Loading [Contrib]/a11y/accessibility-menu.js

Travelling wave solutions for higher-order wave equations of KDV type (III)

  • Received: 01 December 2004 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 92D30.

  • By using the theory of planar dynamical systems to the travelling wave equation of a higher order nonlinear wave equations of KdV type, the existence of smooth solitary wave, kink wave and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions are proved. In different regions of the parametric space, the sufficient conditions to guarantee the existence of the above solutions are given. In some conditions, exact explicit parametric representations of these waves are obtain.

    Citation: Jibin Li, Weigou Rui, Yao Long, Bin He. Travelling wave solutions for higher-order wave equations of KDV type (III)[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 125-135. doi: 10.3934/mbe.2006.3.125

    Related Papers:

    [1] Tiberiu Harko, Man Kwong Mak . Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences and Engineering, 2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41
    [2] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
    [3] Haiyan Wang, Shiliang Wu . Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences and Engineering, 2014, 11(5): 1215-1227. doi: 10.3934/mbe.2014.11.1215
    [4] Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141
    [5] Xiao-Min Huang, Xiang-ShengWang . Traveling waves of di usive disease models with time delay and degeneracy. Mathematical Biosciences and Engineering, 2019, 16(4): 2391-2410. doi: 10.3934/mbe.2019120
    [6] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
    [7] Sung Woong Cho, Sunwoo Hwang, Hyung Ju Hwang . The monotone traveling wave solution of a bistable three-species competition system via unconstrained neural networks. Mathematical Biosciences and Engineering, 2023, 20(4): 7154-7170. doi: 10.3934/mbe.2023309
    [8] Wenhao Chen, Guo Lin, Shuxia Pan . Propagation dynamics in an SIRS model with general incidence functions. Mathematical Biosciences and Engineering, 2023, 20(4): 6751-6775. doi: 10.3934/mbe.2023291
    [9] Zhihong Zhao, Yan Li, Zhaosheng Feng . Traveling wave phenomena in a nonlocal dispersal predator-prey system with the Beddington-DeAngelis functional response and harvesting. Mathematical Biosciences and Engineering, 2021, 18(2): 1629-1652. doi: 10.3934/mbe.2021084
    [10] Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379
  • By using the theory of planar dynamical systems to the travelling wave equation of a higher order nonlinear wave equations of KdV type, the existence of smooth solitary wave, kink wave and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions are proved. In different regions of the parametric space, the sufficient conditions to guarantee the existence of the above solutions are given. In some conditions, exact explicit parametric representations of these waves are obtain.


  • This article has been cited by:

    1. Bin He, Bifurcations and exact bounded travelling wave solutions for a partial differential equation, 2010, 11, 14681218, 364, 10.1016/j.nonrwa.2008.11.009
    2. Xianbin Wu, Weiguo Rui, Xiaochun Hong, A Generalized KdV Equation of Neglecting the Highest-Order Infinitesimal Term and Its Exact Traveling Wave Solutions, 2013, 2013, 1085-3375, 1, 10.1155/2013/656297
    3. Weiguo Rui, Bin He, Yao Long, Can Chen, The integral bifurcation method and its application for solving a family of third-order dispersive PDEs, 2008, 69, 0362546X, 1256, 10.1016/j.na.2007.06.027
    4. Rui Weiguo, Long Yao, He Bin, Li Zhenyang, Integral bifurcation method combined with computer for solving a higher order wave equation of KdV type, 2010, 87, 0020-7160, 119, 10.1080/00207160801965321
    5. Weiguo Rui, Exact Solutions of a High-Order Nonlinear Wave Equation of Korteweg-de Vries Type under Newly Solvable Conditions, 2014, 2014, 1085-3375, 1, 10.1155/2014/714214
    6. Weiguo Rui, Can Chen, Xinsong Yang, Yao Long, Some new soliton-like solutions and periodic wave solutions with loop or without loop to a generalized KdV equation, 2010, 217, 00963003, 1666, 10.1016/j.amc.2009.09.036
    7. V. Marinakis, Higher-Order Equations of the KdV Type are Integrable, 2010, 2010, 1687-9120, 1, 10.1155/2010/329586
    8. Weiguo Rui, The integral bifurcation method combined with factoring technique for investigating exact solutions and their dynamical properties of a generalized Gardner equation, 2014, 76, 0924-090X, 1529, 10.1007/s11071-013-1226-8
    9. Weiguo Rui, Yao Long, Bin He, Some new travelling wave solutions with singular or nonsingular character for the higher order wave equation of KdV type (III), 2009, 70, 0362546X, 3816, 10.1016/j.na.2008.07.040
    10. Weiguo Rui, Bin He, Yao Long, The binary F-expansion method and its application for solving the (n+1)-dimensional sine-Gordon equation, 2009, 14, 10075704, 1245, 10.1016/j.cnsns.2008.01.018
    11. Vangelis Marinakis, New solutions of a higher order wave equation of the KdV type, 2007, 14, 1402-9251, 527, 10.1080/jnmp.2007.14.4.2
    12. Weiguo Rui, Bin He, Shaolong Xie, Yao Long, Application of the integral bifurcation method for solving modified Camassa–Holm and Degasperis–Procesi equations, 2009, 71, 0362546X, 3459, 10.1016/j.na.2009.02.026
    13. Yun-Mei Zhao, New Exact Solutions for a Higher-Order Wave Equation of KdV Type Using the Multiple Simplest Equation Method, 2014, 2014, 1110-757X, 1, 10.1155/2014/848069
    14. Huizhang Yang, Wei Li, Biyu Yang, The(G′/G)-Expansion Method and Its Application for Higher-Order Equations of KdV (III), 2014, 2014, 1110-757X, 1, 10.1155/2014/384969
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2756) PDF downloads(470) Cited by(14)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog