[1]
|
World Health Organization, Global status report on alcohol and health, 2014. Avail-
able from: https://www.who.int/substance_abuse/publications/global_alcohol_
report/msb_gsr_2014_1.pdf.
|
[2]
|
Shanghai Institute of Environmental Economics Disaster Prevention Laboratory, China, 2018.
Available from: http://www.saes.sh.cn/cn/index.asp.
|
[3]
|
R. Bani, R. Hameed and S. Szymanowski, Influence of environmental factors on college alcohol
drinking patterns, Math. Biosci. Eng., 10(2013), 1281–1300.
|
[4]
|
G. Mulone and B. Straughan, Modeling binge drinking, Int. J. Biomath. 5(2012), 57–70.
|
[5]
|
S. Mushayabasa and C. P. Bhunu, Modelling the effects of heavy alcohol consumption on the
transmission dynamics of gonorrhea, Nonlinear Dynamics, 66(2011), 695–706.
|
[6]
|
S. Lee, E. Jung and C. Castillo-Chavez, Optimal control intervention strategies in low- and high-
risk problem drinking populations, Socio-economic Plan. Sci., 44(2010), 258–265.
|
[7]
|
A. Mubayi, P. Greenwood and C. Castillo-Chavez, The impact of relative residence times on
the distribution of heavy drinkers in highly distinct environments, Socio-economic Plan. Sci.,
44(2010), 45–56.
|
[8]
|
H. F. Huo, Y. L. Chen and H. Xiang, Stability of a binge drinking model with delay, J. Biol.
Dynam., 11(2017), 210–225.
|
[9]
|
H. Xiang, Y. P. Liu and H. F. Huo, Stability of an sairs alcoholism model on scale-free networks,
Physica A Statist. Mechan., 473(2017), 276–292.
|
[10]
|
J. Cui, Y. Sun and H. Zhu, The impact of media on the control of infectious diseases, J. Dynam.
Differ. Equat., 20(2008), 31–53.
|
[11]
|
K. A. Pawelek, A. Oeldorf-Hirsch and L. Rong, Modeling the impact of twitter on influenza epi-
demics, Math. Biosci. Eng. 11(2014), 1337–1356.
|
[12]
|
H. F. Huo and X. M. Zhang, Modeling the Influence of Twitter in Reducing and Increasing the
Spread of Influenza Epidemics, SpringerPlus, 5(2016), 88.
|
[13]
|
H. F. Huo and X. M. Zhang, Complex dynamics in an alcoholism model with the impact of twitter,
Math. Biosci., 281(2016), 24–35.
|
[14]
|
H. F. Huo, P. Yang and H. Xiang, Stability and bifurcation for an seis epidemic model with the
impact of media, Physica A Statist. Mechan. Appl., 490(2018), 702–720.
|
[15]
|
X. Y. Meng and J. G. Wang, Analysis of a delayed diffusive model with Beddington-DeAngelis
functional response, Int. J. Biomath., doi:10.1142/S1793524519500475.
|
[16]
|
H. Xiang, M. X. Zou and H. F. Huo, Modeling the Effects of Health Education and Early Ther-
apy on Tuberculosis Transmission Dynamics, International Journal of Nonlinear Sciences and
Numerical Simulation, DOI:https://doi.org/10.1515/ijnsns-2016-0084.
|
[17]
|
H. Xiang, Y. Y. Wang and H. F. Huo, Analysis of the binge drinking models with demographics
and nonlinear infectivity on networks, J. Appl. Anal. Comput. 8(2018), 1535–1554.
|
[18]
|
Y. L. Cai, J. J. Jiao and Z. J. Gui, Environmental variability in a stochastic epidemic model, Appl.
Math. Comput., 329(2018), 210–226.
|
[19]
|
Z. Du and Z. Feng, Existence and asymptotic behaviors of traveling waves of a modified vector-
disease model, Commu. Pure Appl. Anal., 17(2018), 1899–1920.
|
[20]
|
X. B. Zhang, Q. H. Shi and S. H. Ma, Dynamic behavior of a stochastic SIQS epidemic model
with levy jumps, Nonlinear Dynam., 93(2018), 1481–1493.
|
[21]
|
W. M. Wang, Y. l. Cai and Z. Q. Ding, A stochastic differential equation SIS epidemic model
incorporating Ornstein-Uhlenbeck process, Physica A Statist. Mechan. Appl., 509(2018), 921–
936.
|
[22]
|
X. Y. Meng and Y. Q. Wu, Bifurcation and control in a singular phytoplankton-zooplankton-fish
model with nonlinear fish harvesting and taxation, Int. J. Bifurc. Chaos, 28(2018), 1850042.
|
[23]
|
National Institute on Alcohol Abuse and Alcoholism, United States of America, 2018. Available
from: https://www.niaaa.nih.gov/.
|
[24]
|
H. F. Huo, F. F. Cui and H. Xiang, Dynamics of an saits alcoholism model on unweighted and
weighted network, Physica A Statist. Mechan., 496(2018), 321–335.
|
[25]
|
H. F. Huo, R. Chen and X. Y. Wang, Modelling and stability of HIV/AIDS epidemic model with
treatment, Appl. Math. Modell., 40(2016), 6550–6559.
|
[26]
|
H. F. Huo and M. X. Zou, Modelling effects of treatment at home on tuberculosis transmission
dynamics, Appl. Math. Modell., 40(2016), 9474–9484.
|
[27]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equi-
libria for compartmental models of disease transmission, Math. Biosci., 180(2002), 29–48.
|
[28]
|
L. Salle and P. Joseph, The stability of dynamical systems, Society for Industrial and Applied
Mathematics, Philadelphia, Pa., 1976.
|
[29]
|
C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math.
Biosci. Eng., 1(2004), 361–401.
|
[30]
|
A. D. Lê, D. Funk, S. Lo, et al., Operant self-administration of alcohol and nicotine in a preclinical
model of co-abuse, Psychopharmacology, 231(2014), 4019–4029.
|