The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 March 2005
  • MSC : 92-02.

  • Recent evidence elucidating the relationship between parenchyma cells and otherwise ''healthy'' cells in malignant neoplasms is forcing cancer biologists to expand beyond the genome-centered, ''one-renegade-cell'' theory of cancer. As it becomes more and more clear that malignant transformation is context dependent, the usefulness of an evolutionary ecology-based theory of malignant neoplasia becomes increasingly clear. This review attempts to synthesize various theoretical structures built by mathematical oncologists into potential explanations of necrosis and cellular diversity, including both total cell diversity within a tumor and cellular pleomorphism within the parenchyma. The role of natural selection in necrosis and pleomorphism is also examined. The major hypotheses suggested as explanations of these phenomena are outlined in the conclusions section of this review. In every case, mathematical oncologists have built potentially valuable models that yield insight into the causes of necrosis, cell diversity and nearly every other aspect of malignancy; most make predictions ultimately testable in the lab or clinic. Unfortunately, these advances have gone largely unexploited by the empirical community. Possible reasons why are considered.

    Citation: John D. Nagy. The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity[J]. Mathematical Biosciences and Engineering, 2005, 2(2): 381-418. doi: 10.3934/mbe.2005.2.381

    Related Papers:

    [1] Andrzej Swierniak, Michal Krzeslak . Application of evolutionary games to modeling carcinogenesis. Mathematical Biosciences and Engineering, 2013, 10(3): 873-911. doi: 10.3934/mbe.2013.10.873
    [2] Dominik Wodarz . Computational modeling approaches to studying the dynamics of oncolytic viruses. Mathematical Biosciences and Engineering, 2013, 10(3): 939-957. doi: 10.3934/mbe.2013.10.939
    [3] Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli . Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences and Engineering, 2005, 2(3): 445-460. doi: 10.3934/mbe.2005.2.445
    [4] Hao Shen, Xiao-Dong Weng, Du Yang, Lei Wang, Xiu-Heng Liu . Long noncoding RNA MIR22HG is down-regulated in prostate cancer. Mathematical Biosciences and Engineering, 2020, 17(2): 1776-1786. doi: 10.3934/mbe.2020093
    [5] Avner Friedman, Kang-Ling Liao . The role of the cytokines IL-27 and IL-35 in cancer. Mathematical Biosciences and Engineering, 2015, 12(6): 1203-1217. doi: 10.3934/mbe.2015.12.1203
    [6] Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325
    [7] Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360
    [8] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
    [9] Salman Lari, Hossein Rajabzadeh, Mohammad Kohandel, Hyock Ju Kwon . A holistic physics-informed neural network solution for precise destruction of breast tumors using focused ultrasound on a realistic breast model. Mathematical Biosciences and Engineering, 2024, 21(10): 7337-7372. doi: 10.3934/mbe.2024323
    [10] John D. Nagy, Dieter Armbruster . Evolution of uncontrolled proliferation and the angiogenic switch in cancer. Mathematical Biosciences and Engineering, 2012, 9(4): 843-876. doi: 10.3934/mbe.2012.9.843
  • Recent evidence elucidating the relationship between parenchyma cells and otherwise ''healthy'' cells in malignant neoplasms is forcing cancer biologists to expand beyond the genome-centered, ''one-renegade-cell'' theory of cancer. As it becomes more and more clear that malignant transformation is context dependent, the usefulness of an evolutionary ecology-based theory of malignant neoplasia becomes increasingly clear. This review attempts to synthesize various theoretical structures built by mathematical oncologists into potential explanations of necrosis and cellular diversity, including both total cell diversity within a tumor and cellular pleomorphism within the parenchyma. The role of natural selection in necrosis and pleomorphism is also examined. The major hypotheses suggested as explanations of these phenomena are outlined in the conclusions section of this review. In every case, mathematical oncologists have built potentially valuable models that yield insight into the causes of necrosis, cell diversity and nearly every other aspect of malignancy; most make predictions ultimately testable in the lab or clinic. Unfortunately, these advances have gone largely unexploited by the empirical community. Possible reasons why are considered.


  • This article has been cited by:

    1. Shihe Xu, Analysis of a free boundary problem for tumor growth in a periodic external environment, 2015, 2015, 1687-2770, 10.1186/s13661-015-0399-0
    2. Jingsong Zhang, Jessica J. Cunningham, Joel S. Brown, Robert A. Gatenby, Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer, 2017, 8, 2041-1723, 10.1038/s41467-017-01968-5
    3. Tin Phan, Sharon M. Crook, Alan H. Bryce, Carlo C. Maley, Eric J. Kostelich, Yang Kuang, Review: Mathematical Modeling of Prostate Cancer and Clinical Application, 2020, 10, 2076-3417, 2721, 10.3390/app10082721
    4. S. G. Babajanyan, Eugene V. Koonin, Kang Hao Cheong, Can Environmental Manipulation Help Suppress Cancer? Non‐Linear Competition Among Tumor Cells in Periodically Changing Conditions, 2020, 7, 2198-3844, 2000340, 10.1002/advs.202000340
    5. Hyun Geun Lee, Yangjin Kim, Junseok Kim, Mathematical model and its fast numerical method for the tumor growth, 2015, 12, 1551-0018, 1173, 10.3934/mbe.2015.12.1173
    6. Peter Hinow, Gabriella Pinter, Wei Yan, Shizhen Emily Wang, Modeling the bidirectional glutamine/ammonium conversion between cancer cells and cancer-associated fibroblasts, 2021, 9, 2167-8359, e10648, 10.7717/peerj.10648
    7. S. A. Menchón, C. A. Condat, Modeling tumor cell shedding, 2009, 38, 0175-7571, 479, 10.1007/s00249-008-0398-5
    8. Rebecca M. Harman, Sanjna P. Das, Arianna P. Bartlett, Gat Rauner, Leanne R. Donahue, Gerlinde R. Van de Walle, Beyond tradition and convention: benefits of non-traditional model organisms in cancer research, 2021, 40, 0167-7659, 47, 10.1007/s10555-020-09930-6
    9. Sehyo C. Choe, Guannan Zhao, Zhenyuan Zhao, Joseph D. Rosenblatt, Hyun-Mi Cho, Seung-Uon Shin, Neil F. Johnson, Model for in vivo progression of tumors based on co-evolving cell population and vasculature, 2011, 1, 2045-2322, 10.1038/srep00031
    10. Sandeep Sanga, Hermann B. Frieboes, Xiaoming Zheng, Robert Gatenby, Elaine L. Bearer, Vittorio Cristini, Predictive oncology: A review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth, 2007, 37, 10538119, S120, 10.1016/j.neuroimage.2007.05.043
    11. S. A. Menchón, C. A. Condat, Cancer growth: Predictions of a realistic model, 2008, 78, 1539-3755, 10.1103/PhysRevE.78.022901
    12. N. S. Ravindran, M. Mohamed Sheriff, P. Krishnapriya, Analysis of tumour-immune evasion with chemo-immuno therapeutic treatment with quadratic optimal control, 2017, 11, 1751-3758, 480, 10.1080/17513758.2017.1381280
    13. AI Reppas, JCL Alfonso, H Hatzikirou, In silico tumor control induced via alternating immunostimulating and immunosuppressive phases, 2016, 7, 2150-5594, 174, 10.1080/21505594.2015.1076614
    14. R. A. Everett, J. D. Nagy, Y. Kuang, Dynamics of a Data Based Ovarian Cancer Growth and Treatment Model with Time Delay, 2016, 28, 1040-7294, 1393, 10.1007/s10884-015-9498-y
    15. Scott T. Bickel, Joseph D. Juliano, John D. Nagy, Juan F. Poyatos, Evolution of Proliferation and the Angiogenic Switch in Tumors with High Clonal Diversity, 2014, 9, 1932-6203, e91992, 10.1371/journal.pone.0091992
    16. Evolution of uncontrolled proliferation and the angiogenic switch in cancer, 2012, 9, 1551-0018, 843, 10.3934/mbe.2012.9.843
    17. Shihe Xu, Meng Bai, Stability of solutions to a mathematical model for necrotic tumor growth with time delays in proliferation, 2015, 421, 0022247X, 955, 10.1016/j.jmaa.2014.07.029
    18. Ying Chen, Steven M. Wise, Vivek B. Shenoy, John S. Lowengrub, A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane, 2014, 30, 20407939, 726, 10.1002/cnm.2624
    19. Joel S. Brown, Why Darwin would have loved evolutionary game theory, 2016, 283, 0962-8452, 20160847, 10.1098/rspb.2016.0847
    20. Shihe Xu, Fangwei Zhang, Global asymptotic stability of positive steady states of a solid avascular tumor growth model with time delays, 2018, 48, 0035-7596, 10.1216/RMJ-2018-48-5-1685
    21. M. Saleem, Tanuja Agrawal, Chaos in a Tumor Growth Model with Delayed Responses of the Immune System, 2012, 2012, 1110-757X, 1, 10.1155/2012/891095
    22. Kerri-Ann Norton, Michael Wininger, Gyan Bhanot, Shridar Ganesan, Nicola Barnard, Troy Shinbrot, A 2D mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression, 2010, 263, 00225193, 393, 10.1016/j.jtbi.2009.11.024
    23. G. F. Webb, 2008, Chapter 1, 978-3-540-78272-8, 1, 10.1007/978-3-540-78273-5_1
    24. Shihe Xu, Meng Bai, Xiangqing Zhao, Analysis of a solid avascular tumor growth model with time delays in proliferation process, 2012, 391, 0022247X, 38, 10.1016/j.jmaa.2012.02.034
    25. Madhusudana Girija Sanal, A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer, 2014, 2, 2050-3121, 205031211455037, 10.1177/2050312114550375
    26. Fangwei Zhang, Shihe Xu, Steady-State Analysis of Necrotic Core Formation for Solid Avascular Tumors with Time Delays in Regulatory Apoptosis, 2014, 2014, 1748-670X, 1, 10.1155/2014/467158
    27. Shihe Xu, Meng Bai, Zhong Wang, Fangwei Zhang, Qualitative analysis of a free boundary problem for tumor growth under the action of periodic external inhibitors, 2018, 11, 1793-5245, 1850008, 10.1142/S1793524518500080
    28. Tanuja Agrawal, M. Saleem, S. K. Sahu, Optimal control of the dynamics of a tumor growth model with Hollings’ type-II functional response, 2014, 33, 0101-8205, 591, 10.1007/s40314-013-0083-x
    29. J S Lowengrub, H B Frieboes, F Jin, Y-L Chuang, X Li, P Macklin, S M Wise, V Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, 2010, 23, 0951-7715, R1, 10.1088/0951-7715/23/1/R01
    30. Hermann B. Frieboes, Fang Jin, Yao-Li Chuang, Steven M. Wise, John S. Lowengrub, Vittorio Cristini, Three-dimensional multispecies nonlinear tumor growth—II: Tumor invasion and angiogenesis, 2010, 264, 00225193, 1254, 10.1016/j.jtbi.2010.02.036
    31. Marisbel Rodriguez Messan, Mehdi Damaghi, Audrey Freischel, Yan Miao, Joel Brown, Robert Gillies, Dorothy Wallace, Predicting the results of competition between two breast cancer lines grown in 3-D spheroid culture, 2021, 00255564, 108575, 10.1016/j.mbs.2021.108575
    32. Peter Nimiritsky, Roman Eremichev, Natalya Alexandrushkina, Anastasia Efimenko, Vsevolod Tkachuk, Pavel Makarevich, Unveiling Mesenchymal Stromal Cells’ Organizing Function in Regeneration, 2019, 20, 1422-0067, 823, 10.3390/ijms20040823
    33. Irina Kareva, Jonathan A. Coles, Biological Stoichiometry in Tumor Micro-environments, 2013, 8, 1932-6203, e51844, 10.1371/journal.pone.0051844
    34. Fahimeh Akbarian, Sara Rahbar, Sajad Shafiekhani, Amir Homayoun Jafari, Jamshid Hajati, 2018, Modeling the strategies of interactions between melanoma tumor and CD8+immune cells using game theory, 978-1-5386-7952-4, 1, 10.1109/ICBME.2018.8703495
    35. Tracy L. Stepien, Eric J. Kostelich, Yang Kuang, Mathematics + Cancer: An Undergraduate "Bridge" Course in Applied Mathematics, 2020, 62, 0036-1445, 244, 10.1137/18M1191865
    36. Shihe Xu, Minhai Huang, Global Existence and Uniqueness of Solutions for a Free Boundary Problem Modeling the Growth of Tumors with a Necrotic Core and a Time Delay in Process of Proliferation, 2014, 2014, 1024-123X, 1, 10.1155/2014/480147
    37. Shihe Xu, Yinhui Chen, Meng Bai, Analysis of a time-delayed mathematical model for solid avascular tumor growth under the action of external inhibitors, 2016, 52, 1598-5865, 403, 10.1007/s12190-015-0947-x
    38. Sarah R. Amend, Sounak Roy, Joel S. Brown, Kenneth J. Pienta, Ecological paradigms to understand the dynamics of metastasis, 2016, 380, 03043835, 237, 10.1016/j.canlet.2015.10.005
    39. Bryan Q. Spring, Ryan T. Lang, Eric M. Kercher, Imran Rizvi, Robert M. Wenham, José R. Conejo-Garcia, Tayyaba Hasan, Robert A. Gatenby, Heiko Enderling, Illuminating the Numbers: Integrating Mathematical Models to Optimize Photomedicine Dosimetry and Combination Therapies, 2019, 7, 2296-424X, 10.3389/fphy.2019.00046
    40. Philip Gerlee, Alexander R A Anderson, The evolution of carrying capacity in constrained and expanding tumour cell populations, 2015, 12, 1478-3975, 056001, 10.1088/1478-3975/12/5/056001
    41. Ying Chen, John S. Lowengrub, Tumor growth in complex, evolving microenvironmental geometries: A diffuse domain approach, 2014, 361, 00225193, 14, 10.1016/j.jtbi.2014.06.024
    42. Raluca Eftimie, Jonathan L. Bramson, David J.D. Earn, Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma, 2010, 265, 00225193, 467, 10.1016/j.jtbi.2010.04.030
    43. F.A. Rihan, D.H. Abdel Rahman, S. Lakshmanan, A.S. Alkhajeh, A time delay model of tumour–immune system interactions: Global dynamics, parameter estimation, sensitivity analysis, 2014, 232, 00963003, 606, 10.1016/j.amc.2014.01.111
    44. L. Loewe, 2016, 9780128004265, 297, 10.1016/B978-0-12-800049-6.00184-0
    45. P Tracqui, Biophysical models of tumour growth, 2009, 72, 0034-4885, 056701, 10.1088/0034-4885/72/5/056701
    46. Kenneth J. Pienta, Natalie McGregor, Robert Axelrod, David E. Axelrod, Ecological Therapy for Cancer: Defining Tumors Using an Ecosystem Paradigm Suggests New Opportunities for Novel Cancer Treatments, 2008, 1, 19365233, 158, 10.1593/tlo.08178
    47. Fathalla A. Rihan, Nouran F. Rihan, 2020, 9780128213506, 83, 10.1016/B978-0-12-821350-6.00004-4
    48. Hermann B. Frieboes, Bryan R. Smith, Yao-Li Chuang, Ken Ito, Allison M. Roettgers, Sanjiv S. Gambhir, Vittorio Cristini, Mark S. Alber, An Integrated Computational/Experimental Model of Lymphoma Growth, 2013, 9, 1553-7358, e1003008, 10.1371/journal.pcbi.1003008
    49. Florent Feudjio Kemwoue, Jean Marie Dongo, Rose NGONO Mballa, Carlos Lawrence Gninzanlong, Marcel Wouapi Kemayou, Bouchra Mokhtari, Frederick Biya-Motto, Jacques Atangana, Bifurcation, multistability in the dynamics of tumor growth and electronic simulations by the use of Pspice, 2020, 134, 09600779, 109689, 10.1016/j.chaos.2020.109689
    50. F. A. Rihan, D. H. Abdelrahman, F. Al-Maskari, F. Ibrahim, M. A. Abdeen, Delay Differential Model for Tumour-Immune Response with Chemoimmunotherapy and Optimal Control, 2014, 2014, 1748-670X, 1, 10.1155/2014/982978
    51. J.M. Chrobak, M. Bodnar, H. Herrero, About a generalized model of lymphoma, 2012, 386, 0022247X, 813, 10.1016/j.jmaa.2011.08.043
    52. Raluca Eftimie, Jonathan L. Bramson, David J. D. Earn, Interactions Between the Immune System and Cancer: A Brief Review of Non-spatial Mathematical Models, 2011, 73, 0092-8240, 2, 10.1007/s11538-010-9526-3
    53. P. Krishnapriya, M. Pitchaimani, Optimal control of mixed immunotherapy and chemotherapy of tumours with discrete delay, 2017, 5, 2195-268X, 872, 10.1007/s40435-015-0221-y
    54. ANTONIO BRÚ, MIGUEL A. HERRERO, FROM THE PHYSICAL LAWS OF TUMOR GROWTH TO MODELLING CANCER PROCESSES, 2006, 16, 0218-2025, 1199, 10.1142/S0218202506001510
    55. Burt P. Kotler, Joel S. Brown, Cancer Community Ecology, 2020, 27, 1073-2748, 107327482095177, 10.1177/1073274820951776
    56. Shihe Xu, Global stability of solutions to a free boundary problem of ductal carcinoma in situ, 2016, 27, 14681218, 238, 10.1016/j.nonrwa.2015.08.003
    57. Ardeshir Kianercy, Robert Veltri, Kenneth J. Pienta, Critical transitions in a game theoretic model of tumour metabolism, 2014, 4, 2042-8898, 20140014, 10.1098/rsfs.2014.0014
    58. Shihe Xu, Yinhui Chen, Meng Bai, Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients, 2016, 21, 1531-3492, 997, 10.3934/dcdsb.2016.21.997
    59. Frederick R. Adler, Deborah M. Gordon, Cancer ecology and evolution: positive interactions and system vulnerability, 2019, 17, 24523100, 1, 10.1016/j.coisb.2019.09.001
    60. 2008, Chapter 1, 978-3-540-75872-3, 1, 10.1007/978-3-540-75873-0_1
    61. Thomas Hillen, Mark A. Lewis, 2014, Chapter 1, 978-3-319-03758-5, 1, 10.1007/978-3-319-03759-2_1
    62. S.M. Wise, J.S. Lowengrub, V. Cristini, An adaptive multigrid algorithm for simulating solid tumor growth using mixture models, 2011, 53, 08957177, 1, 10.1016/j.mcm.2010.07.007
    63. Anuraag Bukkuri, Kenneth J. Pienta, Ian Hockett, Robert H. Austin, Emma U. Hammarlund, Sarah R. Amend, Joel S. Brown, Modeling cancer’s ecological and evolutionary dynamics, 2023, 40, 1559-131X, 10.1007/s12032-023-01968-0
    64. Zecen He, Yulin Zhao, Global Dynamics of the model of tumor-immune interaction, 2023, 28, 1531-3492, 1993, 10.3934/dcdsb.2022155
    65. 李丹 孙, Solutions of a Phase-Field Model for Tumor Growth, 2021, 11, 2160-7583, 1230, 10.12677/PM.2021.116136
    66. Niusha Narimani, Mehdi Dehghan, A direct RBF-PU method for simulating the infiltration of cytotoxic T-lymphocytes into the tumor microenvironment, 2022, 114, 10075704, 106616, 10.1016/j.cnsns.2022.106616
    67. Steffen E Eikenberry, John D Nagy, Yang Kuang, The evolutionary impact of androgen levels on prostate cancer in a multi-scale mathematical model, 2010, 5, 1745-6150, 10.1186/1745-6150-5-24
    68. Devangkumar D. Trivedi, Sarat Kumar Dalai, Sonal Rajiv Bakshi, The Mystery of Cancer Resistance: A Revelation Within Nature, 2023, 0022-2844, 10.1007/s00239-023-10092-6
    69. Hua Zhang, Jianjun Paul Tian, Ben Niu, Yuxiao Guo, Mathematical modeling of tumor surface growth with necrotic kernels, 2021, 44, 0170-4214, 12688, 10.1002/mma.7571
    70. Jiatong Ji, Hong Wu, Xiaobing Feng, Xiaoquan Liu, Chenrong Huang, Shuyun Zheng, Jianjun Zou, Jun Liao, Dynamics of Acquired Resistance to Nivolumab Therapies Varies From Administration Strategies, 2021, 43, 01492918, 2088, 10.1016/j.clinthera.2021.10.004
    71. T. H. Tchinda, K. M. Wouapi, Z. Tabekoueng Njitacke, T. Fozin Fonzin, C. L. Gninzanlong, H. B. Fotsin, Hopf Bifurcation, Multistability and its Control in a Satellite System, 2022, 10, 2523-3920, 2293, 10.1007/s42417-022-00567-z
    72. Fathalla A. Rihan, 2021, Chapter 9, 978-981-16-0625-0, 167, 10.1007/978-981-16-0626-7_9
    73. Haiying Liu, Hongli Yang, Nan Liu, Liangui Yang, Bifurcation and chaos analysis of tumor growth, 2022, 15, 1793-5245, 10.1142/S1793524522500395
    74. Niusha Narimani, Mehdi Dehghan, Vahid Mohammadi, A weighted combination of reproducing kernel particle shape functions with cardinal functions of scalable polyharmonic spline radial kernel utilized in Galerkin weak form of a mathematical model related to anti-angiogenic therapy, 2024, 10075704, 108059, 10.1016/j.cnsns.2024.108059
    75. Sanchit Arora, Somay Singh, Anuj Mittal, Nimeet Desai, Dharmendra Kumar Khatri, Dalapathi Gugulothu, Viney Lather, Deepti Pandita, Lalitkumar Vora, Spheroids in Cancer Research: Recent Advances and Opportunities, 2024, 17732247, 106033, 10.1016/j.jddst.2024.106033
    76. Frederick R. Adler, A modelling framework for cancer ecology and evolution, 2024, 21, 1742-5662, 10.1098/rsif.2024.0099
    77. Kenneth J. Pienta, Patrick L. Goodin, Sarah R. Amend, Defeating lethal cancer: Interrupting the ecologic and evolutionary basis of death from malignancy, 2025, 0007-9235, 10.3322/caac.70000
    78. Tarekegn Dinku, Boka Kumsa, Jyotirmoy Rana, Aiyappan Srinivasan, Hegazy Rezk, A Mathematical Model of Tumor‐Immune and Host Cells Interactions with Chemotherapy and Optimal Control, 2024, 2024, 2314-4629, 10.1155/2024/3395825
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3782) PDF downloads(712) Cited by(77)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog