Loading [Contrib]/a11y/accessibility-menu.js

Stability and optimization in structured population models on graphs

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 35L50; Secondary: 92D25.

  • We prove existence and uniqueness of solutions, continuous dependence from the initial datum and stability with respect to the boundary condition in a class of initial--boundary value problems for systems of balance laws. The particular choice of the boundary condition allows to comprehend models with very different structures. In particular, we consider a juvenile-adult model, the problem of the optimal mating ratio and a model for the optimal management of biological resources. The stability result obtained allows to tackle various optimal management/control problems, providing sufficient conditions for the existence of optimal choices/controls.

    Citation: Rinaldo M. Colombo, Mauro Garavello. Stability and optimization in structured population models on graphs[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 311-335. doi: 10.3934/mbe.2015.12.311

    Related Papers:

    [1] Edoardo Beretta, Dimitri Breda . Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences and Engineering, 2016, 13(1): 19-41. doi: 10.3934/mbe.2016.13.19
    [2] Cristeta U. Jamilla, Renier G. Mendoza, Victoria May P. Mendoza . Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Mathematical Biosciences and Engineering, 2020, 17(5): 5686-5708. doi: 10.3934/mbe.2020306
    [3] Anthony Tongen, María Zubillaga, Jorge E. Rabinovich . A two-sex matrix population model to represent harem structure. Mathematical Biosciences and Engineering, 2016, 13(5): 1077-1092. doi: 10.3934/mbe.2016031
    [4] Azmy S. Ackleh, Keng Deng . Stability of a delay equation arising from a juvenile-adult model. Mathematical Biosciences and Engineering, 2010, 7(4): 729-737. doi: 10.3934/mbe.2010.7.729
    [5] J. M. Cushing, Simon Maccracken Stump . Darwinian dynamics of a juvenile-adult model. Mathematical Biosciences and Engineering, 2013, 10(4): 1017-1044. doi: 10.3934/mbe.2013.10.1017
    [6] John Cleveland . Basic stage structure measure valued evolutionary game model. Mathematical Biosciences and Engineering, 2015, 12(2): 291-310. doi: 10.3934/mbe.2015.12.291
    [7] Wei Feng, Michael T. Cowen, Xin Lu . Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences and Engineering, 2014, 11(4): 823-839. doi: 10.3934/mbe.2014.11.823
    [8] Santanu Bhattacharya, Nandadulal Bairagi . Dynamic optimization of fishing tax and tourism fees for sustainable bioeconomic resource management. Mathematical Biosciences and Engineering, 2025, 22(7): 1751-1789. doi: 10.3934/mbe.2025064
    [9] Lorenzo Mari, Marino Gatto, Renato Casagrandi . Local resource competition and the skewness of the sex ratio: a demographic model. Mathematical Biosciences and Engineering, 2008, 5(4): 813-830. doi: 10.3934/mbe.2008.5.813
    [10] Hua Guo, Yuan Tian, Kaibiao Sun, Xinyu Song . Dynamic analysis of two fishery capture models with a variable search rate and fuzzy biological parameters. Mathematical Biosciences and Engineering, 2023, 20(12): 21049-21074. doi: 10.3934/mbe.2023931
  • We prove existence and uniqueness of solutions, continuous dependence from the initial datum and stability with respect to the boundary condition in a class of initial--boundary value problems for systems of balance laws. The particular choice of the boundary condition allows to comprehend models with very different structures. In particular, we consider a juvenile-adult model, the problem of the optimal mating ratio and a model for the optimal management of biological resources. The stability result obtained allows to tackle various optimal management/control problems, providing sufficient conditions for the existence of optimal choices/controls.


    [1] SIAM J. Appl. Math., 69 (2009), 1644-1661.
    [2] Comput. Math. Appl., 64 (2012), 190-200.
    [3] Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000.
    [4] Comm. Partial Differential Equations, 4 (1979), 1017-1034.
    [5] Second edition, Texts in Applied Mathematics, 40, Springer, New York, 2012.
    [6] Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.
    [7] Math. Biosci., 205 (2007), 137-161.
    [8] J. Differential Equations, 248 (2010), 1017-1043.
    [9] SIAM J. Control Optim., 48 (2009), 2032-2050.
    [10] AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.
    [11] in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 4: Biology and Health, University of California Press, Berkeley, Calif., 1972, 89-108.
    [12] Mat. Sb. (N.S.), 81 (1970), 228-255.
    [13] Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
    [14] Genus, 49 (1993), 43-65.
    [15] Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007.
    [16] Demography, 18 (1981), 201-216.
    [17] Journal of Mathematical Biology, 18 (1983), 201-211.
    [18] Springer, 1988.
    [19] Translated from the 1996 French original by I. N. Sneddon, Cambridge University Press, Cambridge, 2000.
    [20] Ecological Modeling, 193 (2006), 787-795.
  • This article has been cited by:

    1. G.M. Coclite, C. Donadello, T.N.T. Nguyen, A PDE model for the spatial dynamics of a voles population structured in age, 2020, 196, 0362546X, 111805, 10.1016/j.na.2020.111805
    2. Rinaldo M. Colombo, Mauro Garavello, Well Posedness and Control in a NonLocal SIR Model, 2020, 0095-4616, 10.1007/s00245-020-09660-9
    3. Mauro Garavello, Optimal control in renewable resources modeling, 2016, 47, 1678-7544, 347, 10.1007/s00574-016-0143-0
    4. Rinaldo M. Colombo, Mauro Garavello, Polynomial profits in renewable resources management, 2017, 37, 14681218, 374, 10.1016/j.nonrwa.2017.03.002
    5. Rinaldo M. Colombo, Mauro Garavello, Control of biological resources on graphs, 2017, 23, 1292-8119, 1073, 10.1051/cocv/2016027
    6. G.M. Coclite, C. Donadello, T.N.T. Nguyen, An hyperbolic-parabolic predator-prey model involving a vole population structured in age, 2021, 502, 0022247X, 125232, 10.1016/j.jmaa.2021.125232
    7. Michael Herty, Stefan Ulbrich, 2022, 15708659, 10.1016/bs.hna.2022.11.004
    8. Rinaldo M. Colombo, Mauro Garavello, Well posedness and control in renewal equations with nonlocal boundary conditions, 2021, 44, 0170-4214, 11537, 10.1002/mma.7512
    9. Sebastian Pfaff, Stefan Ulbrich, Optimal control of scalar conservation laws by on/off-switching, 2017, 32, 1055-6788, 904, 10.1080/10556788.2016.1236796
    10. Yue Yu, Yuanshun Tan, Sanyi Tang, Stability analysis of the COVID-19 model with age structure under media effect, 2023, 42, 2238-3603, 10.1007/s40314-023-02330-w
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2584) PDF downloads(456) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog