A note on the replicator equation with explicit space and global regulation

  • Received: 01 July 2010 Accepted: 29 June 2018 Published: 01 June 2011
  • MSC : Primary: 35K57, 35B35, 91A22; Secondary: 92D25.

  • A replicator equation with explicit space and global regulation is considered. This model provides a natural framework to follow frequencies of species that are distributed in the space. For this model, analogues to classical notions of the Nash equilibrium and evolutionary stable state are provided. A sufficient condition for a uniform stationary state to be a spatially distributed evolutionary stable state is presented and illustrated with examples.

    Citation: Alexander S. Bratus, Vladimir P. Posvyanskii, Artem S. Novozhilov. A note on the replicator equation with explicit space and global regulation[J]. Mathematical Biosciences and Engineering, 2011, 8(3): 659-676. doi: 10.3934/mbe.2011.8.659

    Related Papers:

    [1] Ali Moussaoui, Vitaly Volpert . The impact of immune cell interactions on virus quasi-species formation. Mathematical Biosciences and Engineering, 2024, 21(11): 7530-7553. doi: 10.3934/mbe.2024331
    [2] Andrei Korobeinikov, Conor Dempsey . A continuous phenotype space model of RNA virus evolution within a host. Mathematical Biosciences and Engineering, 2014, 11(4): 919-927. doi: 10.3934/mbe.2014.11.919
    [3] Yongli Cai, Yun Kang, Weiming Wang . Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1071-1089. doi: 10.3934/mbe.2017056
    [4] Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141
    [5] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
    [6] Bao-Zhu Guo, Li-Ming Cai . A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences and Engineering, 2011, 8(3): 689-694. doi: 10.3934/mbe.2011.8.689
    [7] Dong Liang, Jianhong Wu, Fan Zhang . Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences and Engineering, 2005, 2(1): 111-132. doi: 10.3934/mbe.2005.2.111
    [8] Suqi Ma . Low viral persistence of an immunological model. Mathematical Biosciences and Engineering, 2012, 9(4): 809-817. doi: 10.3934/mbe.2012.9.809
    [9] Xiaomei Bao, Canrong Tian . Turing patterns in a networked vegetation model. Mathematical Biosciences and Engineering, 2024, 21(11): 7601-7620. doi: 10.3934/mbe.2024334
    [10] Hongyun Peng, Kun Zhao . On a hyperbolic-parabolic chemotaxis system. Mathematical Biosciences and Engineering, 2023, 20(5): 7802-7827. doi: 10.3934/mbe.2023337
  • A replicator equation with explicit space and global regulation is considered. This model provides a natural framework to follow frequencies of species that are distributed in the space. For this model, analogues to classical notions of the Nash equilibrium and evolutionary stable state are provided. A sufficient condition for a uniform stationary state to be a spatially distributed evolutionary stable state is presented and illustrated with examples.


  • This article has been cited by:

    1. A. S. Bratus, V. P. Posvyanskii, A. S. Novozhilov, A. Morozov, Replicator Equations and Space, 2014, 9, 0973-5348, 47, 10.1051/mmnp/20149304
    2. Alexander S. Bratus, Vladimir P. Posvyanskii, Artem S. Novozhilov, Solutions with a bounded support promote permanence of a distributed replicator equation, 2017, 96, 0003-6811, 2652, 10.1080/00036811.2016.1236921
    3. Alexander S. Bratus, Chin-Kun Hu, Mikhail V. Safro, Artem S. Novozhilov, On Diffusive Stability of Eigen’s Quasispecies Model, 2016, 22, 1079-2724, 1, 10.1007/s10883-014-9237-4
    4. O. Kuzenkov, E. Ryabova, A. Morozov, Variational Principle for Self-replicating Systems, 2015, 10, 0973-5348, 115, 10.1051/mmnp/201510208
    5. T. S. Yakushkina, A distributed replicator system corresponding to a bimatrix game, 2016, 40, 0278-6419, 19, 10.3103/S0278641916010064
    6. E. N. Pavlovich, A. S. Bratus’, Exclusion of dominated species in open replicator systems, 2013, 24, 1046-283X, 136, 10.1007/s10598-013-9165-2
    7. N. K. Volosova, A. K. Volosova, K. A. Volosov, S. P. Vakulenko, Graphs for the Replicator Equations and the “Tragedy of the Exhaustion of the Common Resource”, 2020, 12, 2070-0482, 246, 10.1134/S2070048220020167
    8. Наталья Константиновна Волосова, Natal'ya Konstantinovna Volosova, Александра Константиновна Волосова, Aleksandra Konstantinovna Volosova, Константин Александрович Волосов, Konstantin Aleksandrovich Volosov, Сергей Петрович Вакуленко, Sergei Petrovich Vakulenko, Графы задач для репликаторных уравнений и "трагедия исчерпания общего ресурса", 2019, 31, 0234-0879, 101, 10.1134/S0234087919080069
    9. Christopher Griffin, Li Feng, Rongling Wu, Spatial dynamics of higher order rock-paper-scissors and generalisations, 2024, 57, 1751-8113, 185701, 10.1088/1751-8121/ad3bf6
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2895) PDF downloads(475) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog