Global dynamics of a general class of multi-group epidemic models with latency and relapse

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 34D23; Secondary: 92B05.

  • A multi-group model is proposed to describe a general relapse phenomenon of infectious diseasesin heterogeneous populations.In each group, the population is divided intosusceptible, exposed, infectious, and recovered subclasses. A generalnonlinear incidence rate is used in the model. The results show that the global dynamics are completelydetermined by the basic reproduction number $R_0.$ In particular, a matrix-theoretic method is used to provethe global stability of the disease-free equilibrium when $R_0\leq1,$while a new combinatorial identity (Theorem 3.3 in Shuai and vanden Driessche [29]) in graph theory is applied to provethe global stability of the endemic equilibrium when $R_0>1.$We would like to mention that by applying the new combinatorial identity, a graph of 3n (or 2n+m) vertices can be converted intoa graph of n vertices in order to deal with the global stability of the endemic equilibrium in this paper.

    Citation: Xiaomei Feng, Zhidong Teng, Fengqin Zhang. Global dynamics of a general class of multi-group epidemic models with latency and relapse[J]. Mathematical Biosciences and Engineering, 2015, 12(1): 99-115. doi: 10.3934/mbe.2015.12.99

    Related Papers:

    [1] Jinliang Wang, Hongying Shu . Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209
    [2] Ke Guo, Wanbiao Ma . Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays. Mathematical Biosciences and Engineering, 2021, 18(1): 643-672. doi: 10.3934/mbe.2021035
    [3] Cheng-Cheng Zhu, Jiang Zhu, Xiao-Lan Liu . Influence of spatial heterogeneous environment on long-term dynamics of a reaction-diffusion SVIR epidemic model with relaps. Mathematical Biosciences and Engineering, 2019, 16(5): 5897-5922. doi: 10.3934/mbe.2019295
    [4] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [5] Shanjing Ren . Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1337-1360. doi: 10.3934/mbe.2017069
    [6] Andrei Korobeinikov, Philip K. Maini . A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 2004, 1(1): 57-60. doi: 10.3934/mbe.2004.1.57
    [7] Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu . Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences and Engineering, 2014, 11(6): 1375-1393. doi: 10.3934/mbe.2014.11.1375
    [8] Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya . Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347
    [9] Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372
    [10] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
  • A multi-group model is proposed to describe a general relapse phenomenon of infectious diseasesin heterogeneous populations.In each group, the population is divided intosusceptible, exposed, infectious, and recovered subclasses. A generalnonlinear incidence rate is used in the model. The results show that the global dynamics are completelydetermined by the basic reproduction number $R_0.$ In particular, a matrix-theoretic method is used to provethe global stability of the disease-free equilibrium when $R_0\leq1,$while a new combinatorial identity (Theorem 3.3 in Shuai and vanden Driessche [29]) in graph theory is applied to provethe global stability of the endemic equilibrium when $R_0>1.$We would like to mention that by applying the new combinatorial identity, a graph of 3n (or 2n+m) vertices can be converted intoa graph of n vertices in order to deal with the global stability of the endemic equilibrium in this paper.


    [1] Academic Press, New York, 1979.
    [2] Lecture Notes in Math. 35, Springer, Berlin, 1967.
    [3] SIAM J. Appl. Math., 56 (1996), 494-508.
    [4] SIAM J. Appl. Math., 59 (1999), 1790-1811.
    [5] J. Math. Biol., 28 (1990), 365-382.
    [6] Math. Biosci., 246 (2013), 105-112.
    [7] J. Dynam. Diff. Equat., 6 (1994), 583-600.
    [8] Addison-Wesley, Reading, MA, 1969.
    [9] J. Theor. Biol., 300 (2012), 39-47.
    [10] SIAM J. Appl. Math., 72 (2012), 819-841.
    [11] Tuber Lung Dis., 75 (1994), 341-347.
    [12] Can. Appl. Math. Q., 14 (2006), 259-284.
    [13] SIAM J. Appl. Math., 69 (2009), 1205-1227.
    [14] PLoS Med., 3 (2006), e492.
    [15] Bull. Math. Biol., 71 (2009), 75-83.
    [16] Math. Biosci., 28 (1976), 221-236.
    [17] Lancet Infect. Dis., 3 (2003), 282-287.
    [18] Reginal Conf. Ser. Appl., SIAM, Philadelphia, 1976.
    [19] Math. Biosci., 160 (1999), 191-213.
    [20] J. Math. Anal. Appl., 361 (2010), 38-47.
    [21] J. Diff. Equat., 248 (2010), 1-20.
    [22] Math. Biosci. Eng., 7 (2010), 675-685.
    [23] Nonlinear Anal. Real World Appl., 12 (2011), 119-127.
    [24] Liver Transpl., 11 (2005), 402-409.
    [25] Nonlinear Anal. Real World Appl., 14 (2013), 1693-1704.
    [26] Nonlinear Anal. Real World Appl., 13 (2012), 1581-1592.
    [27] Math. Biosci., 234 (2011), 118-126.
    [28] Math. Biosci. Eng., 9 (2012), 393-411.
    [29] SIAM J. Appl. Math., 73 (2013), 1513-1532.
    [30] Cambridge University Press, Cambridge, UK, 1995.
    [31] Lancet, 358 (2001), 1687-1693.
    [32] Appl. Math. Comput., 218 (2011), 280-286.
    [33] Ann. Internal Med., 154 (2011), 593-601.
    [34] Math. Biosci., 180 (2002), 29-48.
    [35] Math. Biosci. Eng., 4 (2007), 205-219.
    [36] Math. Biosci., 207 (2007), 89-103.
    [37] J. Math. Biol., 69 (2014), 875-904.
    [38] Bull. Math. Biol., 74 (2012), 1226-1251.
  • This article has been cited by:

    1. Junna Hu, Zhidong Teng, Zhiming Li, Buyu Wen, The threshold dynamics in a stochastic SIS epidemic model with vaccination and nonlinear incidence under regime switching, 2019, 529, 03784371, 121555, 10.1016/j.physa.2019.121555
    2. Lili Liu, Xianning Liu, Jinliang Wang, Threshold dynamics of a delayed multi-group heroin epidemic model in heterogeneous populations, 2016, 21, 1531-3492, 2615, 10.3934/dcdsb.2016064
    3. Yantao Luo, Long Zhang, Zhidong Teng, Tingting Zheng, Analysis of a general multi-group reaction–diffusion epidemic model with nonlinear incidence and temporary acquired immunity, 2021, 182, 03784754, 428, 10.1016/j.matcom.2020.11.002
    4. Yuming Chen, Jianquan Li, Shaofen Zou, Global dynamics of an epidemic model with relapse and nonlinear incidence, 2019, 42, 0170-4214, 1283, 10.1002/mma.5439
    5. Xiaomei Feng, Kai Wang, Fengqin Zhang, Zhidong Teng, Threshold dynamics of a nonlinear multi-group epidemic model with two infinite distributed delays, 2017, 40, 01704214, 2762, 10.1002/mma.4196
    6. King-Yeung Lam, Xueying Wang, Tianran Zhang, Traveling Waves for a Class of Diffusive Disease-Transmission Models with Network Structures, 2018, 50, 0036-1410, 5719, 10.1137/17M1144258
    7. Wei Wang, Sifen Lu, Haoxiang Tang, Biao Wang, Caiping Sun, Pai Zheng, Yi Bai, Zuhong Lu, Yulin Kang, A Scoping Review of Drug Epidemic Models, 2022, 19, 1660-4601, 2017, 10.3390/ijerph19042017
    8. Han Ma, Qimin Zhang, Xinzhong Xu, Positivity-Preserving Numerical Method for a Stochastic Multi-Group SIR Epidemic Model, 2022, 0, 1609-4840, 10.1515/cmam-2022-0143
    9. Han Ma, Yanyan Du, Zong Wang, Qimin Zhang, Positivity and Boundedness Preserving Numerical Scheme for a Stochastic Multigroup Susceptible-Infected-Recovering Epidemic Model with Age Structure, 2024, 1557-8666, 10.1089/cmb.2023.0443
    10. Salih Djilali, Rassim Darazirar, Ibrahim Alraddadi, Traveling wave solution for a delayed reaction-diffusion two-group SIR epidemic model with a generalized nonlinear incidence function, 2025, 1598-5865, 10.1007/s12190-025-02474-4
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2756) PDF downloads(519) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog