Citation: Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel. On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells[J]. Mathematical Biosciences and Engineering, 2015, 12(1): 163-183. doi: 10.3934/mbe.2015.12.163
[1] | Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030 |
[2] | Erin N. Bodine, K. Lars Monia . A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma. Mathematical Biosciences and Engineering, 2017, 14(4): 881-899. doi: 10.3934/mbe.2017047 |
[3] | Cassidy K. Buhler, Rebecca S. Terry, Kathryn G. Link, Frederick R. Adler . Do mechanisms matter? Comparing cancer treatment strategies across mathematical models and outcome objectives. Mathematical Biosciences and Engineering, 2021, 18(5): 6305-6327. doi: 10.3934/mbe.2021315 |
[4] | Haifeng Zhang, Jinzhi Lei . Optimal treatment strategy of cancers with intratumor heterogeneity. Mathematical Biosciences and Engineering, 2022, 19(12): 13337-13373. doi: 10.3934/mbe.2022625 |
[5] | Urszula Ledzewicz, Heinz Schättler . The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences and Engineering, 2005, 2(3): 561-578. doi: 10.3934/mbe.2005.2.561 |
[6] | Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson . An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences and Engineering, 2015, 12(6): 1219-1235. doi: 10.3934/mbe.2015.12.1219 |
[7] | Abeer S. Alnahdi, Muhammad Idrees . Nonlinear dynamics of estrogen receptor-positive breast cancer integrating experimental data: A novel spatial modeling approach. Mathematical Biosciences and Engineering, 2023, 20(12): 21163-21185. doi: 10.3934/mbe.2023936 |
[8] | Urszula Ledzewicz, Behrooz Amini, Heinz Schättler . Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences and Engineering, 2015, 12(6): 1257-1275. doi: 10.3934/mbe.2015.12.1257 |
[9] | Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi . On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences and Engineering, 2013, 10(3): 803-819. doi: 10.3934/mbe.2013.10.803 |
[10] | Baba Issa Camara, Houda Mokrani, Evans K. Afenya . Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences and Engineering, 2013, 10(3): 565-578. doi: 10.3934/mbe.2013.10.565 |
[1] | Discrete and Continuous Dynamical Systems- Series B, 4 (2004), 25-28. |
[2] | Bulletin of Mathematical Biology, 62 (2000), 527-542. |
[3] | In S.Duckett, editor, the Pathology of the Aging Human Nervous System, Lea and Febiger, Philadelphia, (1991), 210-281. |
[4] | Comp. Math. and Math. Physics, 49 (2009), 1825-1836. |
[5] | Comp. Math. and Math. Phys., 48 (2008), 892-911. |
[6] | Diff. Equat., 46 (2010), 1571-1583. |
[7] | Mathematical Biosciences, 248 (2014), 88-96. |
[8] | Journ. of Opt. Theor. Appl., 159 (2013), 590-605. |
[9] | Nonlinear Analysis: Real World Applications, 13 (2012), 1044-1059. |
[10] | Journal of Neuropathology & Experimental Neurology, 56 (1997), 704-713. |
[11] | J. Neurosurgery, 82 (1995), 615-622, Bulletin of Mathematical Biology, 62 (2000), 527-542. |
[12] | , J. Comp. Syste. Sci. Int., 48 (2009), 325-331. |
[13] | IEEE Trans. Medical Imaging, 17 (1998), 463-468. |
[14] | SIAM Journal on Applied Mathematics, 63 (2003), 1954-1971. |
[15] | Theory and applications. Translated from the 1999 Russian original by Tamara Rozhkovskaya. Translations of Mathematical Monographs, 187. American Mathematical Society, Providence, RI, 2000. |
[16] | J. Neurosurgery, 39 (1996), 235-252. |
[17] | New York, Springer Verlag, 1981. |
[18] | preprint Arizona State University, July 28, 2010. |
[19] | European Journal of Pharmacology, 625 (2009), 108-121. |
[20] | Applicationes Mathematicae, 38 (2011), 17-31. |
[21] | Math. Biosc. Eng., 2 (2005), 561-578. |
[22] | Birkhaeuser, Boston, 1995. |
[23] | Pergamon Press, 1964. |
[24] | SIAM News, Vol 37, No.1, 2004. |
[25] | J. Neuwsurg., 18 (1961), 636-644. |
[26] | II. Spatial models and biomedical applications. Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003. |
[27] | Second edition. Biomathematics, 19. Springer-Verlag, Berlin, 1993. |
[28] | Marcel Dekker, New York, 1994. |
[29] | Phys. Med. Biol., 52 (2007), p3291. |
[30] | J.Neurosurg., 86 (1997), 525-531. |
[31] | Mathematical and Computer Modelling, 37 (2003), 1177-1190. |
[32] | PhD thesis, University of Washington, Seattle, WA, 1999. |
[33] | Cell Proliferation, 33 (2000), 317-329. |
[34] | Russian Journal of Numerical Analysis and Mathematical Modelling, 26 (2011), 589-604. |
1. | Svetlana Yu. Kovalenko, Gaukhar M. Yusubalieva, Survival task for the mathematical model of glioma therapy with blood-brain barrier, 2018, 10, 20767633, 113, 10.20537/2076-7633-2018-10-1-113-123 | |
2. | Alexander Bratus, Igor Samokhin, Ivan Yegorov, Daniil Yurchenko, Maximization of viability time in a mathematical model of cancer therapy, 2017, 294, 00255564, 110, 10.1016/j.mbs.2017.10.011 | |
3. | Mohsen Yousefnezhad, Chiu-Yen Kao, Seyyed Abbas Mohammadi, Optimal Chemotherapy for Brain Tumor Growth in a Reaction-Diffusion Model, 2021, 81, 0036-1399, 1077, 10.1137/20M135995X |