Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected epithelial cells

  • Received: 01 July 2009 Accepted: 29 June 2018 Published: 01 January 2010
  • MSC : Primary: 34K20, 92C50; Secondary: 92D25.

  • The aim of this work is to investigate the mechanisms involved in the clearance of viral infection of the influenza virus at the epithelium level by modeling and analyzing the interaction of the influenza virus specific cytotoxic T Lymphocytes (CTL cells) and the influenza virus infected epithelial cells. Since detailed and definite mechanisms that trigger CTL production and cell death are still debatable, we utilize two plausible mathematical models for the CTLs response to influenza infection (i) logistic growth and (ii) threshold growth. These models incorporate the simulating effect of the production of CTLs during the infection. The systematical analysis of these models show that the behaviors of the models are similar when CTL density is high and in which case both generate reasonable dynamics. However, both models failed to produce the desirable and natural clearance dynamic. Nevertheless, at lower CTL density, the threshold model shows the possibility of existence of a "lower" equilibrium. This sub-threshold equilibrium may represent dose-dependent immune response to low level infection.

    Citation: Abdessamad Tridane, Yang Kuang. Modeling the interaction of cytotoxic T lymphocytes and influenzavirus infected epithelial cells[J]. Mathematical Biosciences and Engineering, 2010, 7(1): 171-185. doi: 10.3934/mbe.2010.7.171

    Related Papers:

    [1] Khalid Hattaf, Noura Yousfi . Dynamics of SARS-CoV-2 infection model with two modes of transmission and immune response. Mathematical Biosciences and Engineering, 2020, 17(5): 5326-5340. doi: 10.3934/mbe.2020288
    [2] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [3] Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811
    [4] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [5] Suqi Ma . Low viral persistence of an immunological model. Mathematical Biosciences and Engineering, 2012, 9(4): 809-817. doi: 10.3934/mbe.2012.9.809
    [6] Tuersunjiang Keyoumu, Ke Guo, Wanbiao Ma . Periodic oscillation for a class of in-host MERS-CoV infection model with CTL immune response. Mathematical Biosciences and Engineering, 2022, 19(12): 12247-12259. doi: 10.3934/mbe.2022570
    [7] Pensiri Yosyingyong, Ratchada Viriyapong . Global dynamics of multiple delays within-host model for a hepatitis B virus infection of hepatocytes with immune response and drug therapy. Mathematical Biosciences and Engineering, 2023, 20(4): 7349-7386. doi: 10.3934/mbe.2023319
    [8] Yu Wu, Xiaopeng Zhao, Mingjun Zhang . Dynamics of stochastic mutation to immunodominance. Mathematical Biosciences and Engineering, 2012, 9(4): 937-952. doi: 10.3934/mbe.2012.9.937
    [9] Maysaa Al Qurashi, Saima Rashid, Fahd Jarad . A computational study of a stochastic fractal-fractional hepatitis B virus infection incorporating delayed immune reactions via the exponential decay. Mathematical Biosciences and Engineering, 2022, 19(12): 12950-12980. doi: 10.3934/mbe.2022605
    [10] A. M. Elaiw, Raghad S. Alsulami, A. D. Hobiny . Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity. Mathematical Biosciences and Engineering, 2023, 20(2): 3873-3917. doi: 10.3934/mbe.2023182
  • The aim of this work is to investigate the mechanisms involved in the clearance of viral infection of the influenza virus at the epithelium level by modeling and analyzing the interaction of the influenza virus specific cytotoxic T Lymphocytes (CTL cells) and the influenza virus infected epithelial cells. Since detailed and definite mechanisms that trigger CTL production and cell death are still debatable, we utilize two plausible mathematical models for the CTLs response to influenza infection (i) logistic growth and (ii) threshold growth. These models incorporate the simulating effect of the production of CTLs during the infection. The systematical analysis of these models show that the behaviors of the models are similar when CTL density is high and in which case both generate reasonable dynamics. However, both models failed to produce the desirable and natural clearance dynamic. Nevertheless, at lower CTL density, the threshold model shows the possibility of existence of a "lower" equilibrium. This sub-threshold equilibrium may represent dose-dependent immune response to low level infection.


  • This article has been cited by:

    1. 2019, 9780128130520, 65, 10.1016/B978-0-12-813052-0.00015-4
    2. Zhiwei Ji, Weiling Zhao, Hui-Kuan Lin, Xiaobo Zhou, Stacey Finley, Systematically understanding the immunity leading to CRPC progression, 2019, 15, 1553-7358, e1007344, 10.1371/journal.pcbi.1007344
    3. Alessandro Boianelli, Van Nguyen, Thomas Ebensen, Kai Schulze, Esther Wilk, Niharika Sharma, Sabine Stegemann-Koniszewski, Dunja Bruder, Franklin Toapanta, Carlos Guzmán, Michael Meyer-Hermann, Esteban Hernandez-Vargas, Modeling Influenza Virus Infection: A Roadmap for Influenza Research, 2015, 7, 1999-4915, 5274, 10.3390/v7102875
    4. Ian Price, Ericka D. Mochan-Keef, David Swigon, G. Bard Ermentrout, Sarah Lukens, Franklin R. Toapanta, Ted M. Ross, Gilles Clermont, The inflammatory response to influenza A virus (H1N1): An experimental and mathematical study, 2015, 374, 00225193, 83, 10.1016/j.jtbi.2015.03.017
    5. Amber M. Smith, Alan S. Perelson, Influenza A virus infection kinetics: quantitative data and models, 2011, 3, 19395094, 429, 10.1002/wsbm.129
    6. G. Neofytou, Y.N. Kyrychko, K.B. Blyuss, Mathematical model of plant-virus interactions mediated by RNA interference, 2016, 403, 00225193, 129, 10.1016/j.jtbi.2016.05.018
    7. Laetitia Canini, Alan S. Perelson, Viral kinetic modeling: state of the art, 2014, 41, 1567-567X, 431, 10.1007/s10928-014-9363-3
    8. F. Crauste, E. Terry, I. Le Mercier, J. Mafille, S. Djebali, T. Andrieu, B. Mercier, G. Kaneko, C. Arpin, J. Marvel, O. Gandrillon, Predicting pathogen-specific CD8 T cell immune responses from a modeling approach, 2015, 374, 00225193, 66, 10.1016/j.jtbi.2015.03.033
    9. Khalid Hattaf, Noura Yousfi, Abdessamad Tridane, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, 2012, 13, 14681218, 1866, 10.1016/j.nonrwa.2011.12.015
    10. Christoforos Hadjichrysanthou, Emilie Cauët, Emma Lawrence, Carolin Vegvari, Frank de Wolf, Roy M. Anderson, Understanding the within-host dynamics of influenza A virus: from theory to clinical implications, 2016, 13, 1742-5689, 20160289, 10.1098/rsif.2016.0289
    11. Alessandro Boianelli, Niharika Sharma-Chawla, Dunja Bruder, Esteban A. Hernandez-Vargas, Oseltamivir PK/PD Modeling and Simulation to Evaluate Treatment Strategies against Influenza-Pneumococcus Coinfection, 2016, 6, 2235-2988, 10.3389/fcimb.2016.00060
    12. Hana M. Dobrovolny, Micaela B. Reddy, Mohamed A. Kamal, Craig R. Rayner, Catherine A. A. Beauchemin, Andrew J. Yates, Assessing Mathematical Models of Influenza Infections Using Features of the Immune Response, 2013, 8, 1932-6203, e57088, 10.1371/journal.pone.0057088
    13. Zhiwei Ji, Jing Su, Dan Wu, Huiming Peng, Weiling Zhao, Brian Nlong Zhao, Xiaobo Zhou, Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model, 2017, 8, 1949-2553, 7647, 10.18632/oncotarget.13831
    14. 2019, 9780128130520, 221, 10.1016/B978-0-12-813052-0.00023-3
    15. N. A. Petukhova, Epithelial dysfunction associated with pyo-inflammatory diseases of the ENT organs, 2017, 82, 0042-4668, 64, 10.17116/otorino201782564-70
    16. Zhaobin Xu, Dongqing Wei, Hongmei Zhang, Jacques Demongeot, A Novel Mathematical Model That Predicts the Protection Time of SARS-CoV-2 Antibodies, 2023, 15, 1999-4915, 586, 10.3390/v15020586
    17. Ahmed M. Elaiw, Raghad S. Alsulami, Aatef D. Hobiny, Dynamic Behaviors of a COVID-19 and Influenza Co-Infection Model with Time Delays and Humoral Immunity, 2023, 12, 2075-1680, 151, 10.3390/axioms12020151
    18. Ahmed M. Elaiw, Raghad S. Alsulami, Aatef D. Hobiny, Modeling and Stability Analysis of Within-Host IAV/SARS-CoV-2 Coinfection with Antibody Immunity, 2022, 10, 2227-7390, 4382, 10.3390/math10224382
    19. A. M. Elaiw, Raghad S. Alsulami, A. D. Hobiny, Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity, 2022, 20, 1551-0018, 3873, 10.3934/mbe.2023182
    20. Ahmed M. Elaiw, Raghad S. Alsulami, Aatef D. Hobiny, Global properties of SARS‐CoV‐2 and IAV coinfection model with distributed‐time delays and humoral immunity, 2024, 0170-4214, 10.1002/mma.10074
    21. Benjamin Whipple, Tanya A. Miura, Esteban A. Hernandez-Vargas, Modeling the CD8+ T cell immune response to influenza infection in adult and aged mice, 2024, 00225193, 111898, 10.1016/j.jtbi.2024.111898
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3189) PDF downloads(635) Cited by(21)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog