Loading [Contrib]/a11y/accessibility-menu.js

Calcium waves with mechano-chemical couplings

  • Received: 01 June 2012 Accepted: 29 June 2018 Published: 01 April 2013
  • MSC : Primary: 35K57, 35C07; Secondary: 35Q92.

  • As follows from experiments, waves ofcalcium concentration in biological tissuescan be easily excited by a local mechanical stimulation.Therefore the complete theory of calcium waves should alsotake into account couplingbetween mechanical and chemical processes.In this paper we consider the existenceof travelling waves for buffered systems, as in [22], completed, however,by an equation for mechanical equilibrium and respective mechanochemical coupling terms.Thus the considered, coupled system consists of reaction-diffusion equations (forthe calcium and buffers concentrations) and equations for thebalance of mechanical forces.

    Citation: Bogdan Kazmierczak, Zbigniew Peradzynski. Calcium waves with mechano-chemical couplings[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 743-759. doi: 10.3934/mbe.2013.10.743

    Related Papers:

    [1] Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020
    [2] H. G. E. Hentschel, Alan Fine, C. S. Pencea . Biological computing with diffusion and excitable calcium stores. Mathematical Biosciences and Engineering, 2004, 1(1): 147-159. doi: 10.3934/mbe.2004.1.147
    [3] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences and Engineering, 2016, 13(3): 483-493. doi: 10.3934/mbe.2016002
    [4] Wenzhang Huang . Weakly coupled traveling waves for a model of growth and competition in a flow reactor. Mathematical Biosciences and Engineering, 2006, 3(1): 79-87. doi: 10.3934/mbe.2006.3.79
    [5] Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379
    [6] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
    [7] Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141
    [8] Nicolas Ratto, Martine Marion, Vitaly Volpert . Existence of pulses for a reaction-diffusion system of blood coagulation in flow. Mathematical Biosciences and Engineering, 2019, 16(5): 4196-4212. doi: 10.3934/mbe.2019209
    [9] P. E. Greenwood, L. M. Ward . Rapidly forming, slowly evolving, spatial patterns from quasi-cycle Mexican Hat coupling. Mathematical Biosciences and Engineering, 2019, 16(6): 6769-6793. doi: 10.3934/mbe.2019338
    [10] Felicia Maria G. Magpantay, Xingfu Zou . Wave fronts in neuronal fields with nonlocal post-synaptic axonal connections and delayed nonlocal feedback connections. Mathematical Biosciences and Engineering, 2010, 7(2): 421-442. doi: 10.3934/mbe.2010.7.421
  • As follows from experiments, waves ofcalcium concentration in biological tissuescan be easily excited by a local mechanical stimulation.Therefore the complete theory of calcium waves should alsotake into account couplingbetween mechanical and chemical processes.In this paper we consider the existenceof travelling waves for buffered systems, as in [22], completed, however,by an equation for mechanical equilibrium and respective mechanochemical coupling terms.Thus the considered, coupled system consists of reaction-diffusion equations (forthe calcium and buffers concentrations) and equations for thebalance of mechanical forces.


    [1] Acta Physiol. Scand., 181 (2004), 359-366.
    [2] Nonlinear Analysis TM & A, 26 (1996), 1621-1642.
    [3] Circ. Res., 27 (1970), 105-119.
    [4] Journal of Cell Science, 117 (2004), 2203-2214.
    [5] Advances in Physics, 53 (2004), 255-440.
    [6] Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 45-62.
    [7] Am. J. Physiol. (Heart Circ. Physiol.), 290 (2006), 2498-2508.
    [8] Proc. Natl. Acad. Sci. USA, 88 (1991), 9883-9887.
    [9] Biol. Cell, 99 (2007), 75-184.
    [10] J. Biological Chemistry, 278 (2003), 4082-4086.
    [11] Journal of Mathematical Biology, 62 (2011), 1-38.
    [12] Nonlinearity, 21 (2008), 71-96.
    [13] Mathematical Models and Methods in Applied Sciences, 18 (2008), 883-912
    [14] Nonlinear Analysis: Theory, Methods and Applications, 55 (2003), 467-491.
    [15] Springer-Verlag, 1998.
    [16] 2nd edition, Springer-Verlag, Berlin, 1993.
    [17] J. Diff. Equat., 20 (1984), 225-256.
    [18] Arch. Mech., 62 (2010), 423-440.
    [19] Archive of Applied Mechanics, 74 (2005), 827-833.
    [20] Arch. Mech., 64 (2012), pp. 477-509
    [21] Journal of Biomechanics, 29 (1996), 461-467.
    [22] SIAM J. Appl. Math., 58 (1998), 1178-1192.
    [23] J. Wiley and Sons, New York, 1958.
    [24] AMS, Providence 1994.
    [25] Am. J. Physiol. Gastrointest. Liver Physiol., 276 (1999), 1204-1212.
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2458) PDF downloads(467) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog