Global stability analysis for SEIS models with n latent classes

  • Received: 01 October 2006 Accepted: 29 June 2018 Published: 01 January 2008
  • MSC : 34D23, 34A34, 92D30.

  • We compute the basic reproduction ratio of a SEIS model with n classes of latent individuals and bilinear incidence.The system exhibits the traditional behaviour. We prove that if R0 ≤1, then the disease-free equilibrium is globally asymptotically stable on the nonnegative orthant and if R0 > 1, an endemic equilibrium exists and is globally asymptotically stable on the positive orthant.

    Citation: Napoleon Bame, Samuel Bowong, Josepha Mbang, Gauthier Sallet, Jean-Jules Tewa. Global stability analysis for SEIS models with n latent classes[J]. Mathematical Biosciences and Engineering, 2008, 5(1): 20-33. doi: 10.3934/mbe.2008.5.20

    Related Papers:

    [1] Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya . Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347
    [2] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [3] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [4] Cheng-Cheng Zhu, Jiang Zhu . Spread trend of COVID-19 epidemic outbreak in China: using exponential attractor method in a spatial heterogeneous SEIQR model. Mathematical Biosciences and Engineering, 2020, 17(4): 3062-3087. doi: 10.3934/mbe.2020174
    [5] Shanjing Ren, Lingling Li . Global stability mathematical analysis for virus transmission model with latent age structure. Mathematical Biosciences and Engineering, 2022, 19(4): 3337-3349. doi: 10.3934/mbe.2022154
    [6] Jinliang Wang, Hongying Shu . Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209
    [7] Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390
    [8] Cunjuan Dong, Changcheng Xiang, Wenjin Qin, Yi Yang . Global dynamics for a Filippov system with media effects. Mathematical Biosciences and Engineering, 2022, 19(3): 2835-2852. doi: 10.3934/mbe.2022130
    [9] Cheng-Cheng Zhu, Jiang Zhu, Xiao-Lan Liu . Influence of spatial heterogeneous environment on long-term dynamics of a reaction-diffusion SVIR epidemic model with relaps. Mathematical Biosciences and Engineering, 2019, 16(5): 5897-5922. doi: 10.3934/mbe.2019295
    [10] C. Connell McCluskey . Global stability of an epidemic model with delay and general nonlinear incidence. Mathematical Biosciences and Engineering, 2010, 7(4): 837-850. doi: 10.3934/mbe.2010.7.837
  • We compute the basic reproduction ratio of a SEIS model with n classes of latent individuals and bilinear incidence.The system exhibits the traditional behaviour. We prove that if R0 ≤1, then the disease-free equilibrium is globally asymptotically stable on the nonnegative orthant and if R0 > 1, an endemic equilibrium exists and is globally asymptotically stable on the positive orthant.


  • This article has been cited by:

    1. Isaac Mwangi Wangari, Lewi Stone, Analysis of a Heroin Epidemic Model with Saturated Treatment Function, 2017, 2017, 1110-757X, 1, 10.1155/2017/1953036
    2. Samuel Bowong, Jurgen Kurths, Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality, 2012, 67, 0924-090X, 2027, 10.1007/s11071-011-0127-y
    3. Wayne M. Getz, Eric R. Dougherty, Discrete stochastic analogs of Erlang epidemic models, 2018, 12, 1751-3758, 16, 10.1080/17513758.2017.1401677
    4. Suxia Zhang, Fei Li, Xiaxia Xu, Dynamics of an infection-age model with staged-progression, 2020, 1592, 1742-6588, 012069, 10.1088/1742-6596/1592/1/012069
    5. Hongbin Guo, Michael Yi Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, 2012, 17, 1553-524X, 2413, 10.3934/dcdsb.2012.17.2413
    6. Jean Claude Kamgang, Vivient Corneille Kamla, Stéphane Yanick Tchoumi, Modeling the Dynamics of Malaria Transmission with Bed Net Protection Perspective, 2014, 05, 2152-7385, 3156, 10.4236/am.2014.519298
    7. B. Bonzi, A. A. Fall, A. Iggidr, G. Sallet, Stability of differential susceptibility and infectivity epidemic models, 2011, 62, 0303-6812, 39, 10.1007/s00285-010-0327-y
    8. P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, 2010, 89, 0003-6811, 1109, 10.1080/00036810903208122
    9. G. Ciaravino, A. García-Saenz, S. Cabras, A. Allepuz, J. Casal, I. García-Bocanegra, A. De Koeijer, S. Gubbins, J.L. Sáez, D. Cano-Terriza, S. Napp, Assessing the variability in transmission of bovine tuberculosis within Spanish cattle herds, 2018, 23, 17554365, 110, 10.1016/j.epidem.2018.01.003
    10. Lin Zhao, Zhi-Cheng Wang, Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, 2016, 81, 0272-4960, 795, 10.1093/imamat/hxw033
    11. Jaroslav Ilnytskyi, Piotr Pikuta, Hryhoriy Ilnytskyi, Stationary states and spatial patterning in the cellular automaton SEIS epidemiology model, 2018, 509, 03784371, 241, 10.1016/j.physa.2018.06.001
    12. Zhipeng Qiu, Michael Y. Li, Zhongwei Shen, Global dynamics of an infinite dimensional epidemic model with nonlocal state structures, 2018, 265, 00220396, 5262, 10.1016/j.jde.2018.06.036
    13. J.J. Tewa, R. Fokouop, B. Mewoli, S. Bowong, Mathematical analysis of a general class of ordinary differential equations coming from within-hosts models of malaria with immune effectors, 2012, 218, 00963003, 7347, 10.1016/j.amc.2011.10.085
    14. Haitao Song, Shengqiang Liu, Weihua Jiang, Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate, 2016, 01704214, 10.1002/mma.4130
    15. Jianquan Li, Yali Yang, Yicang Zhou, Global stability of an epidemic model with latent stage and vaccination, 2011, 12, 14681218, 2163, 10.1016/j.nonrwa.2010.12.030
    16. Abdias Laohombé, Isabelle Ngningone Eya, Jean Jules Tewa, Alassane Bah, Samuel Bowong, Suares Clovis Oukouomi Noutchie, Mathematical Analysis of a General Two-Patch Model of Tuberculosis Disease with Lost Sight Individuals, 2014, 2014, 1085-3375, 1, 10.1155/2014/263780
    17. XINZHU MENG, ZHITAO WU, TONGQIAN ZHANG, THE DYNAMICS AND THERAPEUTIC STRATEGIES OF A SEIS EPIDEMIC MODEL, 2013, 06, 1793-5245, 1350029, 10.1142/S1793524513500290
    18. Dessalegn Y. Melesse, Abba B. Gumel, Global asymptotic properties of an SEIRS model with multiple infectious stages, 2010, 366, 0022247X, 202, 10.1016/j.jmaa.2009.12.041
    19. Meihong Qiao, Anping Liu, Urszula Fory’s, The dynamics of a time delayed epidemic model on a population with birth pulse, 2015, 252, 00963003, 166, 10.1016/j.amc.2014.12.022
    20. Calah Paulhus, Xiang-Sheng Wang, Global stability analysis of a delayed susceptible–infected–susceptible epidemic model, 2015, 9, 1751-3758, 45, 10.1080/17513758.2014.931474
    21. Yi Wang, Jinde Cao, Global stability of general cholera models with nonlinear incidence and removal rates, 2015, 352, 00160032, 2464, 10.1016/j.jfranklin.2015.03.030
    22. Hongbin Guo, Michael Y. Li, Zhisheng Shuai, Global Dynamics of a General Class of Multistage Models for Infectious Diseases, 2012, 72, 0036-1399, 261, 10.1137/110827028
    23. Wayne M. Getz, Richard Salter, Oliver Muellerklein, Hyun S. Yoon, Krti Tallam, Modeling epidemics: A primer and Numerus Model Builder implementation, 2018, 25, 17554365, 9, 10.1016/j.epidem.2018.06.001
    24. Samuel Bowong, Jean Jules Tewa, Mathematical analysis of a tuberculosis model with differential infectivity, 2009, 14, 10075704, 4010, 10.1016/j.cnsns.2009.02.017
    25. Jean Jules Tewa, Samuel Bowong, S.C. Oukouomi Noutchie, Mathematical analysis of a two-patch model of tuberculosis disease with staged progression, 2012, 36, 0307904X, 5792, 10.1016/j.apm.2012.01.026
    26. Jean Jules Tewa, Valaire Yatat Djeumen, Samuel Bowong, Predator–Prey model with Holling response function of type II and SIS infectious disease, 2013, 37, 0307904X, 4825, 10.1016/j.apm.2012.10.003
    27. Jean Jules Tewa, Samuel Bowong, Boulchard Mewoli, Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis, 2012, 36, 0307904X, 2466, 10.1016/j.apm.2011.09.004
    28. Samuel Bowong, Jean Jules Tewa, Global analysis of a dynamical model for transmission of tuberculosis with a general contact rate, 2010, 15, 10075704, 3621, 10.1016/j.cnsns.2010.01.007
    29. Cruz Vargas-De-León, On the global stability of SIS, SIR and SIRS epidemic models with standard incidence, 2011, 44, 09600779, 1106, 10.1016/j.chaos.2011.09.002
    30. Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020
    31. Ayse Peker-Dobie, Ali Demirci, Ayse Humeyra Bilge, Semra Ahmetolan, On the Time Shift Phenomena in Epidemic Models, 2020, 8, 2296-424X, 10.3389/fphy.2020.578455
    32. S. Bowong, A. Temgoua, Y. Malong, J. Mbang, Mathematical Study of a Class of Epidemiological Models with Multiple Infectious Stages, 2020, 21, 2191-0294, 259, 10.1515/ijnsns-2017-0244
    33. Cameron Luke Hall, Bram Alexander Siebert, Exact solutions and bounds for network SIR and SEIR models using a rooted-tree approximation, 2023, 86, 0303-6812, 10.1007/s00285-022-01854-9
    34. Xiaogang Liu, Yuming Chen, Xiaomin Li, Jianquan Li, Global stability of latency-age/stage-structured epidemic models with differential infectivity, 2023, 86, 0303-6812, 10.1007/s00285-023-01918-4
    35. Derdei M. Bichara, Characterization of differential susceptibility and differential infectivity epidemic models, 2024, 88, 0303-6812, 10.1007/s00285-023-02023-2
    36. Dawit Kechine Menbiko, Chernet Tuge Deressa, Mubashir Qayyum, Modeling and Analysis of an Age-Structured Malaria Model in the Sense of Atangana–Baleanu Fractional Operators, 2024, 2024, 2314-4785, 1, 10.1155/2024/6652037
    37. Ali Moussaoui, Mohammed Meziane, On the date of the epidemic peak, 2024, 21, 1551-0018, 2835, 10.3934/mbe.2024126
    38. Yu Lu, Shaochong Lin, Zuo-Jun Max Shen, Junlong Zhang, Location planning, resource reallocation and patient assignment during a pandemic considering the needs of ordinary patients, 2025, 1386-9620, 10.1007/s10729-025-09703-z
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3165) PDF downloads(606) Cited by(38)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog