1.
|
Isaac Mwangi Wangari, Lewi Stone,
Analysis of a Heroin Epidemic Model with Saturated Treatment Function,
2017,
2017,
1110-757X,
1,
10.1155/2017/1953036
|
|
2.
|
Samuel Bowong, Jurgen Kurths,
Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality,
2012,
67,
0924-090X,
2027,
10.1007/s11071-011-0127-y
|
|
3.
|
Wayne M. Getz, Eric R. Dougherty,
Discrete stochastic analogs of Erlang epidemic models,
2018,
12,
1751-3758,
16,
10.1080/17513758.2017.1401677
|
|
4.
|
Suxia Zhang, Fei Li, Xiaxia Xu,
Dynamics of an infection-age model with staged-progression,
2020,
1592,
1742-6588,
012069,
10.1088/1742-6596/1592/1/012069
|
|
5.
|
Hongbin Guo, Michael Yi Li,
Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations,
2012,
17,
1553-524X,
2413,
10.3934/dcdsb.2012.17.2413
|
|
6.
|
Jean Claude Kamgang, Vivient Corneille Kamla, Stéphane Yanick Tchoumi,
Modeling the Dynamics of Malaria Transmission with Bed Net Protection Perspective,
2014,
05,
2152-7385,
3156,
10.4236/am.2014.519298
|
|
7.
|
B. Bonzi, A. A. Fall, A. Iggidr, G. Sallet,
Stability of differential susceptibility and infectivity epidemic models,
2011,
62,
0303-6812,
39,
10.1007/s00285-010-0327-y
|
|
8.
|
P. Magal, C.C. McCluskey, G.F. Webb,
Lyapunov functional and global asymptotic stability for an infection-age model,
2010,
89,
0003-6811,
1109,
10.1080/00036810903208122
|
|
9.
|
G. Ciaravino, A. García-Saenz, S. Cabras, A. Allepuz, J. Casal, I. García-Bocanegra, A. De Koeijer, S. Gubbins, J.L. Sáez, D. Cano-Terriza, S. Napp,
Assessing the variability in transmission of bovine tuberculosis within Spanish cattle herds,
2018,
23,
17554365,
110,
10.1016/j.epidem.2018.01.003
|
|
10.
|
Lin Zhao, Zhi-Cheng Wang,
Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages,
2016,
81,
0272-4960,
795,
10.1093/imamat/hxw033
|
|
11.
|
Jaroslav Ilnytskyi, Piotr Pikuta, Hryhoriy Ilnytskyi,
Stationary states and spatial patterning in the cellular automaton SEIS epidemiology model,
2018,
509,
03784371,
241,
10.1016/j.physa.2018.06.001
|
|
12.
|
Zhipeng Qiu, Michael Y. Li, Zhongwei Shen,
Global dynamics of an infinite dimensional epidemic model with nonlocal state structures,
2018,
265,
00220396,
5262,
10.1016/j.jde.2018.06.036
|
|
13.
|
J.J. Tewa, R. Fokouop, B. Mewoli, S. Bowong,
Mathematical analysis of a general class of ordinary differential equations coming from within-hosts models of malaria with immune effectors,
2012,
218,
00963003,
7347,
10.1016/j.amc.2011.10.085
|
|
14.
|
Haitao Song, Shengqiang Liu, Weihua Jiang,
Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate,
2016,
01704214,
10.1002/mma.4130
|
|
15.
|
Jianquan Li, Yali Yang, Yicang Zhou,
Global stability of an epidemic model with latent stage and vaccination,
2011,
12,
14681218,
2163,
10.1016/j.nonrwa.2010.12.030
|
|
16.
|
Abdias Laohombé, Isabelle Ngningone Eya, Jean Jules Tewa, Alassane Bah, Samuel Bowong, Suares Clovis Oukouomi Noutchie,
Mathematical Analysis of a General Two-Patch Model of Tuberculosis Disease with Lost Sight Individuals,
2014,
2014,
1085-3375,
1,
10.1155/2014/263780
|
|
17.
|
XINZHU MENG, ZHITAO WU, TONGQIAN ZHANG,
THE DYNAMICS AND THERAPEUTIC STRATEGIES OF A SEIS EPIDEMIC MODEL,
2013,
06,
1793-5245,
1350029,
10.1142/S1793524513500290
|
|
18.
|
Dessalegn Y. Melesse, Abba B. Gumel,
Global asymptotic properties of an SEIRS model with multiple infectious stages,
2010,
366,
0022247X,
202,
10.1016/j.jmaa.2009.12.041
|
|
19.
|
Meihong Qiao, Anping Liu, Urszula Fory’s,
The dynamics of a time delayed epidemic model on a population with birth pulse,
2015,
252,
00963003,
166,
10.1016/j.amc.2014.12.022
|
|
20.
|
Calah Paulhus, Xiang-Sheng Wang,
Global stability analysis of a delayed susceptible–infected–susceptible epidemic model,
2015,
9,
1751-3758,
45,
10.1080/17513758.2014.931474
|
|
21.
|
Yi Wang, Jinde Cao,
Global stability of general cholera models with nonlinear incidence and removal rates,
2015,
352,
00160032,
2464,
10.1016/j.jfranklin.2015.03.030
|
|
22.
|
Hongbin Guo, Michael Y. Li, Zhisheng Shuai,
Global Dynamics of a General Class of Multistage Models for Infectious Diseases,
2012,
72,
0036-1399,
261,
10.1137/110827028
|
|
23.
|
Wayne M. Getz, Richard Salter, Oliver Muellerklein, Hyun S. Yoon, Krti Tallam,
Modeling epidemics: A primer and Numerus Model Builder implementation,
2018,
25,
17554365,
9,
10.1016/j.epidem.2018.06.001
|
|
24.
|
Samuel Bowong, Jean Jules Tewa,
Mathematical analysis of a tuberculosis model with differential infectivity,
2009,
14,
10075704,
4010,
10.1016/j.cnsns.2009.02.017
|
|
25.
|
Jean Jules Tewa, Samuel Bowong, S.C. Oukouomi Noutchie,
Mathematical analysis of a two-patch model of tuberculosis disease with staged progression,
2012,
36,
0307904X,
5792,
10.1016/j.apm.2012.01.026
|
|
26.
|
Jean Jules Tewa, Valaire Yatat Djeumen, Samuel Bowong,
Predator–Prey model with Holling response function of type II and SIS infectious disease,
2013,
37,
0307904X,
4825,
10.1016/j.apm.2012.10.003
|
|
27.
|
Jean Jules Tewa, Samuel Bowong, Boulchard Mewoli,
Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis,
2012,
36,
0307904X,
2466,
10.1016/j.apm.2011.09.004
|
|
28.
|
Samuel Bowong, Jean Jules Tewa,
Global analysis of a dynamical model for transmission of tuberculosis with a general contact rate,
2010,
15,
10075704,
3621,
10.1016/j.cnsns.2010.01.007
|
|
29.
|
Cruz Vargas-De-León,
On the global stability of SIS, SIR and SIRS epidemic models with standard incidence,
2011,
44,
09600779,
1106,
10.1016/j.chaos.2011.09.002
|
|
30.
|
Suxia Zhang, Hongbin Guo,
Global analysis of age-structured multi-stage epidemic models for infectious diseases,
2018,
337,
00963003,
214,
10.1016/j.amc.2018.05.020
|
|
31.
|
Ayse Peker-Dobie, Ali Demirci, Ayse Humeyra Bilge, Semra Ahmetolan,
On the Time Shift Phenomena in Epidemic Models,
2020,
8,
2296-424X,
10.3389/fphy.2020.578455
|
|
32.
|
S. Bowong, A. Temgoua, Y. Malong, J. Mbang,
Mathematical Study of a Class of Epidemiological Models with Multiple Infectious Stages,
2020,
21,
2191-0294,
259,
10.1515/ijnsns-2017-0244
|
|
33.
|
Cameron Luke Hall, Bram Alexander Siebert,
Exact solutions and bounds for network SIR and SEIR models using a rooted-tree approximation,
2023,
86,
0303-6812,
10.1007/s00285-022-01854-9
|
|
34.
|
Xiaogang Liu, Yuming Chen, Xiaomin Li, Jianquan Li,
Global stability of latency-age/stage-structured epidemic models with differential infectivity,
2023,
86,
0303-6812,
10.1007/s00285-023-01918-4
|
|
35.
|
Derdei M. Bichara,
Characterization of differential susceptibility and differential infectivity epidemic models,
2024,
88,
0303-6812,
10.1007/s00285-023-02023-2
|
|
36.
|
Dawit Kechine Menbiko, Chernet Tuge Deressa, Mubashir Qayyum,
Modeling and Analysis of an Age-Structured Malaria Model in the Sense of Atangana–Baleanu Fractional Operators,
2024,
2024,
2314-4785,
1,
10.1155/2024/6652037
|
|
37.
|
Ali Moussaoui, Mohammed Meziane,
On the date of the epidemic peak,
2024,
21,
1551-0018,
2835,
10.3934/mbe.2024126
|
|
38.
|
Yu Lu, Shaochong Lin, Zuo-Jun Max Shen, Junlong Zhang,
Location planning, resource reallocation and patient assignment during a pandemic considering the needs of ordinary patients,
2025,
1386-9620,
10.1007/s10729-025-09703-z
|
|