Mixed vaccination strategy for the control of tuberculosis: A case study in China

  • Received: 13 May 2016 Accepted: 09 October 2016 Published: 01 June 2017
  • MSC : Primary: 92D30, 37N25; Secondary: 34K13

  • This study first presents a mathematical model of TB transmission considering BCG vaccination compartment to investigate the transmission dynamics nowadays. Based on data reported by the National Bureau of Statistics of China, the basic reproduction number is estimated approximately as R0=1.1892. To reach the new End TB goal raised by WHO in 2015, considering the health system in China, we design a mixed vaccination strategy. Theoretical analysis indicates that the infectious population asymptotically tends to zero with the new vaccination strategy which is the combination of constant vaccination and pulse vaccination. We obtain that the control of TB is quicker to achieve with the mixed vaccination. The new strategy can make the best of current constant vaccination, and the periodic routine health examination provides an operable environment for implementing pulse vaccination in China. Numerical simulations are provided to illustrate the theoretical results and help to design the final mixed vaccination strategy once the new vaccine comes out.

    Citation: Siyu Liu, Yong Li, Yingjie Bi, Qingdao Huang. Mixed vaccination strategy for the control of tuberculosis: A case study in China[J]. Mathematical Biosciences and Engineering, 2017, 14(3): 695-708. doi: 10.3934/mbe.2017039

    Related Papers:

    [1] Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900
    [2] Keenan Hawekotte, Susan E. Luczak, I. G. Rosen . Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach. Mathematical Biosciences and Engineering, 2021, 18(5): 6739-6770. doi: 10.3934/mbe.2021335
    [3] Gigi Thomas, Edward M. Lungu . A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences and Engineering, 2010, 7(4): 871-904. doi: 10.3934/mbe.2010.7.871
    [4] Salih Djillali, Soufiane Bentout, Tarik Mohammed Touaoula, Abdessamad Tridane . Global dynamics of alcoholism epidemic model with distributed delays. Mathematical Biosciences and Engineering, 2021, 18(6): 8245-8256. doi: 10.3934/mbe.2021409
    [5] Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang . Modelling and analysis of an alcoholism model with treatment and effect of Twitter. Mathematical Biosciences and Engineering, 2019, 16(5): 3561-3622. doi: 10.3934/mbe.2019179
    [6] Ridouan Bani, Rasheed Hameed, Steve Szymanowski, Priscilla Greenwood, Christopher M. Kribs-Zaleta, Anuj Mubayi . Influence of environmental factors on college alcohol drinking patterns. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1281-1300. doi: 10.3934/mbe.2013.10.1281
    [7] Peixian Zhuang, Xinghao Ding, Jinming Duan . Subspace-based non-blind deconvolution. Mathematical Biosciences and Engineering, 2019, 16(4): 2202-2218. doi: 10.3934/mbe.2019108
    [8] Biyun Hong, Yang Zhang . Research on the influence of attention and emotion of tea drinkers based on artificial neural network. Mathematical Biosciences and Engineering, 2021, 18(4): 3423-3434. doi: 10.3934/mbe.2021171
    [9] Colette Calmelet, John Hotchkiss, Philip Crooke . A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences and Engineering, 2014, 11(6): 1449-1464. doi: 10.3934/mbe.2014.11.1449
    [10] Piotr Klejment . Application of supervised machine learning as a method for identifying DEM contact law parameters. Mathematical Biosciences and Engineering, 2021, 18(6): 7490-7505. doi: 10.3934/mbe.2021370
  • This study first presents a mathematical model of TB transmission considering BCG vaccination compartment to investigate the transmission dynamics nowadays. Based on data reported by the National Bureau of Statistics of China, the basic reproduction number is estimated approximately as R0=1.1892. To reach the new End TB goal raised by WHO in 2015, considering the health system in China, we design a mixed vaccination strategy. Theoretical analysis indicates that the infectious population asymptotically tends to zero with the new vaccination strategy which is the combination of constant vaccination and pulse vaccination. We obtain that the control of TB is quicker to achieve with the mixed vaccination. The new strategy can make the best of current constant vaccination, and the periodic routine health examination provides an operable environment for implementing pulse vaccination in China. Numerical simulations are provided to illustrate the theoretical results and help to design the final mixed vaccination strategy once the new vaccine comes out.


    [1] [ J. P. Aparicio,C. Castillo-Chavez, Mathematical modelling of tuberculosis epidemics, Mathematical Biosciences and Engineering, 6 (2009): 209-237.
    [2] [ Z. Bai, Threshold dynamics of a time-delayed SEIRS model with pulse vaccination, Mathematical Biosciences, 269 (2015): 178-185.
    [3] [ S. M. Blower,T. Chou, Modeling the emergence of the 'hot zones': Tuberculosis and the amplification dynamics of drug resistance, Nature Medicine, 10 (2004): 1111-1116.
    [4] [ S. M. Blower,P. M. Small,P. C. Hopewell, Control strategies for tuberculosis epidemic: New models for old problems, Science, 273 (1996): 497-500.
    [5] [ S. Bowong,J. J. Tewa, Global analysis of a dynamical model for transmission of tuberculosis with a general contact rate, Communications in Nonlinear Science and Numerical Simulation, 15 (2010): 3621-3631.
    [6] [ H. Cao,Y. Zhou, The discrete age-structured SEIT model with application to tuberculosis transmission in China, Mathematical and Computer Modelling, 55 (2012): 385-395.
    [7] [ C. Castillo-Chavez,Z. Feng, To treat or not treat: The case of tuberculosis, Journal of Mathematical Biology, 35 (1997): 629-656.
    [8] [ C. Castillo-Chavez,Z. Feng, Global stability of an age-structure model for TB and its applications to optimal vaccination strategies, Mathematical Biosciences, 151 (1998): 135-154.
    [9] [ C. Castillo-Chavez,B. Song, Dynamical models of tuberculosis and their applications, Mathematical Biosciences and Engineering, 1 (2004): 361-404.
    [10] [ H. Chang, Quality monitoring and effect evaluation of BCG vaccination in neonatus, Occupation and Health, 9 (2013): 1109-1110.
    [11] [ O. Diekmann,J. A. P. Heesterbeek,J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28 (1990): 365-382.
    [12] [ P. V. D. Driessche,J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002): 29-48.
    [13] [ M. J. Keeling,P. Rohani, null, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008.
    [14] [ J. Li, The spread and prevention of tuberculosis, Chinese Remedies and Clinics, 13 (2013): 482-483.
    [15] [ L. Liu,X. Zhao,Y. Zhou, A tuberculosis model with seasonality, Bulletin of Mathematical Biology, 72 (2010): 931-952.
    [16] [ J. S. Lopes, P. Rodrigues, S. T. Pinho, R. F. Andrade, R. Duarte and M. G. M. Gomes, Interpreting Measures of Tuberculosis Transmission: A Case Study on the Portuguese Population, BMC Infectious Diseases, 2014.
    [17] [ Z. Lu,X. Chi,L. Chen, The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission, Mathematical and Computer Modelling, 36 (2002): 1039-1057.
    [18] [ National Bureau of Statistics of China, Statistical Data of Tuberculosis 2004-2014. Available from: http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0O0F01.
    [19] [ National Bureau of Statistics of China, China Statistical Yearbook 2014, Birth Rate, Death Rate and Natural Growth Rate of Population, 2014. Available from: http://www.stats.gov.cn/tjsj/ndsj/2014/indexch.htm.
    [20] [ National Technic Steering Group of the Epidemiological Sampling Survey for Tuberculosis, Report on fourth national epidemiological sampling survey of tuberculosis, Chinese Journal of Tuberculosis and Respiratory Diseases, 25 (2002), 3-7.
    [21] [ A. M. Samoilenko,N. A. Perestyuk, Periodic and almost-periodic solution of impulsive differential equations, Ukrainian Mathematical Journal, 34 (1982): 66-73,132.
    [22] [ A. M. Samoilenko and N. A. Perestyuk, Differential Equations with Impulse Effect, Visa Skola, Kiev, 1987.
    [23] [ O. Sharomi,C. N. Podder,A. B. Gumel,B. Song, Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment, Mathematical Biosciences and Engineering, 5 (2008): 145-174.
    [24] [ M. Shen, Y. Xiao, W. Zhou and Z. Li, Global dynamics and applications of an epidemiological model for hepatitis C virus transmission in China, Discrete Dynamics in Nature and Society, 2015 (2015), Article ID 543029, 13pp.
    [25] [ B. Shulgin,L. Stone,Z. Agur, Pulse vaccination strategy in the SIR epidemic model, Bulletin of Mathematical Biology, 60 (1998): 1123-1148.
    [26] [ B. Song,C. Castillo-Chavez,J. P. Aparicio, Tuberculosis models with fast and slow dynamics: The role of close and casual contacts, Mathematical Biosciences, 180 (2002): 187-205.
    [27] [ Technical Guidance Group of the Fifth National TB Epidemiological Survey and The Office of the Fifth National TB Epidemiological Survey, The fifth national tuberculosis epidemiological survey in 2010, Chinese Journal of Antituberculosis, 34 (2012), 485–508.
    [28] [ E. Vynnycky,P. E. M. Fine, The long-term dynamics of tuberculosis and other diseases with long serial intervals: Implications of and for changing reproduction numbers, Epidemiology and Infection, 121 (1998): 309-324.
    [29] [ WHO, Global Tuberculosis Report 2015, World Health Organization, 2015. Available from: http://www.who.int/tb/publications/global_report/en/.
    [30] [ WHO, Tuberculosis Vaccine Development, 2015. Available from: http://www.who.int/immunization/research/development/tuberculosis/en/.
    [31] [ C. Xiong,X. Liang,H. Wang, A Systematic review on the protective efficacy of BCG against children tuberculosis meningitis and millet tuberculosis, Chinese Journal of Vaccines and Immunization, 15 (2009): 359-362.
    [32] [ B. Xu,Y. Hu,Q. Zhao,W. Wang,W. Jiang,G. Zhao, Molecular epidemiology of TB -Its impact on multidrug-resistant tuberculosis control in China, International Journal of Mycobacteriology, 4 (2015): 134.
    [33] [ Y. Yang,S. Tang,X. Ren,H. Zhao,C. Guo, Global stability and optimal control for a tuberculosis model with vaccination and treatment, Discrete and Continuous Dynamical Systems -Series B, 21 (2016): 1009-1022.
    [34] [ Y. Zhou,K. Khan,Z. Feng,J. Wu, Projection of tuberculosis incidence with increasing immigration trends, Journal of Theoretical Biology, 254 (2008): 215-228.
    [35] [ E. Ziv,C. L. Daley,S. M. Blower, Early therapy for latent tuberculosis infection, American Journal of Epidemiology, 153 (2001): 381-385.
  • This article has been cited by:

    1. Yan Wang, Daniel J. Fridberg, Robert F. Leeman, Robert L. Cook, Eric C. Porges, Wrist-worn alcohol biosensors: Strengths, limitations, and future directions, 2019, 81, 07418329, 83, 10.1016/j.alcohol.2018.08.013
    2. John D. Roache, Tara E. Karns-Wright, Martin Goros, Nathalie Hill-Kapturczak, Charles W. Mathias, Donald M. Dougherty, Processing transdermal alcohol concentration (TAC) data to detect low-level drinking, 2019, 81, 07418329, 101, 10.1016/j.alcohol.2018.08.014
    3. Melike Sirlanci, I. Gary Rosen, Tamara L. Wall, Susan E. Luczak, Applying a novel population-based model approach to estimating breath alcohol concentration (BrAC) from transdermal alcohol concentration (TAC) biosensor data, 2019, 81, 07418329, 117, 10.1016/j.alcohol.2018.09.005
    4. Jian Li, Susan E. Luczak, I. G. Rosen, Comparing a distributed parameter model-based system identification technique with more conventional methods for inverse problems, 2019, 27, 0928-0219, 703, 10.1515/jiip-2018-0006
    5. Alastair van Heerden, Mark Tomlinson, Sarah Skeen, Charles Parry, Kendal Bryant, Mary Jane Rotheram-Borus, Innovation at the Intersection of Alcohol and HIV Research, 2017, 21, 1090-7165, 274, 10.1007/s10461-017-1926-z
    6. Melike Sirlanci, Susan Luczak, I. G. Rosen, 2017, Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators, 978-1-5090-5992-8, 3171, 10.23919/ACC.2017.7963435
    7. Kelly Egmond, Cassandra J. C. Wright, Michael Livingston, Emmanuel Kuntsche, Wearable Transdermal Alcohol Monitors: A Systematic Review of Detection Validity, and Relationship Between Transdermal and Breath Alcohol Concentration and Influencing Factors, 2020, 44, 0145-6008, 1918, 10.1111/acer.14432
    8. Christian S. Hendershot, Christina N. Nona, A Review of Developmental Considerations in Human Laboratory Alcohol Research, 2017, 4, 2196-2952, 364, 10.1007/s40429-017-0173-8
    9. Nancy P. Barnett, Mark A. Celio, Jennifer W. Tidey, James G. Murphy, Suzanne M. Colby, Robert M. Swift, A preliminary randomized controlled trial of contingency management for alcohol use reduction using a transdermal alcohol sensor, 2017, 112, 0965-2140, 1025, 10.1111/add.13767
    10. Melike Sirlanci, I G Rosen, Susan E Luczak, Catharine E Fairbairn, Konrad Bresin, Dahyeon Kang, Deconvolving the input to random abstract parabolic systems: a population model-based approach to estimating blood/breath alcohol concentration from transdermal alcohol biosensor data, 2018, 34, 0266-5611, 125006, 10.1088/1361-6420/aae791
    11. Susan E. Luczak, Ashley L. Hawkins, Zheng Dai, Raphael Wichmann, Chunming Wang, I.Gary Rosen, Obtaining continuous BrAC/BAC estimates in the field: A hybrid system integrating transdermal alcohol biosensor, Intellidrink smartphone app, and BrAC Estimator software tools, 2018, 83, 03064603, 48, 10.1016/j.addbeh.2017.11.038
    12. Melike Sirlanci, Susan E. Luczak, Catharine E. Fairbairn, Dahyeon Kang, Ruoxi Pan, Xin Yu, I. Gary Rosen, Estimating the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor, 2019, 106, 00051098, 101, 10.1016/j.automatica.2019.04.026
    13. Sina Kianersi, Maya Luetke, Jon Agley, Ruth Gassman, Christina Ludema, Molly Rosenberg, Validation of transdermal alcohol concentration data collected using wearable alcohol monitors: A systematic review and meta-analysis, 2020, 216, 03768716, 108304, 10.1016/j.drugalcdep.2020.108304
    14. Catharine E. Fairbairn, I. Gary Rosen, Susan E. Luczak, Walter J. Venerable, Estimating the quantity and time course of alcohol consumption from transdermal alcohol sensor data: A combined laboratory-ambulatory study, 2019, 81, 07418329, 111, 10.1016/j.alcohol.2018.08.015
    15. John D. Clapp, Danielle R. Madden, Sheila Pakdaman, Drinking with Friends: Measuring the Two-week Ecology of Drinking Behaviors, 2022, 46, 1087-3244, 96, 10.5993/AJHB.46.2.1
    16. Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, 2022, Physics-Informed Learning: Distributed Parameter Systems, Hidden Markov Models, and the Viterbi Algorithm, 978-1-6654-5196-3, 266, 10.23919/ACC53348.2022.9867145
    17. Baichen Li, R. Scott Downen, Quan Dong, Nam Tran, Maxine LeSaux, Andrew C. Meltzer, Zhenyu Li, A Discreet Wearable IoT Sensor for Continuous Transdermal Alcohol Monitoring—Challenges and Opportunities, 2021, 21, 1530-437X, 5322, 10.1109/JSEN.2020.3030254
    18. Clemens Oszkinat, Susan E. Luczak, I. Gary Rosen, An abstract parabolic system-based physics-informed long short-term memory network for estimating breath alcohol concentration from transdermal alcohol biosensor data, 2022, 34, 0941-0643, 18933, 10.1007/s00521-022-07505-w
    19. Mengsha Yao, Susan E. Luczak, I. Gary Rosen, Tracking and blind deconvolution of blood alcohol concentration from transdermal alcohol biosensor data: A population model-based LQG approach in Hilbert space, 2023, 147, 00051098, 110699, 10.1016/j.automatica.2022.110699
    20. Keenan Hawekotte, Susan E. Luczak, I. G. Rosen, Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach, 2021, 18, 1551-0018, 6739, 10.3934/mbe.2021335
    21. Clemens Oszkinat, Tianlan Shao, Chunming Wang, I G Rosen, Allison D Rosen, Emily B Saldich, Susan E Luczak, Blood and breath alcohol concentration from transdermal alcohol biosensor data: estimation and uncertainty quantification via forward and inverse filtering for a covariate-dependent, physics-informed, hidden Markov model* , 2022, 38, 0266-5611, 055002, 10.1088/1361-6420/ac5ac7
    22. Mengsha Yao, Susan E. Luczak, Emily B. Saldich, I. Gary Rosen, A population model‐based linear‐quadratic Gaussian compensator for the control of intravenously infused alcohol studies and withdrawal symptom prophylaxis using transdermal sensing, 2022, 0143-2087, 10.1002/oca.2934
    23. Bob M. Lansdorp, Flux-Type versus Concentration-Type Sensors in Transdermal Measurements, 2023, 13, 2079-6374, 845, 10.3390/bios13090845
    24. Kyla-Rose Walden, Emily B. Saldich, Georgia Wong, Haoxing Liu, Chunming Wang, I. Gary Rosen, Susan E. Luczak, 2023, 79, 9780443193866, 271, 10.1016/bs.plm.2023.06.002
    25. Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, Uncertainty Quantification in Estimating Blood Alcohol Concentration From Transdermal Alcohol Level With Physics-Informed Neural Networks, 2023, 34, 2162-237X, 8094, 10.1109/TNNLS.2022.3140726
    26. Lernik Asserian, Susan E. Luczak, I. G. Rosen, Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol, 2023, 20, 1551-0018, 20345, 10.3934/mbe.2023900
    27. J.M. Maestre, P. Chanfreut, L. Aarons, Constrained numerical deconvolution using orthogonal polynomials, 2024, 24058440, e24762, 10.1016/j.heliyon.2024.e24762
    28. Mengsha Yao, Maria Allayioti, Emily B. Saldich, Georgia Y. Wong, Chunming Wang, Susan E. Luczak, I. G. Rosen, Real-time recursive estimation of, and uncertainty quantification for, breath alcohol concentration via LQ tracking control-based inverse filtering of transdermal alcohol biosensor signals, 2024, 2, 2994-7669, 38, 10.3934/ammc.2024003
    29. Joseph C. Anderson, A new approach to modeling transdermal ethanol kinetics, 2024, 12, 2051-817X, 10.14814/phy2.70070
    30. Mengsha Yao, Gary Rosen, 2025, 10.5772/intechopen.1010428
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5302) PDF downloads(707) Cited by(20)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog