Citation: Alexandra Mora, Umayr Sufi, Jedediah I. Roach, James F. Thompson, Irwin R. Donis-Gonzalez. Evaluation of a small-scale desiccant-based drying system to control corn dryness during storage[J]. AIMS Agriculture and Food, 2019, 4(1): 136-148. doi: 10.3934/agrfood.2019.1.136
[1] | Amar Nath Chatterjee, Fahad Al Basir, Yasuhiro Takeuchi . Effect of DAA therapy in hepatitis C treatment — an impulsive control approach. Mathematical Biosciences and Engineering, 2021, 18(2): 1450-1464. doi: 10.3934/mbe.2021075 |
[2] | Tailei Zhang, Hui Li, Na Xie, Wenhui Fu, Kai Wang, Xiongjie Ding . Mathematical analysis and simulation of a Hepatitis B model with time delay: A case study for Xinjiang, China. Mathematical Biosciences and Engineering, 2020, 17(2): 1757-1775. doi: 10.3934/mbe.2020092 |
[3] | Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060 |
[4] | Yuhua Long, Yining Chen . Global stability of a pseudorabies virus model with vertical transmission. Mathematical Biosciences and Engineering, 2020, 17(5): 5234-5249. doi: 10.3934/mbe.2020283 |
[5] | Xiaowen Xiong, Yanqiu Li, Bingliang Li . Global stability of age-of-infection multiscale HCV model with therapy. Mathematical Biosciences and Engineering, 2021, 18(3): 2182-2205. doi: 10.3934/mbe.2021110 |
[6] | Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019 |
[7] | Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo . Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level. Mathematical Biosciences and Engineering, 2022, 19(2): 1515-1535. doi: 10.3934/mbe.2022070 |
[8] | Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483 |
[9] | Junli Liu . Threshold dynamics of a time-delayed hantavirus infection model in periodic environments. Mathematical Biosciences and Engineering, 2019, 16(5): 4758-4776. doi: 10.3934/mbe.2019239 |
[10] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
[1] |
Wilson CL, Pusey PL (1985) Potential for Biological Control of Postharvest Plant Diseases. Plant Dis 69: 375–378. doi: 10.1094/PD-69-375
![]() |
[2] | Bradford KJ, Dahal P, Asbrouck JV, et al. (2017) The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci Technol 71: 84–93. |
[3] | Agrawal SG, Methekar RN (2016) Mathematical model for heat and mass transfer during convective drying of pumpkin. Food and Bioprod Process 101: 68–73. |
[4] |
Beuchat LR (1983) Influence of Water Activity on Growth, Metabolic Activities and Survival of Yeasts and Molds. J Food Prot 46: 135–141. doi: 10.4315/0362-028X-46.2.135
![]() |
[5] | Thompson JF, Reid MS, Felix L, et al. (2016) DryCardTM-A Low-Cost Dryness Indicator for Dried Products. AIMS Agric Food 2: 339–344. |
[6] | Kudra T, Mujumdar AS (2009) Advanced Drying Technologies. 2nd Edition, Boca Raton, CRC Press. |
[7] | Sturton SL, Bilanski WK, Menzies DR (1983) Moisture exchange between corn and the desiccant bentonite in an intimate mixture. Can Agric Eng 25: 139–141. |
[8] | Rumsey T (1991) High temperature walnut drying. Sacramento, CA: Walnut Marketing Board. Research report: University of California, Davis. |
[9] | United States Evironmental Protection Agency-Air and Raditation (2006) Replacing Glycol Dehydrators with Desiccant Dehydrators. United States Environmental Protection Agency. |
[10] |
Li Z, Kobayashi N, Watanabe F, et al. (2002) Sorption drying of soybean seeds with silica gel. Drying Technol 20: 223–233. doi: 10.1081/DRT-120001376
![]() |
[11] | Nassari PJ, Keshavulu K, Rao M, et al. (2014) Post harvest drying of tomato seeds to ultra low moisture safe for storage using desiccant (Zeolite) beads and their effects on seed quality. American J Res Commun 2: 75–79. |
[12] | Willcutt H (1914) Harvesting, drying, and storing corn. Extension Service of Mississippi State University, cooperating with U.S. Department of Agriculture: Mississippi State University. |
[13] | Reeb JE, Milota MR (1999) Moisture content by the ovendry method for industrial testing. 1999 May Portland, OR. 50th. Conference of Western Dry Kiln Association, 66–74. |
[14] | Ott LR, Longnecker M (2001) An introduction to statistical methods and data analysis. Duxbury Pacific Grove, CA. |
[15] | Ag Professional (2012) A perspective on world grain demand. Available from: https://www.agprofessional.com/article/perspective-world-grain-demand. |
[16] |
Bouzenada S, Kaabi AN, Fraikin L, et al. (2017) Successive dehumidification/regeneration cycles by LiCL desiccant for air-conditioning system. AIP Conf Proc 1809: 020009. doi: 10.1063/1.4975424
![]() |
[17] |
Cheng Q, Zhang X (2013) Review of solar regeneration methods for liquid desiccant air-conditioning system. Energy Build 67: 426–433. doi: 10.1016/j.enbuild.2013.08.053
![]() |
[18] | U.S. Energy Information Administration-Department of Energy (2018) Average Price of Electricity to Ultimate Customers by End-Use Sector. Electric Power Monthly. May 30, 2018 ed. Washington, DC. |
[19] | Dyck J (2017) Reducing Energy Use in Grain Dryers. Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA). Available from: http://www.omafra.gov.on.ca/english/engineer/facts/17-001.htm. |
[20] | Greenspan L (1976) Humidity fixed points in binary saturated aqueous solutions. J Res Natl Bur Stand-A Phys Chem 81A: 89–95. |
[21] | Podorozhnyj AM, Korobkina NA, Safonov VV, et al. (1988) Investigation of sodium iodide hydration and dehydration in moist atmospher. Zh Neorganicheskoj Khim 33: 13–17. |
[22] |
Coenen K, Gallucci F, Cobden P, et al. (2018) Influence of material composition on the CO2 and H2O adsorption capacities and kinetics of potassium-promoted sorbents. Chem Eng J 334: 2115–2123. doi: 10.1016/j.cej.2017.11.161
![]() |
[23] |
Gu W, Li Y, Zhu J, et al. (2017) Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer. Atmos Meas Tech 10: 3821–3832. doi: 10.5194/amt-10-3821-2017
![]() |
[24] |
Hay FR, Thavong P, Taridno P, et al. (2012) Evaluation of zeolite seed 'Drying Beads®' for drying rice seeds to low moisture content prior to long-term storage. Seed Sci Technol 40: 374–395. doi: 10.15258/sst.2012.40.3.09
![]() |
[25] | Hay FR, Timple S (2013) Optimum ratios of zeolite seed Drying Beads® to dry rice seeds for genebank storage. Seed SciTechnol: 407–419. |
1. | F. Nazari, A.B. Gumel, E.H. Elbasha, Differential characteristics of primary infection and re-infection can cause backward bifurcation in HCV transmission dynamics, 2015, 263, 00255564, 51, 10.1016/j.mbs.2015.02.002 | |
2. | Wei Wang, Wanbiao Ma, Hepatitis C virus infection is blocked by HMGB1: A new nonlocal and time-delayed reaction–diffusion model, 2018, 320, 00963003, 633, 10.1016/j.amc.2017.09.046 | |
3. | A. Cousien, V. C. Tran, S. Deuffic-Burban, M. Jauffret-Roustide, J.-S. Dhersin, Y. Yazdanpanah, Dynamic modelling of hepatitis C virus transmission among people who inject drugs: a methodological review, 2015, 22, 13520504, 213, 10.1111/jvh.12337 | |
4. | David P. Durham, Laura A. Skrip, Robert Douglas Bruce, Silvia Vilarinho, Elamin H. Elbasha, Alison P. Galvani, Jeffrey P. Townsend, The Impact of Enhanced Screening and Treatment on Hepatitis C in the United States, 2016, 62, 1058-4838, 298, 10.1093/cid/civ894 | |
5. | Emily D. Bethea, Qiushi Chen, Chin Hur, Raymond T. Chung, Jagpreet Chhatwal, Should we treat acute hepatitis C? A decision and cost-effectiveness analysis, 2018, 67, 02709139, 837, 10.1002/hep.29611 | |
6. | Lauren E. Cipriano, Jeremy D. Goldhaber-Fiebert, Population Health and Cost-Effectiveness Implications of a “Treat All” Recommendation for HCV: A Review of the Model-Based Evidence, 2018, 3, 2381-4683, 238146831877663, 10.1177/2381468318776634 | |
7. | Wei Wang, Wanbiao Ma, Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling, 2018, 59, 10075704, 488, 10.1016/j.cnsns.2017.11.024 | |
8. | Cheng Ding, Xiaoxiao Liu, Shigui Yang, The value of infectious disease modeling and trend assessment: a public health perspective, 2021, 1478-7210, 1, 10.1080/14787210.2021.1882850 | |
9. | Ignacio Rozada, Daniel Coombs, Viviane D. Lima, Conditions for eradicating hepatitis C in people who inject drugs: A fibrosis aware model of hepatitis C virus transmission, 2016, 395, 00225193, 31, 10.1016/j.jtbi.2016.01.030 | |
10. | Karen Van Nuys, Ronald Brookmeyer, Jacquelyn W. Chou, David Dreyfus, Douglas Dieterich, Dana P. Goldman, Broad Hepatitis C Treatment Scenarios Return Substantial Health Gains, But Capacity Is A Concern, 2015, 34, 0278-2715, 1666, 10.1377/hlthaff.2014.1193 | |
11. | Ashley B Pitcher, Annick Borquez, Britt Skaathun, Natasha K Martin, Mathematical modeling of hepatitis c virus (HCV) prevention among people who inject drugs: A review of the literature and insights for elimination strategies, 2019, 481, 00225193, 194, 10.1016/j.jtbi.2018.11.013 | |
12. | Ruiqing Shi, Yunting Cui, Global analysis of a mathematical model for Hepatitis C virus transmissions, 2016, 217, 01681702, 8, 10.1016/j.virusres.2016.02.006 | |
13. | Mingwang Shen, Yanni Xiao, Weike Zhou, Zhen Li, Global Dynamics and Applications of an Epidemiological Model for Hepatitis C Virus Transmission in China, 2015, 2015, 1026-0226, 1, 10.1155/2015/543029 | |
14. | A. Nwankwo, D. Okuonghae, Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis, 2018, 80, 0092-8240, 437, 10.1007/s11538-017-0384-0 | |
15. | Yao Wang, Zeyu Zhao, Mingzhai Wang, Mikah Ngwanguong Hannah, Qingqing Hu, Jia Rui, Xingchun Liu, Yuanzhao Zhu, Jingwen Xu, Meng Yang, Jing-An Cui, Yanhua Su, Benhua Zhao, Tianmu Chen, The transmissibility of hepatitis C virus: a modelling study in Xiamen City, China, 2020, 148, 0950-2688, 10.1017/S0950268820002885 | |
16. | M. E. Woode, M. Abu‐Zaineh, J. Perriëns, F. Renaud, S. Wiktor, J.‐P. Moatti, Potential market size and impact of hepatitis C treatment in low‐ and middle‐income countries, 2016, 23, 1352-0504, 522, 10.1111/jvh.12516 | |
17. | Oluwasegun M. Ibrahim, Daniel Okuonghae, Monday N.O. Ikhile, Mathematical Modeling of the Population Dynamics of Age-Structured Criminal Gangs with Correctional Intervention Measures, 2022, 107, 0307904X, 39, 10.1016/j.apm.2022.02.005 | |
18. | S. P. Rajasekar, M. Pitchaimani, Quanxin Zhu, Probing a Stochastic Epidemic Hepatitis C Virus Model with a Chronically Infected Treated Population, 2022, 42, 0252-9602, 2087, 10.1007/s10473-022-0521-1 | |
19. | Louiza Tabharit, Maghnia Hamou Maamar, 2021, Mathematical Modeling of Chronic Hepatitis C Treatment’s Effect on the Evolution of its Complications, 978-1-6654-4171-1, 1, 10.1109/ICRAMI52622.2021.9585963 | |
20. | Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.1 | |
21. | Baolin Li, Fengqin Zhang, Xia Wang, A delayed diffusive HBV model with nonlinear incidence and CTL immune response, 2022, 45, 0170-4214, 11930, 10.1002/mma.8547 | |
22. | Yuqiong Lan, Yanqiu Li, Dongmei Zheng, Global dynamics of an age-dependent multiscale hepatitis C virus model, 2022, 85, 0303-6812, 10.1007/s00285-022-01773-9 | |
23. | Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo, Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level, 2021, 19, 1551-0018, 1515, 10.3934/mbe.2022070 | |
24. | R. Rakkiyappan, V. Preethi Latha, F. A. Rihan, Global Dynamics of a Fractional-order Ebola Model with Delayed Immune Response on Complex Networks, 2021, 91, 0369-8203, 681, 10.1007/s40010-021-00756-7 | |
25. | Ke Qi, Zhijun Liu, Lianwen Wang, Qinglong Wang, A nonlinear HCV model in deterministic and randomly fluctuating environments, 2023, 46, 0170-4214, 4644, 10.1002/mma.8792 | |
26. | Nauman Ahmed, Ali Raza, Ali Akgül, Zafar Iqbal, Muhammad Rafiq, Muhammad Ozair Ahmad, Fahd Jarad, New applications related to hepatitis C model, 2022, 7, 2473-6988, 11362, 10.3934/math.2022634 | |
27. | Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.2 | |
28. | Vuk Vujović, Influence of environmental fluctuations on Hepatitis C transmission, 2022, 191, 03784754, 203, 10.1016/j.matcom.2021.08.008 | |
29. | Robert B Hood, Alison H Norris, Abigail Shoben, William C Miller, Randall E Harris, Laura W Pomeroy, Forecasting Hepatitis C Virus Status for Children in the United States: A Modeling Study, 2024, 1058-4838, 10.1093/cid/ciae157 | |
30. | Parvaiz Ahmad Naik, Mehmet Yavuz, Sania Qureshi, Mehraj-ud-din Naik, Kolade M. Owolabi, Amanullah Soomro, Abdul Hamid Ganie, Memory impacts in hepatitis C: A global analysis of a fractional-order model with an effective treatment, 2024, 01692607, 108306, 10.1016/j.cmpb.2024.108306 | |
31. | Shewafera Wondimagegnhu Teklu, Tsegaye Simon Lachamo, Tibebu Tulu Guya, Analyses of a stage structure hepatitis c virus compartmental model with optimal control theory, 2025, 11, 2363-6203, 10.1007/s40808-025-02288-0 |