Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 35R30, 91D10; Secondary: 62F15, 91C99.

  • Focusing on a specific crowd dynamics situation, including real lifeexperiments and measurements, our paper targets a twofold aim: (1) wepresent a Bayesian probabilistic method to estimate the value and theuncertainty (in the form of a probability density function) ofparameters in crowd dynamic models from the experimental data; and (2)we introduce a fitness measure for the models to classify acouple of model structures (forces) according to their fitness to theexperimental data, preparing the stage for a more generalmodel-selection and validation strategy inspired by probabilistic dataanalysis. Finally, we review the essential aspects of our experimentalsetup and measurement technique.

    Citation: Alessandro Corbetta, Adrian Muntean, Kiamars Vafayi. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 337-356. doi: 10.3934/mbe.2015.12.337

    Related Papers:

    [1] Yue Liu, Wing-Cheong Lo . Analysis of spontaneous emergence of cell polarity with delayed negative feedback. Mathematical Biosciences and Engineering, 2019, 16(3): 1392-1413. doi: 10.3934/mbe.2019068
    [2] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [3] Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006
    [4] Urszula Foryś, Jan Poleszczuk . A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences and Engineering, 2011, 8(2): 627-641. doi: 10.3934/mbe.2011.8.627
    [5] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
    [6] Qiaojun Situ, Jinzhi Lei . A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1379-1397. doi: 10.3934/mbe.2017071
    [7] Jie Lou, Tommaso Ruggeri, Claudio Tebaldi . Modeling Cancer in HIV-1 Infected Individuals: Equilibria, Cycles and Chaotic Behavior. Mathematical Biosciences and Engineering, 2006, 3(2): 313-324. doi: 10.3934/mbe.2006.3.313
    [8] Fabien Crauste . Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346. doi: 10.3934/mbe.2006.3.325
    [9] A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464
    [10] Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044
  • Focusing on a specific crowd dynamics situation, including real lifeexperiments and measurements, our paper targets a twofold aim: (1) wepresent a Bayesian probabilistic method to estimate the value and theuncertainty (in the form of a probability density function) ofparameters in crowd dynamic models from the experimental data; and (2)we introduce a fitness measure for the models to classify acouple of model structures (forces) according to their fitness to theexperimental data, preparing the stage for a more generalmodel-selection and validation strategy inspired by probabilistic dataanalysis. Finally, we review the essential aspects of our experimentalsetup and measurement technique.


    [1] Center for Research in Scientific Computation Tech Rep, CRSC-TR12-21, North Carolina State University, Raleigh, NC.
    [2] Mathematical Models and Methods in Applied Sciences, 22 (2012), 1230004, 29 pp.
    [3] Neurocomputing, 100 (2013), 127-133.
    [4] in Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014 (eds. A. Cunha, E. Caetano, P. Ribeiro and G. Müller), 2014, 937-944.
    [5] Transportation Research Procedia, 2 (2014), 96-104; The Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), Delft, The Netherlands, October 2014, 22-24.
    [6] in preparation, 2014.
    [7] American Journal of Physics, 14 (1946), 1-13.
    [8] Algebra of Probable Inference, Johns Hopkins University Press, 1961.
    [9] Grundlehren der mathematischen Wissenschaften, Springer, Berlin, New York, 2000.
    [10] Vol. 27, Springer-Verlag, New York, 1978.
    [11] Journal of Statistical Physics, 152 (2013), 1033-1068.
    [12] John Wiley & Sons, 2012.
    [13] Transportation Research Part C: Emerging Technologies, 37 (2013), 193-209.
    [14] Comptes Rendus Mathematique, 352 (2014), 51-54.
    [15] Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, 2062 (2013), 271-302.
    [16] Physical Review E, 51 (1995), pp. 4282.
    [17] Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368 (2010), 4497-4517.
    [18] Computer Animation and Virtual Worlds, 24 (2013), 285-295.
    [19] Systems Science and Cybernetics, IEEE Transactions on, 4 (1968), 227-241.
    [20] Foundations of Physics, 3 (1973), 477-492.
    [21] Cambridge University Press, 2003.
    [22] Science, 220 (1983), 671-680.
    [23] Physica A: Statistical Mechanics and its Applications, 388 (2009), 2717-2726.
    [24] Journal of Chemical Physics, 21 (1953), 1087-1092.
    [25] Redmond, WA, USA.
    [26] Proceedings of the National Academy of Sciences, 108 (2011), 6884-6888.
    [27] The European Physical Journal Special Topics, 202 (2012), 1-162.
    [28] in Pedestrian and Evacuation Dynamics 2012, Springer International Publishing, 2014, 657-672.
    [29] Elsevier, 2010.
    [30] Transportation Research Part C: Emerging Technologies, 48 (2014), 212-228.
    [31] Oxford University Press, 1996.
    [32] Journal of Microscopy, 190 (1998), 28-36.
    [33] 2012.
    [34] Advances in Complex Systems, 15 (2012), 1250029, 22 pp.
    [35] Mitteilungen-Institut für Geodäsie und Photogrammetrie an der Eidgenossischen Technischen Hochschule Zürich, 2003.
  • This article has been cited by:

    1. K. Eroumé, A. Vasilevich, S. Vermeulen, J. de Boer, A. Carlier, Ivan R. Nabi, On the influence of cell shape on dynamic reaction-diffusion polarization patterns, 2021, 16, 1932-6203, e0248293, 10.1371/journal.pone.0248293
    2. Shabnam Khatibi, Karina Islas Rios, Lan K. Nguyen, 2018, Chapter 1, 978-1-4939-8611-8, 3, 10.1007/978-1-4939-8612-5_1
    3. Ching‐Shan Chou, Travis I. Moore, Qing Nie, Tau‐Mu Yi, Alternative cell polarity behaviours arise from changes in G‐protein spatial dynamics, 2015, 9, 1751-8857, 52, 10.1049/iet-syb.2013.0018
    4. A. Mogilner, J. Allard, R. Wollman, Cell Polarity: Quantitative Modeling as a Tool in Cell Biology, 2012, 336, 0036-8075, 175, 10.1126/science.1216380
    5. Chenwei Tian, Qingyan Shi, Xinping Cui, Jingzhe Guo, Zhenbiao Yang, Junping Shi, Spatiotemporal dynamics of a reaction-diffusion model of pollen tube tip growth, 2019, 79, 0303-6812, 1319, 10.1007/s00285-019-01396-7
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3609) PDF downloads(611) Cited by(43)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog