Some bifurcation methods of finding limit cycles

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 34C07.

  • In this paper we outline some methods of finding limit cycles for planar autonomous systems with small parameter perturbations. Three ways of studying Hopf bifurcations and the method of Melnikov functions in studying Poincaré bifurcations are introduced briefly. A new method of stability-changing in studying homoclinic bifurcation is described along with some interesting applications to polynomial systems.

    Citation: Maoan Han, Tonghua Zhang. Some bifurcation methods of finding limit cycles[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 67-77. doi: 10.3934/mbe.2006.3.67

    Related Papers:

    [1] Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486
    [2] Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani . Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422
    [3] Christian Cortés García, Jasmidt Vera Cuenca . Impact of alternative food on predator diet in a Leslie-Gower model with prey refuge and Holling Ⅱ functional response. Mathematical Biosciences and Engineering, 2023, 20(8): 13681-13703. doi: 10.3934/mbe.2023610
    [4] Mohammad Sajid, Sahabuddin Sarwardi, Ahmed S. Almohaimeed, Sajjad Hossain . Complex dynamics and Bogdanov-Takens bifurcations in a retarded van der Pol-Duffing oscillator with positional delayed feedback. Mathematical Biosciences and Engineering, 2023, 20(2): 2874-2889. doi: 10.3934/mbe.2023135
    [5] Eduardo González-Olivares, Claudio Arancibia-Ibarra, Alejandro Rojas-Palma, Betsabé González-Yañez . Bifurcations and multistability on the May-Holling-Tanner predation model considering alternative food for the predators. Mathematical Biosciences and Engineering, 2019, 16(5): 4274-4298. doi: 10.3934/mbe.2019213
    [6] Xinyou Meng, Jie Li . Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting. Mathematical Biosciences and Engineering, 2020, 17(3): 1973-2002. doi: 10.3934/mbe.2020105
    [7] Shuangte Wang, Hengguo Yu . Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Mathematical Biosciences and Engineering, 2021, 18(6): 7877-7918. doi: 10.3934/mbe.2021391
    [8] Hongqiuxue Wu, Zhong Li, Mengxin He . Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting. Mathematical Biosciences and Engineering, 2023, 20(10): 18592-18629. doi: 10.3934/mbe.2023825
    [9] LanJiang Luo, Haihong Liu, Fang Yan . Dynamic behavior of P53-Mdm2-Wip1 gene regulatory network under the influence of time delay and noise. Mathematical Biosciences and Engineering, 2023, 20(2): 2321-2347. doi: 10.3934/mbe.2023109
    [10] Dan Liu, Shigui Ruan, Deming Zhu . Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences and Engineering, 2012, 9(2): 347-368. doi: 10.3934/mbe.2012.9.347
  • In this paper we outline some methods of finding limit cycles for planar autonomous systems with small parameter perturbations. Three ways of studying Hopf bifurcations and the method of Melnikov functions in studying Poincaré bifurcations are introduced briefly. A new method of stability-changing in studying homoclinic bifurcation is described along with some interesting applications to polynomial systems.


  • This article has been cited by:

    1. Maoan Han, Junmin Yang, Alexandrina–Alina Tarţa, Yang Gao, Limit Cycles Near Homoclinic and Heteroclinic Loops, 2008, 20, 1040-7294, 923, 10.1007/s10884-008-9108-3
    2. MAOAN HAN, JIAO JIANG, HUAIPING ZHU, LIMIT CYCLE BIFURCATIONS IN NEAR-HAMILTONIAN SYSTEMS BY PERTURBING A NILPOTENT CENTER, 2008, 18, 0218-1274, 3013, 10.1142/S0218127408022226
    3. Ali Atabaigi, Hamid R.Z. Zangeneh, Rasool Kazemi, Limit cycle bifurcation by perturbing a cuspidal loop of order 2 in a Hamiltonian system, 2012, 75, 0362546X, 1945, 10.1016/j.na.2011.09.044
    4. Jiao Jiang, Maoan Han, Melnikov function and limit cycle bifurcation from a nilpotent center, 2008, 132, 00074497, 182, 10.1016/j.bulsci.2006.11.006
    5. P. Yu, R. Corless, Symbolic computation of limit cycles associated with Hilbert’s 16th problem, 2009, 14, 10075704, 4041, 10.1016/j.cnsns.2008.10.010
    6. Pegah Moghimi, Rasoul Asheghi, Rasool Kazemi, On the Number of Limit Cycles Bifurcated from Some Hamiltonian Systems with a Double Homoclinic Loop and a Heteroclinic Loop, 2017, 27, 0218-1274, 1750055, 10.1142/S0218127417500559
    7. TONGHUA ZHANG, HONG ZANG, MOSE O. TADE, BIFURCATIONS OF LIMIT CYCLES FOR A PERTURBED CUBIC SYSTEM WITH DOUBLE FIGURE EIGHT LOOP, 2013, 23, 0218-1274, 1350067, 10.1142/S0218127413500673
    8. PEI YU, MAOAN HAN, CRITICAL PERIODS OF PLANAR REVERTIBLE VECTOR FIELD WITH THIRD-DEGREE POLYNOMIAL FUNCTIONS, 2009, 19, 0218-1274, 419, 10.1142/S0218127409022981
    9. Zhivko D. Georgiev, Irina L. Karagineva, Analysis and synthesis of oscillator systems described by perturbed double hump Duffing equations, 2011, 39, 00989886, 225, 10.1002/cta.630
    10. Hong Zang, Tonghua Zhang, Yu-Chu Tian, Moses O. Tadé, Limit Cycles for the Kukles system, 2008, 14, 1079-2724, 283, 10.1007/s10883-008-9036-x
    11. Hong Zang, Maoan Han, Dongmei Xiao, On Melnikov functions of a homoclinic loop through a nilpotent saddle for planar near-Hamiltonian systems, 2008, 245, 00220396, 1086, 10.1016/j.jde.2008.04.018
    12. MAOAN HAN, JUNMIN YANG, DONGMEI XIAO, LIMIT CYCLE BIFURCATIONS NEAR A DOUBLE HOMOCLINIC LOOP WITH A NILPOTENT SADDLE, 2012, 22, 0218-1274, 1250189, 10.1142/S0218127412501891
    13. Maoan Han, 2006, 3, 9780444528490, 341, 10.1016/S1874-5725(06)80008-8
    14. Maoan Han, Hong Zang, Junmin Yang, Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system, 2009, 246, 00220396, 129, 10.1016/j.jde.2008.06.039
    15. Zhivko D. Georgiev, Ivan M. Uzunov, Todor G. Todorov, Analysis and synthesis of oscillator systems described by a perturbed double-well Duffing equation, 2018, 94, 0924-090X, 57, 10.1007/s11071-018-4345-4
    16. Yong-xi Gao, Yu-hai Wu, Li-xin Tian, Bifurcations of limit cycles in a perturbed quintic Hamiltonian system with six double homoclinic loops, 2008, 24, 0168-9673, 313, 10.1007/s10255-006-6154-7
    17. Junmin Yang, Maoan Han, Valery G. Romanovski, Limit cycle bifurcations of some Liénard systems, 2010, 366, 0022247X, 242, 10.1016/j.jmaa.2009.12.035
    18. Yin Li, Yulin Zhao, Zheng-an Yao, Stochastic exact solutions of the Wick-type stochastic NLS equation, 2014, 249, 00963003, 209, 10.1016/j.amc.2014.09.083
    19. Zhivko Dimitrov Georgiev, Analysis and synthesis of oscillator systems described by perturbed single well Duffing equations, 2010, 62, 0924-090X, 883, 10.1007/s11071-010-9771-x
    20. WEIJIAO XU, CUIPING LI, NUMBER OF LIMIT CYCLES OF SOME POLYNOMIAL LIÉNARD SYSTEMS, 2013, 23, 0218-1274, 1350064, 10.1142/S0218127413500648
    21. Yuhai Wu, Maoan Han, Xianfeng Chen, On the bifurcation of double homoclinic loops of a cubic system, 2008, 68, 0362546X, 2487, 10.1016/j.na.2007.01.061
    22. JIAO JIANG, JIZHOU ZHANG, MAOAN HAN, LIMIT CYCLES FOR A CLASS OF QUINTIC NEAR-HAMILTONIAN SYSTEMS NEAR A NILPOTENT CENTER, 2009, 19, 0218-1274, 2107, 10.1142/S0218127409023949
    23. Yan Chen, Yang Wang, Study on Urban Road Information Indicating System in Green Environment Engineering, 2013, 340, 1662-7482, 1012, 10.4028/www.scientific.net/AMM.340.1012
    24. Maoan Han, Junmin Yang, Jibin Li, General study on limit cycle bifurcation near a double homoclinic loop, 2023, 347, 00220396, 1, 10.1016/j.jde.2022.11.031
    25. Yixia Shi, Maoan Han, Lijun Zhang, Homoclinic bifurcation of limit cycles in near-Hamiltonian systems on the cylinder, 2021, 304, 00220396, 1, 10.1016/j.jde.2021.09.036
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2875) PDF downloads(567) Cited by(25)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog