Forest defoliation scenarios

  • Received: 01 March 2006 Accepted: 29 June 2018 Published: 01 November 2006
  • MSC : 92D40, 34E15.

  • We consider the mathematical model originally created by Ludwig, Jones, and Holling to model the infestation of spruce forests in New Brunswick by the spruce budworm. With biologically plausible parameter values, the dimensionless version of the model contains small parameters derived from the time scales of the state variables and smaller parameters derived from the relative importance of different population change mechanisms. The small time-scale parameters introduce a singular perturbation structure to solutions, with one variable changing on a slow time scale and two changing on a fast time scale. The smaller process-scale parameters allow for the existence of equilibria at vastly different orders of magnitude. These changes in scale of the state variables result in fast dynamics not associated with the time scales. For any given set of parameters, the observed dynamics is a mixture of time-scale effects with process-scale effects. We identify and analyze the different scenarios that can occur and indicate the relevant regions in the parameter space corresponding to each.

    Citation: Glenn Ledder. Forest defoliation scenarios[J]. Mathematical Biosciences and Engineering, 2007, 4(1): 15-28. doi: 10.3934/mbe.2007.4.15

    Related Papers:

    [1] Xu Song, Jingyu Li . Asymptotic stability of spiky steady states for a singular chemotaxis model with signal-suppressed motility. Mathematical Biosciences and Engineering, 2022, 19(12): 13988-14028. doi: 10.3934/mbe.2022652
    [2] Niclas Kruff, Sebastian Walcher . Coordinate-independent singular perturbation reduction for systems with three time scales. Mathematical Biosciences and Engineering, 2019, 16(5): 5062-5091. doi: 10.3934/mbe.2019255
    [3] Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379
    [4] OPhir Nave, Shlomo Hareli, Miriam Elbaz, Itzhak Hayim Iluz, Svetlana Bunimovich-Mendrazitsky . BCG and IL − 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method—stability analysis. Mathematical Biosciences and Engineering, 2019, 16(5): 5346-5379. doi: 10.3934/mbe.2019267
    [5] Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu . Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences and Engineering, 2004, 1(1): 131-145. doi: 10.3934/mbe.2004.1.131
    [6] Pei Yu, Xiangyu Wang . Analysis on recurrence behavior in oscillating networks of biologically relevant organic reactions. Mathematical Biosciences and Engineering, 2019, 16(5): 5263-5286. doi: 10.3934/mbe.2019263
    [7] Peter W. Bates, Jianing Chen, Mingji Zhang . Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations. Mathematical Biosciences and Engineering, 2020, 17(4): 3736-3766. doi: 10.3934/mbe.2020210
    [8] Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141
    [9] Marco Tosato, Xue Zhang, Jianhong Wu . A patchy model for tick population dynamics with patch-specific developmental delays. Mathematical Biosciences and Engineering, 2022, 19(5): 5329-5360. doi: 10.3934/mbe.2022250
    [10] Songfeng Liu, Jinyan Wang, Wenliang Zhang . Federated personalized random forest for human activity recognition. Mathematical Biosciences and Engineering, 2022, 19(1): 953-971. doi: 10.3934/mbe.2022044
  • We consider the mathematical model originally created by Ludwig, Jones, and Holling to model the infestation of spruce forests in New Brunswick by the spruce budworm. With biologically plausible parameter values, the dimensionless version of the model contains small parameters derived from the time scales of the state variables and smaller parameters derived from the relative importance of different population change mechanisms. The small time-scale parameters introduce a singular perturbation structure to solutions, with one variable changing on a slow time scale and two changing on a fast time scale. The smaller process-scale parameters allow for the existence of equilibria at vastly different orders of magnitude. These changes in scale of the state variables result in fast dynamics not associated with the time scales. For any given set of parameters, the observed dynamics is a mixture of time-scale effects with process-scale effects. We identify and analyze the different scenarios that can occur and indicate the relevant regions in the parameter space corresponding to each.


  • This article has been cited by:

    1. Morten Brøns, Rune Kaasen, Canards and mixed-mode oscillations in a forest pest model, 2010, 77, 00405809, 238, 10.1016/j.tpb.2010.02.003
    2. Glenn Ledder, Scaling for Dynamical Systems in Biology, 2017, 79, 0092-8240, 2747, 10.1007/s11538-017-0339-5
    3. Naveen K. Vaidya, Jianhong Wu, Modeling Spruce Budworm Population Revisited: Impact of Physiological Structure on Outbreak Control, 2008, 70, 0092-8240, 769, 10.1007/s11538-007-9278-x
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2162) PDF downloads(415) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog