Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation

  • Received: 01 May 2015 Accepted: 29 June 2018 Published: 01 May 2016
  • MSC : 91B74, 97M10, 62P12.

  • We propose a model oftwo-species competition in the chemostat for a single growth-limiting,nonreproducing resource that extends that of Roy [38]. The response functions are specified to be Michaelis-Menten, and there is no predation in Roy's work. Our model generalizes Roy's model to general uptake functions. The competition is exploitative so that species compete by decreasing the common pool ofresources. The model also allows allelopathic effects of one toxin-producingspecies, both on itself (autotoxicity) and on its nontoxic competitor(phytotoxicity). We show that a stable coexistence equilibrium exists as long as (a) there are allelopathic effects and (b) the input nutrient concentration is above a critical value. The model is reconsidered under instantaneous nutrient recycling. We further extend this work to include a zooplankton species as a fourth interacting component to study the impact of predation on the ecosystem. The zooplankton species is allowed to feed only on the two phytoplankton species which are its perfectly substitutable resources. Each of the models is analyzed for boundedness, equilibria, stability, anduniform persistence (or permanence). Each model structure fits very well with some harmful algal bloom observations where the phytoplankton assemblage can be envisioned in two compartments, toxin producing and non-toxic. The Prymnesium parvum literature, where the suppressing effects of allelochemicals are quite pronounced, is a classic example. This work advances knowledge in an area of research becoming ever more important, which is understanding the functioning of allelopathy in food webs.

    Citation: Jean-Jacques Kengwoung-Keumo. Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[J]. Mathematical Biosciences and Engineering, 2016, 13(4): 787-812. doi: 10.3934/mbe.2016018

    Related Papers:

    [1] Jean-Jacques Kengwoung-Keumo . Dynamics of two phytoplankton populations under predation. Mathematical Biosciences and Engineering, 2014, 11(6): 1319-1336. doi: 10.3934/mbe.2014.11.1319
    [2] Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy . Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024
    [3] Zhenyao Sun, Da Song, Meng Fan . Dynamics of a stoichiometric phytoplankton-zooplankton model with season-driven light intensity. Mathematical Biosciences and Engineering, 2024, 21(8): 6870-6897. doi: 10.3934/mbe.2024301
    [4] Xin Zhao, Lijun Wang, Pankaj Kumar Tiwari, He Liu, Yi Wang, Jianbing Li, Min Zhao, Chuanjun Dai, Qing Guo . Investigation of a nutrient-plankton model with stochastic fluctuation and impulsive control. Mathematical Biosciences and Engineering, 2023, 20(8): 15496-15523. doi: 10.3934/mbe.2023692
    [5] Ruiqing Shi, Jianing Ren, Cuihong Wang . Stability analysis and Hopf bifurcation of a fractional order mathematical model with time delay for nutrient-phytoplankton-zooplankton. Mathematical Biosciences and Engineering, 2020, 17(4): 3836-3868. doi: 10.3934/mbe.2020214
    [6] Saswati Biswas, Pankaj Kumar Tiwari, Yun Kang, Samares Pal . Effects of zooplankton selectivity on phytoplankton in an ecosystem affected by free-viruses and environmental toxins. Mathematical Biosciences and Engineering, 2020, 17(2): 1272-1317. doi: 10.3934/mbe.2020065
    [7] Lidan Liu, Meng Fan, Yun Kang . Effect of nutrient supply on cell size evolution of marine phytoplankton. Mathematical Biosciences and Engineering, 2023, 20(3): 4714-4740. doi: 10.3934/mbe.2023218
    [8] Juan Li, Yongzhong Song, Hui Wan, Huaiping Zhu . Dynamical analysis of a toxin-producing phytoplankton-zooplankton model with refuge. Mathematical Biosciences and Engineering, 2017, 14(2): 529-557. doi: 10.3934/mbe.2017032
    [9] Ming Chen, Meng Fan, Xing Yuan, Huaiping Zhu . Effect of seasonal changing temperature on the growth of phytoplankton. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1091-1117. doi: 10.3934/mbe.2017057
    [10] Xinyou Meng, Jie Li . Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting. Mathematical Biosciences and Engineering, 2020, 17(3): 1973-2002. doi: 10.3934/mbe.2020105
  • We propose a model oftwo-species competition in the chemostat for a single growth-limiting,nonreproducing resource that extends that of Roy [38]. The response functions are specified to be Michaelis-Menten, and there is no predation in Roy's work. Our model generalizes Roy's model to general uptake functions. The competition is exploitative so that species compete by decreasing the common pool ofresources. The model also allows allelopathic effects of one toxin-producingspecies, both on itself (autotoxicity) and on its nontoxic competitor(phytotoxicity). We show that a stable coexistence equilibrium exists as long as (a) there are allelopathic effects and (b) the input nutrient concentration is above a critical value. The model is reconsidered under instantaneous nutrient recycling. We further extend this work to include a zooplankton species as a fourth interacting component to study the impact of predation on the ecosystem. The zooplankton species is allowed to feed only on the two phytoplankton species which are its perfectly substitutable resources. Each of the models is analyzed for boundedness, equilibria, stability, anduniform persistence (or permanence). Each model structure fits very well with some harmful algal bloom observations where the phytoplankton assemblage can be envisioned in two compartments, toxin producing and non-toxic. The Prymnesium parvum literature, where the suppressing effects of allelochemicals are quite pronounced, is a classic example. This work advances knowledge in an area of research becoming ever more important, which is understanding the functioning of allelopathy in food webs.


    [1] Ecol. Model., 161 (2003), 53-66.
    [2] Amer. Natur., 139 (1992), 663-668.
    [3] Biotechnol. Bioeng., 19 (1977), 707-723.
    [4] Math. Biosci., 118 (1993), 127-180.
    [5] J. Math. Biol., 28 (1990), 99-111.
    [6] Biochem. J., 85 (1962), 440-447.
    [7] J. Math. Biol., 24 (1986), 167-191.
    [8] Math. Biosci., 83 (1987), 1-48.
    [9] J. Biol. Syst., 16 (2008), 547-564.
    [10] Eco. Let., 5 (2002), 302-315.
    [11] Bull. Math. Biol., 6 (1999), 303-339.
    [12] J. Plankton Res., 23 (2001), 389-413.
    [13] J. Theor. Biol., 191 (1998), 353-376.
    [14] In: Anderson, N. R., Zahurance, B. G. (eds). Oceanic Sound Scattering Predication, 1977, 749-765. New York: Plenum.
    [15] In: Avula, J. R. (eds). Math. Model., 4 (1977), 2081-2088. Rolla: University of Missouri Press.
    [16] J. Math. Biol., 5 (1978), 261-280.
    [17] Sci., 207 (1980), 1491-1493.
    [18] Sci., New series, 131 (1960), 1292-1297.
    [19] Amer. Natur., 144 (1994), 741-771.
    [20] SIAM J. Appl. Math., 32 (1977), 366-383.
    [21] SIAM J. Appl. Math., 34 (1978), 760-763.
    [22] Comput. Math. Appl., 49 (2005), 375-378.
    [23] J. Bacteriol., 113 (1976), 834-840.
    [24] J. Math. Bio. Eng., 11 (2014), 1319-1336.
    [25] J. Theor. Biol., 50 (1975), 185-201.
    [26] J. Math. Anal. Appl., 242 (2000), 75-92.
    [27] Cambridge University Press, 1974.
    [28] W. A. Benjamin, N.Y., 1971.
    [29] Fischer, Jena, 1937.
    [30] Hermann et Cie., Paris, 1942.
    [31] Ecol. Model., 198 (2006), 163-173.
    [32] Theor. Popul. Biol., 57 (2000), 131-144.
    [33] Third Edition, Springer, 2001.
    [34] Math. Biosci. Eng., 10 (2013), 861-872.
    [35] Amer. Natur., 105 (1971), 575-587.
    [36] Academic Press, Inc. 1984.
    [37] Limnol. Oceanog., 10 (Suppl.) (1965), R202-R215.
    [38] Theor. Popul. Biol., 75 (2009), 68-75.
    [39] Nonlinear Anal-Real., 14 (2013), 1621-1633.
    [40] J. Math. Biol., 31 (1993), 633-654.
    [41] J. Theor. Biol., 208 (2001), 15-26.
    [42] J. Theor. Biol., 244 (2007), 218-227.
    [43] Vol. 13 of Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, U.K., 1995.
    [44] Ecol. Model., 183 (2005), 373-384.
    [45] J. Math. Biol., 30 (1992), 755-763.
    [46] 8th edition, Englewood Cliffs, NJ: Prentice-Hall, 1997.
    [47] Sci., 171 (1971), 757-770.
    [48] J. Appl. Math., 52 (1992), 222-233.
    [49] Biotechnol. Bioeng., 17 (1975), 1211-1235.
  • This article has been cited by:

    1. Jin Zhou, Xiao Song, Chun-Yun Zhang, Guo-Fu Chen, Yong-Min Lao, Hui Jin, Zhong-Hua Cai, Distribution Patterns of Microbial Community Structure Along a 7000-Mile Latitudinal Transect from the Mediterranean Sea Across the Atlantic Ocean to the Brazilian Coastal Sea, 2018, 76, 0095-3628, 592, 10.1007/s00248-018-1150-z
    2. Radhouane Fekih-Salem, Analysis of an intra- and interspecific interference model with allelopathic competition, 2024, 0022247X, 128801, 10.1016/j.jmaa.2024.128801
    3. Muhammad Zafarullah Baber, Nauman Ahmed, Muhammad Sajid Iqbal, Muhammad Waqas Yasin, Exact solitary wave solutions and their comparisons under the effect of noise: an allelopathic phytoplankton competition model, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05662-6
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2353) PDF downloads(494) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog