Competing species models with an infectious disease

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 92D30, 92D40.

  • The frequency-dependent (standard) form of the incidence is used for the transmission dynamics of an infectious disease in a competing species model. In the global analysis of the SIS model with the birth rate independent of the population size, a modified reproduction number R1 determines the asymptotic behavior, so that the disease dies out if R11 and approaches a globally attractive endemic equilibrium if R1>1. Because the disease- reduced reproduction and disease-related death rates are often different in two competing species, a shared disease can change the outcome of the competition. Models of SIR and SIRS type are also considered. A key result in all of these models with the frequency-dependent incidence is that the disease must either die out in both species or remain endemic in both species.

    Citation: Roberto A. Saenz, Herbert W. Hethcote. Competing species models with an infectious disease[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 219-235. doi: 10.3934/mbe.2006.3.219

    Related Papers:

    [1] Muhammad Shoaib Arif, Kamaleldin Abodayeh, Asad Ejaz . On the stability of the diffusive and non-diffusive predator-prey system with consuming resources and disease in prey species. Mathematical Biosciences and Engineering, 2023, 20(3): 5066-5093. doi: 10.3934/mbe.2023235
    [2] Eric Ruggieri, Sebastian J. Schreiber . The Dynamics of the Schoener-Polis-Holt model of Intra-Guild Predation. Mathematical Biosciences and Engineering, 2005, 2(2): 279-288. doi: 10.3934/mbe.2005.2.279
    [3] F. Berezovskaya, G. Karev, Baojun Song, Carlos Castillo-Chavez . A Simple Epidemic Model with Surprising Dynamics. Mathematical Biosciences and Engineering, 2005, 2(1): 133-152. doi: 10.3934/mbe.2005.2.133
    [4] Mahmudul Bari Hridoy . An exploration of modeling approaches for capturing seasonal transmission in stochastic epidemic models. Mathematical Biosciences and Engineering, 2025, 22(2): 324-354. doi: 10.3934/mbe.2025013
    [5] Louis D. Bergsman, James M. Hyman, Carrie A. Manore . A mathematical model for the spread of west nile virus in migratory and resident birds. Mathematical Biosciences and Engineering, 2016, 13(2): 401-424. doi: 10.3934/mbe.2015009
    [6] Linda J. S. Allen, Vrushali A. Bokil . Stochastic models for competing species with a shared pathogen. Mathematical Biosciences and Engineering, 2012, 9(3): 461-485. doi: 10.3934/mbe.2012.9.461
    [7] Rocio Caja Rivera, Shakir Bilal, Edwin Michael . The relation between host competence and vector-feeding preference in a multi-host model: Chagas and Cutaneous Leishmaniasis. Mathematical Biosciences and Engineering, 2020, 17(5): 5561-5583. doi: 10.3934/mbe.2020299
    [8] Hongbin Guo, Michael Yi Li . Global dynamics of a staged progression model for infectious diseases. Mathematical Biosciences and Engineering, 2006, 3(3): 513-525. doi: 10.3934/mbe.2006.3.513
    [9] Darja Kalajdzievska, Michael Yi Li . Modeling the effects of carriers on transmission dynamics of infectious diseases. Mathematical Biosciences and Engineering, 2011, 8(3): 711-722. doi: 10.3934/mbe.2011.8.711
    [10] Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060
  • The frequency-dependent (standard) form of the incidence is used for the transmission dynamics of an infectious disease in a competing species model. In the global analysis of the SIS model with the birth rate independent of the population size, a modified reproduction number R1 determines the asymptotic behavior, so that the disease dies out if R11 and approaches a globally attractive endemic equilibrium if R1>1. Because the disease- reduced reproduction and disease-related death rates are often different in two competing species, a shared disease can change the outcome of the competition. Models of SIR and SIRS type are also considered. A key result in all of these models with the frequency-dependent incidence is that the disease must either die out in both species or remain endemic in both species.


  • This article has been cited by:

    1. Maia Martcheva, Evolutionary Consequences of Predation for Pathogens in Prey, 2009, 71, 0092-8240, 819, 10.1007/s11538-008-9383-5
    2. E. Venturino, V. Volpert, Ecoepidemiology: a More Comprehensive View of Population Interactions, 2016, 11, 0973-5348, 49, 10.1051/mmnp/201611104
    3. W. Mbava, J.Y.T. Mugisha, J.W. Gonsalves, Prey, predator and super-predator model with disease in the super-predator, 2017, 297, 00963003, 92, 10.1016/j.amc.2016.10.034
    4. Ilaria Usville, Cristina Paola Viola, Ezio Venturino, Benchawan Wiwatanapataphee, An ecogenetic disease-affected predator–prey model, 2016, 3, 2331-1835, 1195716, 10.1080/23311835.2016.1195716
    5. S Toaha, , Stability analysis of prey predator model with Holling II functional response and threshold harvesting for the predator, 2019, 1341, 1742-6588, 062025, 10.1088/1742-6596/1341/6/062025
    6. Yicheng Liu, Yimin Du, Jianhong Wu, Backward/Hopf bifurcations in SIS models with delayed nonlinear incidence rates, 2008, 3, 1673-3452, 535, 10.1007/s11464-008-0040-y
    7. Andi Maulana, Dipo Aldilay, Suarsih Utama, Egi Safitri, 2020, 2296, 0094-243X, 020088, 10.1063/5.0030422
    8. Nishant Juneja, Kulbhushan Agnihotri, Harpreet Kaur, Effect of delay on globally stable prey–predator system, 2018, 111, 09600779, 146, 10.1016/j.chaos.2018.04.010
    9. Litao Han, Andrea Pugliese, Epidemics in two competing species, 2009, 10, 14681218, 723, 10.1016/j.nonrwa.2007.11.005
    10. Jeewoen Shin, Thomas MacCarthy, Potential for evolution of complex defense strategies in a multi-scale model of virus-host coevolution, 2016, 16, 1471-2148, 10.1186/s12862-016-0804-z
    11. F. B. AGUSTO, K. O. OKOSUN, OPTIMAL SEASONAL BIOCONTROL FOREICHHORNIA CRASSIPES, 2010, 03, 1793-5245, 383, 10.1142/S1793524510001021
    12. Udai Kumar, Partha Sarathi Mandal, E. Venturino, Impact of Allee effect on an eco-epidemiological system, 2020, 42, 1476945X, 100828, 10.1016/j.ecocom.2020.100828
    13. V. A. BOKIL, C. A. MANORE, LINKING POPULATION DYNAMICS AND DISEASE MODELS FOR MULTI-HOST PATHOGEN SYSTEMS: IMPLICATIONS FOR PATHOGEN AND SPECIES INVASION, 2013, 21, 0218-3390, 1340011, 10.1142/S0218339013400111
    14. Nidhi Parikh, Mina Youssef, Samarth Swarup, Stephen Eubank, Modeling the effect of transient populations on epidemics in Washington DC, 2013, 3, 2045-2322, 10.1038/srep03152
    15. Michael H. Cortez, Meghan A. Duffy, Comparing the Indirect Effects between Exploiters in Predator-Prey and Host-Pathogen Systems, 2020, 196, 0003-0147, E144, 10.1086/711345
    16. Sally S. Bell, Andrew White, Jonathan A. Sherratt, Mike Boots, Invading with biological weapons: the role of shared disease in ecological invasion, 2009, 2, 1874-1738, 53, 10.1007/s12080-008-0029-x
    17. Stochastic models for competing species with a shared pathogen, 2012, 9, 1551-0018, 461, 10.3934/mbe.2012.9.461
    18. Chuangliang Qin, Jinji Du, Yuanxian Hui, Dynamical behavior of a stochastic predator-prey model with Holling-type III functional response and infectious predator, 2022, 7, 2473-6988, 7403, 10.3934/math.2022413
    19. Luis Fredes, Amitai Linker, Daniel Remenik, Coexistence for a population model with forest fire epidemics, 2022, 32, 1050-5164, 10.1214/22-AAP1780
    20. Abdul Alamin, Ali Akgül, Mostafijur Rahaman, Sankar Prasad Mondal, Shariful Alam, Dynamical behaviour of discrete logistic equation with Allee effect in an uncertain environment, 2023, 26667207, 100254, 10.1016/j.rico.2023.100254
    21. Teddy Lazebnik, Orr Spiegel, Individual variation affects outbreak magnitude and predictability in multi-pathogen model of pigeons visiting dairy farms, 2025, 499, 03043800, 110925, 10.1016/j.ecolmodel.2024.110925
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3176) PDF downloads(729) Cited by(21)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog