumi, H. Rwezaura, J.M. Tchuenche, Dynamic of a two-strain COVID-19 model with vaccination, 2022, 39, 22113797, 105777, 10.1016/j.rinp.2022.105777 | |
14. | Ting Cui, Peijiang Liu, Fractional transmission analysis of two strains of influenza dynamics, 2022, 40, 22113797, 105843, 10.1016/j.rinp.2022.105843 | |
15. | Shasha Gao, Mingwang Shen, Xueying Wang, Jin Wang, Maia Martcheva, Libin Rong, A multi-strain model with asymptomatic transmission: Application to COVID-19 in the US, 2023, 565, 00225193, 111468, 10.1016/j.jtbi.2023.111468 | |
16. | Md. Mamun-Ur-Rashid Khan, Md. Rajib Arefin, Jun Tanimoto, Time delay of the appearance of a new strain can affect vaccination behavior and disease dynamics: An evolutionary explanation, 2023, 24680427, 10.1016/j.idm.2023.06.001 | |
17. | Yucui Wu, Zhipeng Zhang, Limei Song, Chengyi Xia, Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network, 2024, 179, 09600779, 114414, 10.1016/j.chaos.2023.114414 | |
18. | 彦锦 吉, Studies with Vaccination and Asymptomatic Transmission Models, 2024, 14, 2160-7583, 424, 10.12677/pm.2024.145197 | |
19. | Mohammadi Begum Jeelani, Rahim Ud Din, Ghaliah Alhamzi, Manel Hleili, Hussam Alrabaiah, Deterministic and Stochastic Nonlinear Model for Transmission Dynamics of COVID-19 with Vaccinations Following Bayesian-Type Procedure, 2024, 12, 2227-7390, 1662, 10.3390/math12111662 | |
20. | Taqi A.M. Shatnawi, Stephane Y. Tchoumi, Herieth Rwezaura, Khalid Dib, Jean M. Tchuenche, Mo’tassem Al-arydah, A two-strain COVID-19 co-infection model with strain 1 vaccination, 2024, 26668181, 100945, 10.1016/j.padiff.2024.100945 | |
21. | Riya Das, Dhiraj Kumar Das, T K Kar, Analysis of a chronological age-structured epidemic model with a pair of optimal treatment controls, 2024, 99, 0031-8949, 125240, 10.1088/1402-4896/ad8e0b | |
22. | Xi-Chao Duan, Chenyu Zhu, Xue-Zhi Li, Eric Numfor, Maia Martcheva, Dynamics and optimal control of an SIVR immuno-epidemiological model with standard incidence, 2025, 0022247X, 129449, 10.1016/j.jmaa.2025.129449 |