Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation

  • Received: 01 December 2012 Accepted: 29 June 2018 Published: 01 September 2013
  • MSC : Primary: 60H30, 62P10; Secondary: 65C30.

  • Because every spike of a neuron is determined by input signals, a train of spikes may contain information about the dynamics of unobserved neurons. A state-space method based on the leaky integrate-and-fire model, describing neuronal transformation from input signals to a spike train has been proposed for tracking input parameters represented by their mean and fluctuation [11]. In the present paper, we propose to make the estimation more realistic by adopting an LIF model augmented with an adaptive moving threshold. Moreover, because the direct state-space method is computationally infeasible for a data set comprising thousands of spikes, we further develop a practical method for transforming instantaneous firing characteristics back to input parameters. The instantaneous firing characteristics, represented by the firing rate and non-Poisson irregularity, can be estimated using a computationally feasible algorithm. We applied our proposed methods to synthetic data to clarify that they perform well.

    Citation: Hideaki Kim, Shigeru Shinomoto. Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation[J]. Mathematical Biosciences and Engineering, 2014, 11(1): 49-62. doi: 10.3934/mbe.2014.11.49

    Related Papers:

    [1] Giuseppe D'Onofrio, Enrica Pirozzi . Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003
    [2] Achilleas Koutsou, Jacob Kanev, Maria Economidou, Chris Christodoulou . Integrator or coincidence detector --- what shapes the relation of stimulus synchrony and the operational mode of a neuron?. Mathematical Biosciences and Engineering, 2016, 13(3): 521-535. doi: 10.3934/mbe.2016005
    [3] Sven Blankenburg, Benjamin Lindner . The effect of positive interspike interval correlations on neuronal information transmission. Mathematical Biosciences and Engineering, 2016, 13(3): 461-481. doi: 10.3934/mbe.2016001
    [4] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences and Engineering, 2014, 11(2): 189-201. doi: 10.3934/mbe.2014.11.189
    [5] Andrey Olypher, Jean Vaillant . On the properties of input-to-output transformations in neuronal networks. Mathematical Biosciences and Engineering, 2016, 13(3): 579-596. doi: 10.3934/mbe.2016009
    [6] Alexej Tschumak, Frank Feldhoff, Frank Klefenz . The switching and learning behavior of an octopus cell implemented on FPGA. Mathematical Biosciences and Engineering, 2024, 21(4): 5762-5781. doi: 10.3934/mbe.2024254
    [7] Liqiang Zhu, Ying-Cheng Lai, Frank C. Hoppensteadt, Jiping He . Characterization of Neural Interaction During Learning and Adaptation from Spike-Train Data. Mathematical Biosciences and Engineering, 2005, 2(1): 1-23. doi: 10.3934/mbe.2005.2.1
    [8] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences and Engineering, 2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1
    [9] Massimiliano Tamborrino . Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences and Engineering, 2016, 13(3): 613-629. doi: 10.3934/mbe.2016011
    [10] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences and Engineering, 2016, 13(3): 483-493. doi: 10.3934/mbe.2016002
  • Because every spike of a neuron is determined by input signals, a train of spikes may contain information about the dynamics of unobserved neurons. A state-space method based on the leaky integrate-and-fire model, describing neuronal transformation from input signals to a spike train has been proposed for tracking input parameters represented by their mean and fluctuation [11]. In the present paper, we propose to make the estimation more realistic by adopting an LIF model augmented with an adaptive moving threshold. Moreover, because the direct state-space method is computationally infeasible for a data set comprising thousands of spikes, we further develop a practical method for transforming instantaneous firing characteristics back to input parameters. The instantaneous firing characteristics, represented by the firing rate and non-Poisson irregularity, can be estimated using a computationally feasible algorithm. We applied our proposed methods to synthetic data to clarify that they perform well.


    [1] Exp. Brain Res., 210 (2011), 353-371.
    [2] J. Neurophysiol., 104 (2010), 2806-2820.
    [3] Adv. Appl. Probab., 19 (1987), 784-800.
    [4] Methuen & Co., Ltd., London; John Wiley & Sons, Inc., New York, 1966.
    [5] Phys. Rev. E, 71 (2005), 011907, 9 pp.
    [6] Phys. Rev. E, 79 (2009), 021905.
    [7] J. Neurosci., 26 (2006), 448-457.
    [8] Biol. Cybern., 73 (1995), 209-221.
    [9] Biol. Cybern., 77 (1997), 289-295.
    [10] in "Selected tables in mathematical statistics, Vol. III," Amer. Math. Soc., Providence, RI, (1975), 233-327.
    [11] Phys. Rev. E, 86 (2012), 051903.
    [12] Biol. Cybern., 56 (1987), 19-26.
    [13] Biol. Cybern., 99 (2008), 253-262.
    [14] Revised edition, Dover Publications, Inc., New York, 1972.
    [15] J. Theor. Biol., 232 (2005), 505-521.
    [16] J. Comput. Neurosci., 10 (2001), 25-45.
    [17] J. Neurosci., 10 (1990), 1415-1428.
    [18] J. Neurosci., 11 (1991), 72-84.
    [19] J. Neurophysiol., 54 (1985), 782-806.
    [20] J. Comput. Neurosci., 24 (2008), 179-194.
    [21] Neurocomput., 70 (2007), 1717-1722.
    [22] Neural Comput., 16 (2004), 2533-2561.
    [23] J. Comput. Neurosci., 24 (2008), 69-79.
    [24] $2^{nd}$ edition, Cambridge University Press, Cambridge, 1992.
    [25] J. Appl. Prob., 25 (1988), 43-57.
    [26] Neural Netw., 12 (1999), 1181-1190.
    [27] Neural Comput., 21 (2009), 1931-1951.
    [28] Neural Comput., 11 (1999), 935-951.
    [29] Neural Comput., 15 (2003), 965-991.
    [30] J. Neurosci., 13 (1993), 334-350.
    [31] Nature, 423 (2003), 288-293.
    [32] Nat. Neurosci., 1 (1998), 210-217.
    [33] Neural Comput., 9 (1997), 971-983.
    [34] Cambridge Studies in Mathematical Biology, No. 8, Cambridge University Press, Cambridge, 1988.
    [35] J. Theor. Biol., 257 (2009), 90-99.
    [36] Nature, 426 (2003), 442-446.
    [37] Neural Comput., 21 (2009), 3079-3105.
  • This article has been cited by:

    1. Mario Abundo, Enrica Pirozzi, Integrated stationary Ornstein–Uhlenbeck process, and double integral processes, 2018, 494, 03784371, 265, 10.1016/j.physa.2017.12.043
    2. Giacomo Ascione, Yuliya Mishura, Enrica Pirozzi, Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications, 2021, 23, 1387-5841, 53, 10.1007/s11009-019-09748-y
    3. Giuseppe D'Onofrio, Enrica Pirozzi, Successive spike times predicted by a stochastic neuronal model with a variable input signal, 2016, 13, 1551-0018, 495, 10.3934/mbe.2016003
    4. Aniello Buonocore, Luigia Caputo, Giuseppe D’Onofrio, Enrica Pirozzi, Closed-form solutions for the first-passage-time problem and neuronal modeling, 2015, 64, 0035-5038, 421, 10.1007/s11587-015-0248-6
    5. Enrica Pirozzi, Colored noise and a stochastic fractional model for correlated inputs and adaptation in neuronal firing, 2018, 112, 0340-1200, 25, 10.1007/s00422-017-0731-0
    6. Giuseppe D’Onofrio, Enrica Pirozzi, Marcelo O. Magnasco, 2015, Chapter 22, 978-3-319-27339-6, 166, 10.1007/978-3-319-27340-2_22
    7. Giacomo Ascione, Enrica Pirozzi, 2018, Chapter 1, 978-3-319-74726-2, 3, 10.1007/978-3-319-74727-9_1
    8. Enrica Pirozzi, 2020, Chapter 26, 978-3-030-45092-2, 211, 10.1007/978-3-030-45093-9_26
    9. Mario Abundo, Enrica Pirozzi, Fractionally Integrated Gauss-Markov processes and applications, 2021, 10075704, 105862, 10.1016/j.cnsns.2021.105862
    10. Guowei Wang, Yan Fu, Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels, 2022, 20, 1551-0018, 3944, 10.3934/mbe.2023184
    11. Enrica Pirozzi, Some Fractional Stochastic Models for Neuronal Activity with Different Time-Scales and Correlated Inputs, 2024, 8, 2504-3110, 57, 10.3390/fractalfract8010057
    12. Enrica Pirozzi, Mittag–Leffler Fractional Stochastic Integrals and Processes with Applications, 2024, 12, 2227-7390, 3094, 10.3390/math12193094
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2698) PDF downloads(495) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog