Research article Special Issues

Global dynamics for a multi-group alcoholism model with public health education and alcoholism age

  • Received: 19 December 2018 Accepted: 31 January 2019 Published: 27 February 2019
  • A new multi-group alcoholism model with public health education and alcoholism age is considered. The basic reproduction number R0 is defined and mathematical analyses show that dynamics of model are determined by the basic reproduction number. The alcohol-free equilibrium P0 of the model is globally asymptotically stable if R01 while the alcohol-present equilibrium P of the model exists uniquely and is globally asymptotically stable if R0>1. The Lyapunov functionals for the globally asymptotically stable of the multi-group model are constructed by using the theory of non-negative matrices and a graph-theoretic approach. Meanwhile, the combined effects of the public health education and the alcoholism age on alcoholism dynamics are displayed. Our main results show that strengthening public health education and decreasing the age of the alcoholism are very helpful for the control of alcoholism.

    Citation: Shuang-Hong Ma, Hai-Feng Huo. Global dynamics for a multi-group alcoholism model with public health education and alcoholism age[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1683-1708. doi: 10.3934/mbe.2019080

    Related Papers:

    [1] Shuang Hong Ma, Hai Feng Huo, Hong Xiang, Shuang Lin Jing . Global dynamics of a delayed alcoholism model with the effect of health education. Mathematical Biosciences and Engineering, 2021, 18(1): 904-932. doi: 10.3934/mbe.2021048
    [2] Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372
    [3] Xiaomei Feng, Zhidong Teng, Fengqin Zhang . Global dynamics of a general class of multi-group epidemic models with latency and relapse. Mathematical Biosciences and Engineering, 2015, 12(1): 99-115. doi: 10.3934/mbe.2015.12.99
    [4] Qianqian Cui . Global stability of multi-group SIR epidemic model with group mixing and human movement. Mathematical Biosciences and Engineering, 2019, 16(4): 1798-1814. doi: 10.3934/mbe.2019087
    [5] Simphiwe M. Simelane, Phumlani G. Dlamini, Fadekemi J. Osaye, George Obaido, Blessing Ogbukiri, Kehinde Aruleba, Cadavious M. Jones, Chidozie W. Chukwu, Oluwaseun F. Egbelowo . Modeling the impact of public health education on tungiasis dynamics with saturated treatment: Insight through the Caputo fractional derivative. Mathematical Biosciences and Engineering, 2023, 20(5): 7696-7720. doi: 10.3934/mbe.2023332
    [6] Salih Djillali, Soufiane Bentout, Tarik Mohammed Touaoula, Abdessamad Tridane . Global dynamics of alcoholism epidemic model with distributed delays. Mathematical Biosciences and Engineering, 2021, 18(6): 8245-8256. doi: 10.3934/mbe.2021409
    [7] Simphiwe M. Simelane, Justin B. Munyakazi, Phumlani G. Dlamini, Oluwaseun F. Egbelowo . Projections of human papillomavirus vaccination and its impact on cervical cancer using the Caputo fractional derivative. Mathematical Biosciences and Engineering, 2023, 20(7): 11605-11626. doi: 10.3934/mbe.2023515
    [8] Jinhu Xu, Yicang Zhou . Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences and Engineering, 2015, 12(5): 1083-1106. doi: 10.3934/mbe.2015.12.1083
    [9] Zhisheng Shuai, P. van den Driessche . Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences and Engineering, 2012, 9(2): 393-411. doi: 10.3934/mbe.2012.9.393
    [10] Amira Bouhali, Walid Ben Aribi, Slimane Ben Miled, Amira Kebir . Impact of immunity loss on the optimal vaccination strategy for an age-structured epidemiological model. Mathematical Biosciences and Engineering, 2024, 21(6): 6372-6392. doi: 10.3934/mbe.2024278
  • A new multi-group alcoholism model with public health education and alcoholism age is considered. The basic reproduction number R0 is defined and mathematical analyses show that dynamics of model are determined by the basic reproduction number. The alcohol-free equilibrium P0 of the model is globally asymptotically stable if R01 while the alcohol-present equilibrium P of the model exists uniquely and is globally asymptotically stable if R0>1. The Lyapunov functionals for the globally asymptotically stable of the multi-group model are constructed by using the theory of non-negative matrices and a graph-theoretic approach. Meanwhile, the combined effects of the public health education and the alcoholism age on alcoholism dynamics are displayed. Our main results show that strengthening public health education and decreasing the age of the alcoholism are very helpful for the control of alcoholism.




    [1] J. Rehm, C. Mathers and S. Popova, et al., Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders, Lancet, 373 (2009), 2223–2233.
    [2] J. Rehm, The risk associated with alcohol use and alcoholism, Alcohol Res. Health, 34 (2011), 135–143.
    [3] C. Lin, C. Lin and L. Mo, et al., Heavy alcohol consumption increases the incidence of hepatocellular carcinoma in hepatitis B virus-related cirrhosis, J. Hepatol, 58 (2013), 730–735.
    [4] WHO, Global Status Report on Alcohol and Health 2014, Geneva, Switzerland, 2014.
    [5] J. S. Gill, Reported levels of alcohol consumption and binge drinking within the UK undergraduate student population over the last 25 years, Alcohol, 37 (2002), 109–120.
    [6] L. Smith and D. Foxcroft, Drinking in the UK: An exploration of trends, 2009.
    [7] O. Sharomi and A. B. Gumel, Curtailing smoking dynamics: a mathematical modeling approach, Appl. Math. Comput., 195 (2008), 475–499.
    [8] H. F. Huo and X. M. Zhang, Complex dynamics in an alcoholism model with the impact of Twitter, Math. Biosci., 281 (2016), 24–35.
    [9] E. White and C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci., 208 (2007), 312–324.
    [10] G. Mulone and B. Straughan, A note on heroin epidemics, Math. Biosci., 218 (2009), 138-141.
    [11] B. Benedict, Modelling alcoholism as a contagious disease: how "infected" drinking buddies spread problem drinking, SIAM News, 40 2007.
    [12] J. L. Manthey, A. Aidoob and K. Y. Ward, Campus drinking:
    [13] an epidemiological model, J. Biol. Dyn., 2 (2008), 346–356.
    [14] 13 A. Mubayi, P. Greenwood and C. Castillo-Chavez, et al., The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments, Socio. Econ. Plan Sci., 44 (2010), 45–56.
    [15] 14 R. Bani, R. Hameed and S. Szymanowski, et al., Influence of environmental factors on college alcohol drinking patterns, Math. Biosci. Eng., 10 (2013), 1281–1300.
    [16] 15 B. Buonomo and D. Lacitignola, Modeling peer influence effects on the spread of high-risk alcohol consumption behavior, Ricerche mat., 63 (2014), 101–117.
    [17] 16 A. Mubayi and P. Greenwood, Contextual interventions for controlling alcohol drinking, Math. Popul. Stud., 20 (2013), 27–53.
    [18] 17 G. Mulone and B. Straughan, Modeling binge drinking, Int. J. Biomath., 5 (2012), 57-70.
    [19] 18 H. F. Huo and N. N. Song, Golobal stability for a binge drinking model with two stages, Discrete Dyn. Nat. Soc., 2012, Article ID 829386, (2012), 15 pages.
    [20] 19 C. P. Bhunu and S. Mushayabasa, A theoretical analysis of smoking and alcoholism, J. Math. Model. Algor., 11 (2), 387–408.
    [21] 20 C. E. Walters, B. Straughan and R. Kendal, Modeling alcohol problems: total recovery, Ricerche Mat., 62 (2013), 33-53.
    [22] 21 H. Xiang, C. C. Zhu and H. F. Huo, Modelling the effect of immigration on drinking behaviour, J. Biol. Dyn., 11 (2017), 275–298.
    [23] 22 X. Y. Wang, H. F. Huo and Q. K. Kong, et al., Optimal control strategies in an alcoholism model, Abstr. Appl. Anal., 3 (2014), 1-18.
    [24] 23 C. C. Zhu and J. Zhu, Stability of a reaction-diffusion alcohol model with the impact of tax policy, Comput. Math. Appl., 74 (2017), 613–633.
    [25] 24 H. F. Huo, R. Chen and X. Y. Wang, Modelling and stability of HIV/AIDS epidemic model with treatment, Appl. Math. Model., 40 (2016), 6550–6559.
    [26] 25 H. F. Huo and M. X. Zou, Modelling effects of treatment at home on tuberculosis transmission dynamics, Appl. Math. Model., 40 (2016), 9474–9484.
    [27] 26 H. Xiang, Y. L. Tang and H. F. Huo, A viral model with intracellular delay and humoral immunity, Bull. Malays. Math. Sci. Soc., 40 (2017), 1011–1023.
    [28] 27 H. Xiang, Y. Y. Wang and H. F. Huo, Analysis of the binge drinking models with demographics and nonlinear infectivity on networks, J. Appl. Anal. Comput., 8 (2018), 1535–1554.
    [29] 28 Y. L. Cai, J. J. Jiao and Z. J. Gui, et al., Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 3(2018), 210–226.
    [30] 29 Z. Du and Z. Feng, Existence and asymptotic behaviors of traveling waves of a modified vectordisease model, Commun. Pur. Appl. Anal., 17 (2018), 1899–1920.
    [31] 30 X. B. Zhang, Q. H. Shi and S. H. Ma, et al., Dynamic behavior of a stochastic SIQS epidemic model with levy jumps, Nonlinear Dynam., 93 (2018), 1481–1493.
    [32] 31 W. M. Wang, Y. L. Cai and Z. Q. Ding, et al., A stochastic differential equation SIS epidemic model incorporating Ornstein-Uhlenbeck process, Phys. A, 509 (2018), 921–936.
    [33] 32 H. F. Huo, F. F. Cui and H. Xiang, Dynamics of an SAITS alcoholism model on unweighted and weighted networks, Phys. A, 496 (2018), 249–262.
    [34] 33 X. Y. Meng and Y. Q. Wu, Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation, Int. J. Bifurcat. Chaos, 28 (2018),1850042, 24 pages.
    [35] 34 A. K. Misra, A. Sharma and J. B. Shukla, Modeling and analysis of effects of awareness programs by media on spread of infectious diseases, Math. Comput. Model., 53 (2011), 1221–1228.
    [36] 35 H. F. Huo and Q. Wang, Modeling the influence of awareness programs by media on the drinking dynamics, Abstr. Appl. Anal., 2014 (2014), 1–8.
    [37] 36 H. Xiang, N. N. Song and H. F. Huo, Modelling effectss of public health educational campaigns on drinking dynamics, J. Biol. Dyn., 10 (2016), 164–178.
    [38] 37 S. H. Ma, H. F. Huo and X. Y. Meng, Modelling alcoholism as a contagious disease: A mathematical model with awareness programs and time delay, Discrete Dyn. Nat. Soc., 2015 (2015), 1–13.
    [39] 38 H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259–284.
    [40] 39 H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793–2802.
    [41] 40 M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Diff. Equs., 248 (2010), 1–20.
    [42] 41 A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, NewYork, 1979.
    [43] 42 Y. Muroya, Y. Enatsu and T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes, Nonlinear Anal. RWA, 14 (2013), 1693–1704.
    [44] 43 R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., 60 (2010), 2286–2291.
    [45] 44 M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38–47.
    [46] 45 Y. Muroya and T. Kuniya, Further stability analysis for a multi-group SIRS epidemic model with varying total population size, Appl. Math. Lett., 38 (2014), 73–78.
    [47] 46 J. Wang and H. Shu, Global dynamics of a multi-group epidemic model with latency, relapse and nonlinear incidence rate, Math. Biosci. Eng., 13 (2016), 209–225.
    [48] 47 F. Hoppensteadt, An age-dependent epidemic model, J. Franklin Inst., 297 (1974), 325–338.
    [49] 48 X. Z. Li, J. Wang and M. Ghosh, Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination, Appl. Math. Model., 34 (2010), 437–450.
    [50] 49 X. C. Duan, S. L. Yuan and X. Z. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput., 226 (2014), 528–540.
    [51] 50 M. W. Shen and Y. N. Xiao, Global stability of a multi-group SVEIR epidemiological model with the vaccination age and infection age, Acta Appl. Math., 144 (2016), 137–157.
    [52] 51 J. H. Xu and Y. C. Zhou, Global stability of a multi-group model with generalized nonlinear incidence and vaccination age, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 977–996.
    [53] 52 F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations, Funkc. Ekvacioj., 31 (1988), 331–347.
    [54] 53 G. F.Webb, Theory of Nonlinear Age-dependent Population Dynamics, Marcel Dekker, New York, 1985.
    [55] 54 G. Gripenberg, S. O. Londen and O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, New York, 1990.
    [56] 55 O. Diekmann, J. Heesterbeek and J. A. Metz, On the defnition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382.
    [57] 56 P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
    [58] 57 J. K. Hale and P. Waltman, Presistence in infinite-dimensional systems, SIAM J. Appl. Math., 20 (1989), 388–395.
    [59] 58 A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, NewYork, 1979.
    [60] 59 J. P. Lasalle, The Stability of Dynamical Systems, in: Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.
    [61] 60 J. K. Hale and S .M. V. Lunel, Introduction to Functional Differential Equations, Appl. Math. Sci., 99, Springer, New York, 1993.
    [62] 61 H. I. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set, J. Dyn. Diff. Equat., 6 (1994), 583–600.
    [63] 62 M. Y. Li, J. R. Graef and L. Wang, et al., Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191–213.
    [64] 63 N. P. Bhatia and G. P. Szego, Dynamical Systems: Stability Theory and Applications, Lecture Notes in Mathematics, 35, Springer, Berlin, 1967.
    [65] 64 H. L. Smith and P. Waltman,The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.
  • This article has been cited by:

    1. Armel Ulrich Kemloh Wagoum, Armin Seyfried, Conception, Development, Installation and Evaluation of a Real Time Evacuation Assistant for Complex Buildings, 2013, 104, 18770428, 728, 10.1016/j.sbspro.2013.11.167
    2. Dirk Hartmann, Isabella von Sivers, Structured first order conservation models for pedestrian dynamics, 2013, 8, 1556-181X, 985, 10.3934/nhm.2013.8.985
    3. I.M. Sticco, G.A. Frank, F.E. Cornes, C.O. Dorso, A re-examination of the role of friction in the original Social Force Model, 2020, 121, 09257535, 42, 10.1016/j.ssci.2019.08.041
    4. Milad Haghani, The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact, 2021, 580, 03784371, 126145, 10.1016/j.physa.2021.126145
    5. Dirk Hartmann, Jana Mille, Alexander Pfaffinger, Christian Royer, 2014, Chapter 102, 978-3-319-02446-2, 1237, 10.1007/978-3-319-02447-9_102
    6. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 2, 978-3-319-06619-6, 29, 10.1007/978-3-319-06620-2_2
    7. Machi Zawidzki, 2016, Chapter 3, 978-981-10-1105-4, 53, 10.1007/978-981-10-1106-1_3
    8. Nirajan Shiwakoti, Understanding differences in emergency escape and experimental pedestrian crowd egress through quantitative comparison, 2016, 20, 22124209, 129, 10.1016/j.ijdrr.2016.11.002
    9. Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram, Mean field games with nonlinear mobilities in pedestrian dynamics, 2014, 19, 1553-524X, 1311, 10.3934/dcdsb.2014.19.1311
    10. Andreas Schadschneider, Christian Eilhardt, Stefan Nowak, Armel Ulrich Kemloh Wagoum, Armin Seyfried, 2013, Chapter 27, 978-3-642-39668-7, 287, 10.1007/978-3-642-39669-4_27
    11. Krithika Rathinakumar, Annalisa Quaini, A microscopic approach to study the onset of a highly infectious disease spreading, 2020, 329, 00255564, 108475, 10.1016/j.mbs.2020.108475
    12. Jieyu Chen, Tianxing Shi, Nan Li, Pedestrian evacuation simulation in indoor emergency situations: Approaches, models and tools, 2021, 142, 09257535, 105378, 10.1016/j.ssci.2021.105378
    13. Jarosław Wąs, Robert Lubaś, Towards realistic and effective Agent-based models of crowd dynamics, 2014, 146, 09252312, 199, 10.1016/j.neucom.2014.04.057
    14. Maria Davidich, Gerta Köster, Tobias Preis, Predicting Pedestrian Flow: A Methodology and a Proof of Concept Based on Real-Life Data, 2013, 8, 1932-6203, e83355, 10.1371/journal.pone.0083355
    15. Machi Zawidzki, Mohcine Chraibi, Katsuhiro Nishinari, Crowd-Z: The user-friendly framework for crowd simulation on an architectural floor plan, 2014, 44, 01678655, 88, 10.1016/j.patrec.2013.10.025
    16. Antoine Tordeux, Mohcine Chraibi, Armin Seyfried, 2016, Chapter 29, 978-3-319-33481-3, 225, 10.1007/978-3-319-33482-0_29
    17. Milad Haghani, Majid Sarvi, Crowd model calibration at strategic, tactical, and operational levels: Full-spectrum sensitivity analyses show bottleneck parameters are most critical, followed by exit-choice-changing parameters, 2023, 1942-7867, 1, 10.1080/19427867.2023.2195729
    18. Ziwei Cui, Ming Cai, Yao Xiao, Zheng Zhu, Mofeng Yang, Gongbo Chen, Forecasting the transmission trends of respiratory infectious diseases with an exposure-risk-based model at the microscopic level, 2022, 212, 00139351, 113428, 10.1016/j.envres.2022.113428
    19. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 6, 978-3-319-06619-6, 137, 10.1007/978-3-319-06620-2_6
    20. Xiao Song, Kai Chen, Xu Li, Jinghan Sun, Baocun Hou, Yong Cui, Baochang Zhang, Gang Xiong, Zilie Wang, Pedestrian Trajectory Prediction Based on Deep Convolutional LSTM Network, 2021, 22, 1524-9050, 3285, 10.1109/TITS.2020.2981118
    21. A. Kneidl, D. Hartmann, A. Borrmann, A hybrid multi-scale approach for simulation of pedestrian dynamics, 2013, 37, 0968090X, 223, 10.1016/j.trc.2013.03.005
    22. Daewa Kim, Annalisa Quaini, Coupling kinetic theory approaches for pedestrian dynamics and disease contagion in a confined environment, 2020, 30, 0218-2025, 1893, 10.1142/S0218202520400126
    23. Sibel Gokce, Ozhan Kayacan, Study on bi-directional pedestrian movement using ant algorithms, 2016, 25, 1674-1056, 010508, 10.1088/1674-1056/25/1/010508
    24. Zhe Zhang, Limin Jia, Direction-Decision Learning Based Pedestrian Flow Behavior Investigation, 2020, 8, 2169-3536, 15027, 10.1109/ACCESS.2020.2964001
    25. Sainan Zhang, Jun Zhang, Mohcine Chraibi, Weiguo Song, A speed-based model for crowd simulation considering walking preferences, 2021, 95, 10075704, 105624, 10.1016/j.cnsns.2020.105624
    26. Felix Dietrich, Gerta Köster, Michael Seitz, Isabella von Sivers, 2014, Chapter 62, 978-3-642-55194-9, 659, 10.1007/978-3-642-55195-6_62
    27. Xiao Yang, Binxu Wang, Zheng Qin, Floor Field Model Based on Cellular Automata for Simulating Indoor Pedestrian Evacuation, 2015, 2015, 1024-123X, 1, 10.1155/2015/820306
    28. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 5, 978-3-319-06619-6, 109, 10.1007/978-3-319-06620-2_5
    29. Maria Davidich, Florian Geiss, Hermann Georg Mayer, Alexander Pfaffinger, Christian Royer, Waiting zones for realistic modelling of pedestrian dynamics: A case study using two major German railway stations as examples, 2013, 37, 0968090X, 210, 10.1016/j.trc.2013.02.016
    30. Marija Bezbradica, Heather J. Ruskin, 2020, Chapter 9, 978-1-78985-041-3, 10.5772/intechopen.86801
    31. Alexander Aurell, Boualem Djehiche, Modeling tagged pedestrian motion: A mean-field type game approach, 2019, 121, 01912615, 168, 10.1016/j.trb.2019.01.011
    32. Junjie Wei, Qigen Deng, Lixin Zhang, Peng Li, Study on emergency evacuation in underground urban complexes, 2022, 17, 1932-6203, e0278521, 10.1371/journal.pone.0278521
    33. Sean Curtis, Dinesh Manocha, 2014, Chapter 73, 978-3-319-02446-2, 875, 10.1007/978-3-319-02447-9_73
    34. Zhe Zhang, ShuRong Yan, JianYuan Guo, 2022, Chapter 52, 978-981-16-9912-2, 467, 10.1007/978-981-16-9913-9_52
    35. Felix Dietrich, Gerta Köster, Gradient navigation model for pedestrian dynamics, 2014, 89, 1539-3755, 10.1103/PhysRevE.89.062801
    36. Francisco Martinez-Gil, Miguel Lozano, Ignacio García-Fernández, Fernando Fernández, Modeling, Evaluation, and Scale on Artificial Pedestrians, 2018, 50, 0360-0300, 1, 10.1145/3117808
    37. A. Garcimartín, J. M. Pastor, C. Martín-Gómez, D. Parisi, I. Zuriguel, Pedestrian collective motion in competitive room evacuation, 2017, 7, 2045-2322, 10.1038/s41598-017-11197-x
    38. Alessandro Corbetta, Federico Toschi, Physics of Human Crowds, 2023, 14, 1947-5454, 311, 10.1146/annurev-conmatphys-031620-100450
    39. Weili Wang, Jiayu Rong, Qinqin Fan, Jingjing Zhang, Xin Han, Beihua Cong, Nirajan Shiwakoti, Data-Driven Simulation of Pedestrian Movement with Artificial Neural Network, 2021, 2021, 2042-3195, 1, 10.1155/2021/5580910
    40. Michael J Seitz, Gerta Köster, How update schemes influence crowd simulations, 2014, 2014, 1742-5468, P07002, 10.1088/1742-5468/2014/07/P07002
    41. Armel Ulrich Kemloh Wagoum, Mohcine Chraibi, Jonas Mehlich, Armin Seyfried, Andreas Schadschneider, Efficient and validated simulation of crowds for an evacuation assistant, 2012, 23, 15464261, 3, 10.1002/cav.1420
    42. Na Li, Ren-Yong Guo, Simulation of bi-directional pedestrian flow through a bottleneck: Cell transmission model, 2020, 555, 03784371, 124542, 10.1016/j.physa.2020.124542
    43. Michael J. Seitz, Felix Dietrich, Gerta Köster, The effect of stepping on pedestrian trajectories, 2015, 421, 03784371, 594, 10.1016/j.physa.2014.11.064
    44. Xiao Song, Daolin Han, Jinghan Sun, Zenghui Zhang, A data-driven neural network approach to simulate pedestrian movement, 2018, 509, 03784371, 827, 10.1016/j.physa.2018.06.045
    45. Gerta Köster, Marion Gödel, 2015, Chapter 8, 978-3-319-10628-1, 63, 10.1007/978-3-319-10629-8_8
    46. Gerta Köster, Franz Treml, Marion Gödel, Avoiding numerical pitfalls in social force models, 2013, 87, 1539-3755, 10.1103/PhysRevE.87.063305
    47. Antoine Tordeux, Guillaume Costeseque, Michael Herty, Armin Seyfried, From Traffic and Pedestrian Follow-the-Leader Models with Reaction Time to First Order Convection-Diffusion Flow Models, 2018, 78, 0036-1399, 63, 10.1137/16M110695X
    48. Antoine Tordeux, Claudia Totzeck, Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems, 2023, 18, 1556-1801, 906, 10.3934/nhm.2023039
    49. Felix Dietrich, Gerta Köster, 2015, Chapter 7, 978-3-319-10628-1, 55, 10.1007/978-3-319-10629-8_7
    50. S. Liu, S. Lo, J. Ma, W. Wang, An Agent-Based Microscopic Pedestrian Flow Simulation Model for Pedestrian Traffic Problems, 2014, 15, 1524-9050, 992, 10.1109/TITS.2013.2292526
    51. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 4, 978-3-319-06619-6, 73, 10.1007/978-3-319-06620-2_4
    52. Dirk Hartmann, Peter Hasel, Efficient Dynamic Floor Field Methods for Microscopic Pedestrian Crowd Simulations, 2014, 16, 1815-2406, 264, 10.4208/cicp.200513.290114a
    53. Larkin Heintzman, Amanda Hashimoto, Nicole Abaid, Ryan K. Williams, 2021, Anticipatory Planning and Dynamic Lost Person Models for Human-Robot Search and Rescue, 978-1-7281-9077-8, 8252, 10.1109/ICRA48506.2021.9562070
    54. Saumya Gupta, Mohamed H. Zaki, Adan Vela, Generative Modeling of Pedestrian Behavior: A Receding Horizon Optimization-Based Trajectory Planning Approach, 2022, 10, 2169-3536, 81624, 10.1109/ACCESS.2022.3193671
    55. Mohcine Chraibi, Takahiro Ezaki, Antoine Tordeux, Katsuhiro Nishinari, Andreas Schadschneider, Armin Seyfried, Jamming transitions in force-based models for pedestrian dynamics, 2015, 92, 1539-3755, 10.1103/PhysRevE.92.042809
    56. Tianyi Wang, Yu Chen, The Negative Dependence of Evacuation Time on Group Size Under a Binding Mechanism, 2022, 9, 2296-424X, 10.3389/fphy.2021.798423
    57. Sean Curtis, Basim Zafar, Adnan Gutub, Dinesh Manocha, Right of way, 2013, 29, 0178-2789, 1277, 10.1007/s00371-012-0769-x
    58. Daewa Kim, Annalisa Quaini, 2021, Chapter 7, 978-3-030-91645-9, 157, 10.1007/978-3-030-91646-6_7
    59. Armel Ulrich Kemloh Wagoum, Mohcine Chraibi, Christian Eilhardt, Stefan Nowak, Igor Kulkov, Daniel Weber, Kathrin Sauer, Hubert Klüpfel, Andreas Schadschneider, 2014, Chapter 109, 978-3-319-02446-2, 1323, 10.1007/978-3-319-02447-9_109
    60. Yi Ma, Eric Wai Ming Lee, Richard Kwok Kit Yuen, An Artificial Intelligence-Based Approach for Simulating Pedestrian Movement, 2016, 17, 1524-9050, 3159, 10.1109/TITS.2016.2542843
    61. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 3, 978-3-319-06619-6, 53, 10.1007/978-3-319-06620-2_3
    62. Denis Shikhalev, Renat Khabibulin, Ulrich Kemloh, Sergey Gudin, 2017, Chapter 6, 978-3-319-62385-6, 122, 10.1007/978-3-319-62386-3_6
    63. Michael J. Seitz, Gerta Köster, Natural discretization of pedestrian movement in continuous space, 2012, 86, 1539-3755, 10.1103/PhysRevE.86.046108
    64. R. Borsche, A. Meurer, Microscopic and macroscopic models for coupled car traffic and pedestrian flow, 2019, 348, 03770427, 356, 10.1016/j.cam.2018.08.037
    65. Tobias Kretz, On oscillations in the Social Force Model, 2015, 438, 03784371, 272, 10.1016/j.physa.2015.07.002
    66. Martin Burger, Sabine Hittmeir, Helene Ranetbauer, Marie-Therese Wolfram, Lane Formation by Side-Stepping, 2016, 48, 0036-1410, 981, 10.1137/15M1033174
    67. Angelika Kneidl, Dirk Hartmann, André Borrmann, 2014, Chapter 85, 978-3-319-02446-2, 1029, 10.1007/978-3-319-02447-9_85
    68. Yunchao Qu, Ziyou Gao, Penina Orenstein, Jiancheng Long, Xingang Li, An effective algorithm to simulate pedestrian flow using the heuristic force-based model, 2015, 3, 2168-0566, 1, 10.1080/21680566.2014.943823
    69. Raphael Korbmacher, Antoine Tordeux, Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-Based Approaches, 2022, 23, 1524-9050, 24126, 10.1109/TITS.2022.3205676
    70. Samer Hani Hamdar, Alireza Talebpour, Kyla D’Sa, Victor Knoop, Winnie Daamen, Martin Treiber, Behavioral-Based Pedestrian Modeling Approach: Formulation, Sensitivity Analysis, and Calibration, 2022, 2676, 0361-1981, 334, 10.1177/03611981211059767
    71. Amanda Hashimoto, Larkin Heintzman, Robert Koester, Nicole Abaid, An agent-based model reveals lost person behavior based on data from wilderness search and rescue, 2022, 12, 2045-2322, 10.1038/s41598-022-09502-4
    72. S. B. Liu, S. M. Lo, K. L. Tsui, W. L. Wang, Modeling Movement Direction Choice and Collision Avoidance in Agent-Based Model for Pedestrian Flow, 2015, 141, 0733-947X, 10.1061/(ASCE)TE.1943-5436.0000762
    73. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 1, 978-3-319-06619-6, 3, 10.1007/978-3-319-06620-2_1
    74. Lei Cao, Lin Wang, 2015, Analysis and intervention in pedestrian evacuation via a modified social force model, 978-1-4799-7017-9, 5924, 10.1109/CCDC.2015.7161870
    75. Felix Dietrich, Gerta Köster, Michael Seitz, Isabella von Sivers, Bridging the gap: From cellular automata to differential equation models for pedestrian dynamics, 2014, 5, 18777503, 841, 10.1016/j.jocs.2014.06.005
    76. M. Ramírez, B. A. Toledo, F. Torres, J. Rogan, J. A. Valdivia, P. Correa-Burrows, Pedestrian flow in two dimensions: Optimal psychological stress leads to less evacuation time and decongestion, 2021, 104, 2470-0045, 10.1103/PhysRevE.104.024312
    77. Armel Ulrich Kemloh Wagoum, Armin Seyfried, Frank Fiedrich, Ralph Majer, 2014, Chapter 20, 978-3-319-02446-2, 251, 10.1007/978-3-319-02447-9_20
    78. Libi Fu, Ying Zhang, Huigui Qin, Qingxin Shi, Qiyi Chen, Yunqian Chen, Yongqian Shi, A modified social force model for studying nonlinear dynamics of pedestrian-e-bike mixed flow at a signalized crosswalk, 2023, 174, 09600779, 113813, 10.1016/j.chaos.2023.113813
    79. Jakob Cordes, Mohcine Chraibi, Antoine Tordeux, Andreas Schadschneider, 2023, Chapter 6, 978-3-031-46358-7, 143, 10.1007/978-3-031-46359-4_6
    80. Amir Rafe, Patrick A. Singleton, Exploring the Complexity of Pedestrian Dynamics: Impact of Societal Behaviors and Personal Attributes in Urban Environments, 2024, 0361-1981, 10.1177/03611981241260707
    81. Rongyong Zhao, Arifur Rahman, Bingyu Wei, Cuiling Li, Yunlong Ma, Yuxing Cai, Lingchen Han, A literature review of contacting force measurement methods for pedestrian crowds, 2024, 10, 24058440, e39755, 10.1016/j.heliyon.2024.e39755
    82. Rudina Subaih, Antoine Tordeux, Modeling pedestrian single-file movement: Extending the interaction to the follower, 2024, 633, 03784371, 129394, 10.1016/j.physa.2023.129394
    83. Mengchen He, Yunfei Qiu, Xinru Ge, Ran Huang, Juan Chen, Qiao Wang, Jacquline Lo, Jian Ma, Effect of moving walkway arrangement on unidirectional crowd flow characteristics, 2024, 643, 03784371, 129789, 10.1016/j.physa.2024.129789
    84. Raphael Korbmacher, Alexandre Nicolas, Antoine Tordeux, Claudia Totzeck, 2023, Chapter 3, 978-3-031-46358-7, 55, 10.1007/978-3-031-46359-4_3
    85. Tobias Kretz, Laura Eckes, Dominic Lipp, Janis Diz, Sven Müller, Using Empirical Travel Time Distributions for Calibration of a Model of Pedestrian Dynamics, 2023, 1556-5068, 10.2139/ssrn.4369718
    86. Hua Wang, Xing-Yu Guo, Hao Tao, Ming-Liang Xu, Collective Movement Simulation: Methods and Applications, 2024, 21, 2731-538X, 452, 10.1007/s11633-022-1405-5
    87. Jakub Porzycki, Jarosław Wąs, Modeling spatial patterns in a moving crowd of people using data-driven approach—A concept of Interplay Floor Field, 2023, 167, 09257535, 106266, 10.1016/j.ssci.2023.106266
    88. Tiziana Campisi, Angela Ricciardello, Marianna Ruggieri, Giorgia Vitanza, 2024, Chapter 11, 978-3-031-65328-5, 168, 10.1007/978-3-031-65329-2_11
    89. Mingwei Liu, Guiliang Lu, Oeda Yoshinao, Analyzing factors causing deadlock events of bi-directional pedestrian flow when moving on stairs using a personal space model, 2024, 14, 2045-2322, 10.1038/s41598-024-61007-4
    90. Ruihang Xie, Sisi Zlatanova, Jinwoo (Brian) Lee, Mitko Aleksandrov, A Motion-Based Conceptual Space Model to Support 3D Evacuation Simulation in Indoor Environments, 2023, 12, 2220-9964, 494, 10.3390/ijgi12120494
    91. Zhomart Turarov, Claudia Totzeck, Gradient-based parameter calibration of an anisotropic interaction model for pedestrian dynamics, 2023, 0956-7925, 1, 10.1017/S0956792523000153
    92. Heng Ding, Qiao Wang, Juan Chen, Jacqueline T.Y. Lo, Jian Ma, Investigating pedestrian stepping characteristics via intrinsic trajectory, 2024, 652, 03784371, 130045, 10.1016/j.physa.2024.130045
    93. Priyanka Iyer, Rajendra Singh Negi, Andreas Schadschneider, Gerhard Gompper, Directed motion of cognitive active agents in a crowded three-way intersection, 2024, 7, 2399-3650, 10.1038/s42005-024-01860-x
    94. Jason Hindes, Kevin Daley, George Stantchev, Ira B Schwartz, Swarming network inference with importance clustering of relative interactions, 2024, 5, 2632-072X, 045009, 10.1088/2632-072X/ad9b63
    95. Tarık Kunduracı, A Study on Impatient Pedestrian Effect on Bi-directional Pedestrian Movement by Using Ant Algorithms, 2024, 11, 2148-3736, 327, 10.31202/ecjse.1430803
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4892) PDF downloads(730) Cited by(5)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog