Loading [Contrib]/a11y/accessibility-menu.js

Finite difference approximations for measure-valued solutions of a hierarchicallysize-structured population model

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 35A05, 35D05, 35F25, 35L67, 92D25.

  • We study a quasilinear hierarchically size-structured population modelpresented in [4]. In this model the growth, mortality andreproduction rates are assumed to depend on a function of thepopulation density. In [4] we showed that solutions to thismodel can become singular (measure-valued) in finite time even ifall the individual parameters are smooth. Therefore, in this paperwe develop a first order finite difference scheme to compute thesemeasure-valued solutions. Convergence analysis for this method isprovided. We also develop a high resolution second order scheme tocompute the measure-valued solution of the model and perform a comparative study between thetwo schemes.

    Citation: Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchicallysize-structured population model[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233

    Related Papers:

    [1] Michiel Bertsch, Masayasu Mimura, Tohru Wakasa . Modeling contact inhibition of growth: Traveling waves. Networks and Heterogeneous Media, 2013, 8(1): 131-147. doi: 10.3934/nhm.2013.8.131
    [2] Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773
    [3] Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
    [4] Pierre Degond, Sophie Hecht, Nicolas Vauchelet . Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15(1): 57-85. doi: 10.3934/nhm.2020003
    [5] Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko . Sharp interface limit in a phase field model of cell motility. Networks and Heterogeneous Media, 2017, 12(4): 551-590. doi: 10.3934/nhm.2017023
    [6] Andrea Corli, Lorenzo di Ruvo, Luisa Malaguti, Massimiliano D. Rosini . Traveling waves for degenerate diffusive equations on networks. Networks and Heterogeneous Media, 2017, 12(3): 339-370. doi: 10.3934/nhm.2017015
    [7] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537
    [8] Arnaud Ducrot, Michel Langlais, Pierre Magal . Multiple travelling waves for an $SI$-epidemic model. Networks and Heterogeneous Media, 2013, 8(1): 171-190. doi: 10.3934/nhm.2013.8.171
    [9] Don A. Jones, Hal L. Smith, Horst R. Thieme . Spread of viral infection of immobilized bacteria. Networks and Heterogeneous Media, 2013, 8(1): 327-342. doi: 10.3934/nhm.2013.8.327
    [10] François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik . A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275
  • We study a quasilinear hierarchically size-structured population modelpresented in [4]. In this model the growth, mortality andreproduction rates are assumed to depend on a function of thepopulation density. In [4] we showed that solutions to thismodel can become singular (measure-valued) in finite time even ifall the individual parameters are smooth. Therefore, in this paperwe develop a first order finite difference scheme to compute thesemeasure-valued solutions. Convergence analysis for this method isprovided. We also develop a high resolution second order scheme tocompute the measure-valued solution of the model and perform a comparative study between thetwo schemes.


    [1] Theor. Popul. Biol., 71 (2007), 290-300.
    [2] Appl. Math. Optim., 51 (2005), 35-59.
    [3] J. Num. Funct. Anal. Optimization, 18 (1997), 865-884.
    [4] J. Differential Equations, 217 (2005), 431-455.
    [5] Dynamic Systems Appl., 9 (2000), 527-539.
    [6] J. Math. Biol., 35 (1997), 967-987.
    [7] J. Differetial Equations, 252 (2012), 3245-3277.
    [8] Math. Models Methods Appl. Sci., 24 (2014), 2171-2197.
    [9] J. Math. Biol., 32 (1994), 705-729.
    [10] J. Math. Biol., 43 (2001), 157-189.
    [11] Num. Meth. Partial Diff. Eq., 30 (2014), 1797-1820.
    [12] J. Differential Equations, 248 (2010), 2703-2735.
    [13] J. Math. Biol., 34 (1996), 755-772.
    [14] Natural Resource Modeling, 14 (2001), 45-70.
    [15] Mat. Sb., 123 (1970), 228-255; English transl. in Math. USSR Sb., 10 (1970), 217-273.
    [16] SIAM J. Numer. Anal., 45 (2007), 352-370.
    [17] J. Comput. Phys., 77 (1988), 439-471.
    [18] Springer-Verlag, New York, 1994.
  • This article has been cited by:

    1. Robert Kersner, Mihály Klincsik, Dinara Zhanuzakova, A competition system with nonlinear cross-diffusion: exact periodic patterns, 2022, 116, 1578-7303, 10.1007/s13398-022-01299-1
    2. Gonzalo Galiano, Sergey Shmarev, Julian Velasco, Existence and multiplicity of segregated solutions to a cell-growth contact inhibition problem, 2015, 35, 1553-5231, 1479, 10.3934/dcds.2015.35.1479
    3. Hideki Murakawa, Hideru Togashi, Continuous models for cell–cell adhesion, 2015, 374, 00225193, 1, 10.1016/j.jtbi.2015.03.002
    4. G. Svantnerné Sebestyén, István Faragó, Róbert Horváth, R. Kersner, M. Klincsik, Stability of patterns and of constant steady states for a cross-diffusion system, 2016, 293, 03770427, 208, 10.1016/j.cam.2015.03.041
    5. M. BERTSCH, D. HILHORST, H. IZUHARA, M. MIMURA, T. WAKASA, Travelling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth, 2015, 26, 0956-7925, 297, 10.1017/S0956792515000042
    6. Benoît Perthame, Min Tang, Nicolas Vauchelet, Traveling wave solution of the Hele–Shaw model of tumor growth with nutrient, 2014, 24, 0218-2025, 2601, 10.1142/S0218202514500316
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2700) PDF downloads(559) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog