1.
|
Maia Martcheva,
Evolutionary Consequences of Predation for Pathogens in Prey,
2009,
71,
0092-8240,
819,
10.1007/s11538-008-9383-5
|
|
2.
|
E. Venturino, V. Volpert,
Ecoepidemiology: a More Comprehensive View of Population Interactions,
2016,
11,
0973-5348,
49,
10.1051/mmnp/201611104
|
|
3.
|
W. Mbava, J.Y.T. Mugisha, J.W. Gonsalves,
Prey, predator and super-predator model with disease in the super-predator,
2017,
297,
00963003,
92,
10.1016/j.amc.2016.10.034
|
|
4.
|
Ilaria Usville, Cristina Paola Viola, Ezio Venturino, Benchawan Wiwatanapataphee,
An ecogenetic disease-affected predator–prey model,
2016,
3,
2331-1835,
1195716,
10.1080/23311835.2016.1195716
|
|
5.
|
S Toaha, ,
Stability analysis of prey predator model with Holling II functional response and threshold harvesting for the predator,
2019,
1341,
1742-6588,
062025,
10.1088/1742-6596/1341/6/062025
|
|
6.
|
Yicheng Liu, Yimin Du, Jianhong Wu,
Backward/Hopf bifurcations in SIS models with delayed nonlinear incidence rates,
2008,
3,
1673-3452,
535,
10.1007/s11464-008-0040-y
|
|
7.
|
Andi Maulana, Dipo Aldilay, Suarsih Utama, Egi Safitri,
2020,
2296,
0094-243X,
020088,
10.1063/5.0030422
|
|
8.
|
Nishant Juneja, Kulbhushan Agnihotri, Harpreet Kaur,
Effect of delay on globally stable prey–predator system,
2018,
111,
09600779,
146,
10.1016/j.chaos.2018.04.010
|
|
9.
|
Litao Han, Andrea Pugliese,
Epidemics in two competing species,
2009,
10,
14681218,
723,
10.1016/j.nonrwa.2007.11.005
|
|
10.
|
Jeewoen Shin, Thomas MacCarthy,
Potential for evolution of complex defense strategies in a multi-scale model of virus-host coevolution,
2016,
16,
1471-2148,
10.1186/s12862-016-0804-z
|
|
11.
|
F. B. AGUSTO, K. O. OKOSUN,
OPTIMAL SEASONAL BIOCONTROL FOREICHHORNIA CRASSIPES,
2010,
03,
1793-5245,
383,
10.1142/S1793524510001021
|
|
12.
|
Udai Kumar, Partha Sarathi Mandal, E. Venturino,
Impact of Allee effect on an eco-epidemiological system,
2020,
42,
1476945X,
100828,
10.1016/j.ecocom.2020.100828
|
|
13.
|
V. A. BOKIL, C. A. MANORE,
LINKING POPULATION DYNAMICS AND DISEASE MODELS FOR MULTI-HOST PATHOGEN SYSTEMS: IMPLICATIONS FOR PATHOGEN AND SPECIES INVASION,
2013,
21,
0218-3390,
1340011,
10.1142/S0218339013400111
|
|
14.
|
Nidhi Parikh, Mina Youssef, Samarth Swarup, Stephen Eubank,
Modeling the effect of transient populations on epidemics in Washington DC,
2013,
3,
2045-2322,
10.1038/srep03152
|
|
15.
|
Michael H. Cortez, Meghan A. Duffy,
Comparing the Indirect Effects between Exploiters in Predator-Prey and Host-Pathogen Systems,
2020,
196,
0003-0147,
E144,
10.1086/711345
|
|
16.
|
Sally S. Bell, Andrew White, Jonathan A. Sherratt, Mike Boots,
Invading with biological weapons: the role of shared disease in ecological invasion,
2009,
2,
1874-1738,
53,
10.1007/s12080-008-0029-x
|
|
17.
|
Stochastic models for competing species with a shared pathogen,
2012,
9,
1551-0018,
461,
10.3934/mbe.2012.9.461
|
|
18.
|
Chuangliang Qin, Jinji Du, Yuanxian Hui,
Dynamical behavior of a stochastic predator-prey model with Holling-type III functional response and infectious predator,
2022,
7,
2473-6988,
7403,
10.3934/math.2022413
|
|
19.
|
Luis Fredes, Amitai Linker, Daniel Remenik,
Coexistence for a population model with forest fire epidemics,
2022,
32,
1050-5164,
10.1214/22-AAP1780
|
|
20.
|
Abdul Alamin, Ali Akgül, Mostafijur Rahaman, Sankar Prasad Mondal, Shariful Alam,
Dynamical behaviour of discrete logistic equation with Allee effect in an uncertain environment,
2023,
26667207,
100254,
10.1016/j.rico.2023.100254
|
|
21.
|
Teddy Lazebnik, Orr Spiegel,
Individual variation affects outbreak magnitude and predictability in multi-pathogen model of pigeons visiting dairy farms,
2025,
499,
03043800,
110925,
10.1016/j.ecolmodel.2024.110925
|
|