Citation: Jun Zheng, Zilong li, Bin Dou, Chao Lu. Multi-objective cellular particle swarm optimization and RBF for drilling parameters optimization[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1258-1279. doi: 10.3934/mbe.2019061
[1] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
[2] | Ke Guo, Wanbiao Ma . Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays. Mathematical Biosciences and Engineering, 2021, 18(1): 643-672. doi: 10.3934/mbe.2021035 |
[3] | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya . Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347 |
[4] | Hui Cao, Yicang Zhou, Zhien Ma . Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399 |
[5] | A. Q. Khan, M. Tasneem, M. B. Almatrafi . Discrete-time COVID-19 epidemic model with bifurcation and control. Mathematical Biosciences and Engineering, 2022, 19(2): 1944-1969. doi: 10.3934/mbe.2022092 |
[6] | Marcin Choiński, Mariusz Bodzioch, Urszula Foryś . A non-standard discretized SIS model of epidemics. Mathematical Biosciences and Engineering, 2022, 19(1): 115-133. doi: 10.3934/mbe.2022006 |
[7] | John E. Franke, Abdul-Aziz Yakubu . Periodically forced discrete-time SIS epidemic model with disease induced mortality. Mathematical Biosciences and Engineering, 2011, 8(2): 385-408. doi: 10.3934/mbe.2011.8.385 |
[8] | Zhen Jin, Guiquan Sun, Huaiping Zhu . Epidemic models for complex networks with demographics. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295 |
[9] | Wenzhang Huang, Maoan Han, Kaiyu Liu . Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences and Engineering, 2010, 7(1): 51-66. doi: 10.3934/mbe.2010.7.51 |
[10] | Peter Rashkov, Ezio Venturino, Maira Aguiar, Nico Stollenwerk, Bob W. Kooi . On the role of vector modeling in a minimalistic epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 4314-4338. doi: 10.3934/mbe.2019215 |
[1] | J. W. Graham and N. L. Muench, Analytical determination of optimum bit weight and rotary speed combinations, in Fall Meeting of the Society of Petroleum Engineers of AIME, Society of Petroleum Engineers: Dallas, Texas, (1959), 35. |
[2] | A. T. Bourgoyne Jr and F. S. Young Jr., A multiple regression approach to optimal drilling and abnormal pressure detection, Soc. Pet. Eng. J., 14 (1974), 371–384. |
[3] | M. R. Reza and C. F. Alcocer, A unique computer simulation model well drilling: Part I-the reza drilling model, in SPE California regional meeting, Society of Petroleum Engineers: Oakland, California. (1986), 10. |
[4] | F. Iqbal, Drilling optimization technique-using real time parameters, in SPE russian oil and gas technical conference and exhibition, Society of Petroleum Engineers: Moscow, Russia, (2008), 6. |
[5] | Q. B. Amjad, S. Waheed and M. S. K. Jadoon, et al., Drilling optimization of kohat/potohar region by mathematical model (using matlab) and comparative method-A case study, in SPE/PAPG pakistan section annual technical conference, Society of Petroleum Engineers: Islamabad, Pakistan, (2015), 12. |
[6] | T. Eren, M. E. Ozbayoglu, Real time optimization of drilling parameters during drilling operations, in SPE oil and gas india conference and exhibition, Society of Petroleum Engineers: Mumbai, India, (2010), 14. |
[7] | L. Zhang, D. Teng and Q. Shen, Parameter optimization of drilling based on biogeography-based optimization, in 2018 2nd International Symposium on Resource Exploration and Environmental Science, REES 2018, April 28, 2018–April 29, 2018. Ordos, China: Institute of Physics Publishing 2018. |
[8] | Y. X. Sun, L. H. Qiao and H. F. Sun, et al., Real-time Surveillance System of Mechanical Specific Energy Applied in Drilling Parameters Optimization, in Proceedings of the 2nd Annual International Conference on Advanced Material Engineering (eds. A. K. Bhatnagar, R. Dahai, K. M. Pandey, H. Haeri, R. A. Andrievskiy, M. Ziara, G. Feng), (2016), 771–777. |
[9] | Y. Zhai, Z. Wang and Q. Zhang, et al., The study of deepwater drilling parameters optimization. in 2012 International Conference on Applied Mechanics and Materials, ICAMM 2012, November 24, 2012–November 25, 2012. Sanya, China: Trans Tech Publications 2013. |
[10] | M. Cui, J. Li and G. Ji, et al., Optimize method of drilling parameter of compound drilling based on mechanical specific energy theory, Pet. Drill. Tech., 42 (2014), 66–70. |
[11] | A. Rey, R. Zmeureanu,Micro-time variant multi-objective particle swarm optimization (micro-TVMOPSO) of a solar thermal combisystem, Swarm. Evolut. Compu., 36 (2017), 76–90. |
[12] | L. Vanneschi, R. Henriques and M. Castelli, Multi-objective genetic algorithm with variable neighbourhood search for the electoral redistricting problem, Swarm. Evolut. Comput., 36 (2017), 37–51. |
[13] | F. Florence and F. P. Iversen, Real-time models for drilling process automation: equations and applications, in IADC/SPE drilling conference and exhibition, Society of Petroleum Engineers: New Orleans, Louisiana, USA, (2010), 16. |
[14] | X. Chen, D. Gao and B. Guo, et al., Real-time optimization of drilling parameters based on mechanical specific energy for rotating drilling with positive displacement motor in the hard formation, J. Nat. Gas. Sci. Eng., 35 (2016), 686–694. |
[15] | K. Mohan, F. Adil and R. Samuel, Comprehensive hydromechanical specific energy calculation for drilling efficiency, J. Energ. Resour-Asme., 137 (2015), 8. |
[16] | A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, Siam. J. Imaging. Sci., 2 (2009), 183–202. |
[17] | C. L. Wu and K. W. Chau, Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis, J. Hydrol., 399 (2011), 394–409. |
[18] | P. Hajikhodaverdikhana, M. Nazari and M. Mohsenizadeh, et al., Earthquake prediction with meteorological data by particle filter-based support vector regression, Eng. Appl. Comput. Fluid. Mech., 12 (2018), 679–688. |
[19] | S. F. Ardabili, B. Najafi and S. Shamshirband, et al., Computational intelligence approach for modeling hydrogen production: A review, Eng. Appl. Comput. Fluid. Mech., 12 (2018), 438–458. |
[20] | R. Moazenzadeh, B. Mohammadi and S. Shahaboddin, et al., Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran, Eng. Appl. Comput. Fluid. Mech., 12 (2018), 584–597. |
[21] | R. C. Bose and K. A. Bush, Orthogonal arrays of strength two and three, Ann. Math. Stat., 23 (1952), 508–524. |
[22] | J. Stufken and B. Tang, Complete Enumeration of Two-Level Orthogonal Arrays of Strength d With d+2 Constraints, Ann. Stat., 35 (2007), 793–814. |
[23] | J. Zheng, An output mapping variable fidelity metamodeling approach based on nested Latin hypercube design for complex engineering design optimization, Appl. Intell., 48 (2018), 3591–3611. |
[24] | Y. M. Yu, D-optimal designs via a cocktail algorithm, Stat. Comput., 21 (2011), 475–481. |
[25] | K. T. Fang and D. K. J. Lin, Uniform design in computer and physical experiments, Grammar. Technol. Dev., (2008), 105–125. |
[26] | Q. Zhou, Y. Rong and X. Shao, et al., Optimization of laser brazing onto galvanized steel based on ensemble of metamodels, J. Intell. Manuf., 29 (2018), 1417–1431. |
[27] | B. Najafi, S. F. Ardabili and S. Shamshirband, et al., ANFIS and RSM to estimating and optimizing the parameters that affect the yield and cost of biodiesel production, Eng. Appl. Comput. Fluid. Mech., 12 (2018), 611–624. |
[28] | N. Queipo, R. Haftka and W. Shyy, et al., Surrogate-based analysis and optimization, Prog. Aerosp. Sci., 41 (2005), 1–28. |
[29] | M. Gardner, On Cellular Automata, Self-Reproduction, the Garden of Eden and the Game "Life", Sci. Am., 224 (1971), 112–117. |
[30] | M. E. Larraga and L. Alvarez-Icaza, Towards a realistic description of traffic flow based on cellular automata, in 14th IEEE International Intelligent Transportation Systems Conference, ITSC 2011, October 5, 2011–October 7, 2011. Washington, DC, United states: Institute of Electrical and Electronics Engineers Inc. 2011. |
[31] | Y. J. Luo, B. Jia and X. G. Li, et al., A realistic cellular automata model of bus route system based on open boundary, Trans. Res. C-Emer., 25 (2012), 202–213. |
[32] | M. A. J. Javid, W. Alghamdi and A. Ursyn, et al., Swarmic approach for symmetry detection of cellular automata behaviour, Soft. Comput., 21 (2017), 5585–5599. |
[33] | J. Zheng, X. Y. Shao and L. Gao, et al., A prior-knowledge input LSSVR metamodeling method with tuning based on cellular particle swarm optimization for engineering design, Expert. Syst. Appl., 41 (2014), 2111–2125. |
[34] | B. Placzek, A cellular automata approach for simulation-based evolutionary optimization of self-organizing traffic signal control, J. Cell. Autom., 11 (2016), 475–496. |
[35] | B. K. Mathew, S. K. John and C. Pradeep, New technique for fault detection in quantum cellular automata, in 1st International Conference on Emerging Trends in Engineering and Technology, ICETET 2008, July 16, 2008–July 18, 2008. Nagpur, Maharashtra, India: IEEE Computer Society 2008. |
[36] | L. Gao, J. D. Huang and X. Y. Li, An effective cellular particle swarm optimization for parameters optimization of a multi-pass milling process, Appl. Soft. Comput., 12 (2012), 3490–3499. |
[37] | Y. Shi, H. C. Liu and L. Gao, et al., Cellular particle swarm optimization, Inform. Sci., 181 (2011), 4460–4493. |
[38] | C. Lu, L. Gao and X. Li, et al., A multi-objective approach to welding shop scheduling for makespan, noise pollution and energy consumption, J. Cleaner. Prod., 196 (2018) 773–787. |
[39] | V. Mansouri, R. Khosravanian and D. A. Wood, et al., 3-D well path design using a multi objective genetic algorithm, J. Nat. Gas. Sci. Eng., 27 (2015), 219–235. |
[40] | A. Atashnezhad, D. A. Wood and A. Fereidounpour, et al., Designing and optimizing deviated wellbore trajectories using novel particle swarm algorithms, J. Nat. Gas. Sci. Eng., 21 (2014), 1184–1204. |
[41] | J. Derrac, S. Garcia and D. Molina, et al., A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm. Evolut. Comput., 1 (2011), 3–18. |
1. |
Guirong Jiang, Qigui Yang,
Periodic solutions and bifurcation in an |
|
2. | Soodeh Hosseini, Mohammad Abdollahi Azgomi, Adel Torkaman Rahmani, Malware propagation modeling considering software diversity and immunization, 2016, 13, 18777503, 49, 10.1016/j.jocs.2016.01.002 | |
3. | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Global stability for a discrete SIS epidemic model with immigration of infectives, 2012, 18, 1023-6198, 1913, 10.1080/10236198.2011.602973 | |
4. | Raul Nistal, Manuel de la Sen, Santiago Alonso-Quesada, Asier Ibeas, 2014, A nonlinear SEIR epidemic model with feedback vaccination control, 978-3-9524269-1-3, 158, 10.1109/ECC.2014.6862291 | |
5. | Jinhu Xu, Yan Geng, Stability preserving NSFD scheme for a delayed viral infection model with cell-to-cell transmission and general nonlinear incidence, 2017, 23, 1023-6198, 893, 10.1080/10236198.2017.1304933 | |
6. | Yuhua Long, Lin Wang, Global dynamics of a delayed two-patch discrete SIR disease model, 2020, 83, 10075704, 105117, 10.1016/j.cnsns.2019.105117 | |
7. | Xiaolin Fan, Lei Wang, Zhidong Teng, Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence, 2016, 2016, 1687-1847, 10.1186/s13662-016-0846-y | |
8. | Jinhu Xu, Jiangyong Hou, Yan Geng, Suxia Zhang, Dynamic consistent NSFD scheme for a viral infection model with cellular infection and general nonlinear incidence, 2018, 2018, 1687-1847, 10.1186/s13662-018-1560-8 | |
9. | Zohreh Eskandari, Javad Alidousti, Stability and codimension 2 bifurcations of a discrete time SIR model, 2020, 357, 00160032, 10937, 10.1016/j.jfranklin.2020.08.040 | |
10. | Jinhu Xu, Yan Geng, A nonstandard finite difference scheme for a multi-group epidemic model with time delay, 2017, 2017, 1687-1847, 10.1186/s13662-017-1415-8 | |
11. | Zengyun Hu, Zhidong Teng, Chaojun Jia, Chi Zhang, Long Zhang, Dynamical analysis and chaos control of a discrete SIS epidemic model, 2014, 2014, 1687-1847, 10.1186/1687-1847-2014-58 | |
12. | Yueli Luo, Shujing Gao, Dehui Xie, Yanfei Dai, A discrete plant disease model with roguing and replanting, 2015, 2015, 1687-1847, 10.1186/s13662-014-0332-3 | |
13. | Qamar Din, Qualitative behavior of a discrete SIR epidemic model, 2016, 09, 1793-5245, 1650092, 10.1142/S1793524516500923 | |
14. | Tailei Zhang, Junli Liu, Zhidong Teng, Threshold conditions for a discrete nonautonomous SIRS model, 2015, 38, 01704214, 1781, 10.1002/mma.3186 | |
15. | Zengyun Hu, Zhidong Teng, Long Zhang, Stability and bifurcation analysis in a discrete SIR epidemic model, 2014, 97, 03784754, 80, 10.1016/j.matcom.2013.08.008 | |
16. | Zhidong Teng, Lei Wang, Linfei Nie, Global attractivity for a class of delayed discrete SIRS epidemic models with general nonlinear incidence, 2015, 38, 01704214, 4741, 10.1002/mma.3389 | |
17. | Zengyun Hu, Zhidong Teng, Haijun Jiang, Stability analysis in a class of discrete SIRS epidemic models, 2012, 13, 14681218, 2017, 10.1016/j.nonrwa.2011.12.024 | |
18. | Jahangir Chowdhury, Sourav Rana, Sabyasachi Bhattacharya, Priti Kumar Roy, 2017, Chapter 23, 978-981-10-3757-3, 319, 10.1007/978-981-10-3758-0_23 | |
19. | Lei Wang, Zhidong Teng, Haijun Jiang, Global attractivity of a discrete SIRS epidemic model with standard incidence rate, 2013, 36, 01704214, 601, 10.1002/mma.2734 | |
20. | Tailei Zhang, Permanence and extinction in a nonautonomous discrete SIRVS epidemic model with vaccination, 2015, 271, 00963003, 716, 10.1016/j.amc.2015.09.071 | |
21. | Zengyun Hu, Linlin Chang, Zhidong Teng, Xi Chen, Bifurcation analysis of a discrete S I R S SIRS epidemic model with standard incidence rate, 2016, 2016, 1687-1847, 10.1186/s13662-016-0874-7 | |
22. | JUPING ZHANG, ZHEN JIN, DISCRETE TIME SI AND SIS EPIDEMIC MODELS WITH VERTICAL TRANSMISSION, 2009, 17, 0218-3390, 201, 10.1142/S0218339009002788 | |
23. | Junhong Li, Ning Cui, Bifurcation and Chaotic Behavior of a Discrete-Time SIS Model, 2013, 2013, 1026-0226, 1, 10.1155/2013/705601 | |
24. | Qiaoling Chen, Zhidong Teng, Lei Wang, Haijun Jiang, The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence, 2013, 71, 0924-090X, 55, 10.1007/s11071-012-0641-6 | |
25. | S.M. Salman, E. Ahmed, A mathematical model for Creutzfeldt Jacob Disease (CJD), 2018, 116, 09600779, 249, 10.1016/j.chaos.2018.09.041 | |
26. | Pengfei Wu, Jingshun Duanmu, Jiyong Du, 2012, Analysis of an SIS Epidemic Model with Disease-Induced Mortality, 978-0-7695-4647-6, 596, 10.1109/ICCSEE.2012.17 | |
27. | Yan Geng, Jinhu Xu, Stability preserving NSFD scheme for a multi-group SVIR epidemic model, 2017, 01704214, 10.1002/mma.4357 | |
28. | Lei Wang, Qianqian Cui, Zhidong Teng, Global dynamics in a class of discrete-time epidemic models with disease courses, 2013, 2013, 1687-1847, 10.1186/1687-1847-2013-57 | |
29. | J. Hallberg Szabadváry, Y. Zhou, On qualitative analysis of a discrete time SIR epidemical model, 2021, 7, 25900544, 100067, 10.1016/j.csfx.2021.100067 | |
30. | Fang Zheng, 2022, Chapter 12, 978-981-19-2447-7, 121, 10.1007/978-981-19-2448-4_12 | |
31. | Zhidong Teng, Linfei Nie, Jiabo Xu, Dynamical behaviors of a discrete SIS epidemic model with standard incidence and stage structure, 2013, 2013, 1687-1847, 10.1186/1687-1847-2013-87 | |
32. | Javier Cifuentes-Faura, Ursula Faura-Martínez, Matilde Lafuente-Lechuga, Mathematical Modeling and the Use of Network Models as Epidemiological Tools, 2022, 10, 2227-7390, 3347, 10.3390/math10183347 | |
33. | Limin Zhang, Jiaxin Gu, Guangyuan Liao, Bifurcations and model fitting of a discrete epidemic system with incubation period and saturated contact rate, 2025, 1023-6198, 1, 10.1080/10236198.2025.2457987 | |
34. | Jahangir Chowdhury, Fahad Al Basir, Anirban Mukherjee, Priti Kumar Roy, A theta logistic model for the dynamics of whitefly borne mosaic disease in Cassava: impact of roguing and insecticide spraying, 2025, 1598-5865, 10.1007/s12190-025-02419-x |