Processing math: 100%
Research article

Use of Safety Pin on Garments in Pregnancy: A Belief and Cultural Practice with Potential Harmful Effect

  • Background: Culture has been known to influence practices and beliefs of people world over. Several cultural practices have been noted among pregnant women who were passed from one generation to the next with its potential harmful and beneficial effect. The use of safety pin in is one of such cultural practices that are widely practiced by many pregnant Nigerian women. Objective: We sought to gain a deeper understanding of the source of knowledge and motivation behind the use of safety pin on garments during pregnancy as well as explore potential harmful side effects of this cultural practice. Methodology: A total of 419 pregnant women completed questionnaires for a hospital-based cross-sectional study. Safety pin knowledge and motivation for use on garments were assessed using a pre-tested 16 item questionnaire. Consenting women either completed a self-administered structured questionnaire or utilized the help of trained research assistants. Chi-square tests were used to assess relationships between safety pin use on garments and predictor variables. Analysis was done with Statistical Package for Social Sciences version 17. Results: Of 419 participants, over half (n = 227) reported safety pin use on garments in pregnancy. About two-thirds (n = 177) of women who use safety pin reported older female relatives as their source of information. The mean age of the participants
    was 29.1 ± 5.74 (range 16–45 years). Traditional religion worshippers were more likely (81.2%) and Christians were least likely to use safety pin (50.7%) during pregnancy. Pregnant women with a tertiary education (50.4%) were least likely to use safety pin compared with women with no or less than a tertiary level of education. Protection of pregnancy against demons/witchcrafts was the reason given by 129 (56.8%) of participants using safety pin in pregnancy. Conclusion: The use of safety pin on garments during pregnancy is a common cultural practice in southwest Nigeria. Our findings also suggest that religion and education are important determinants of safety pin use. Although our study did not find a statistically significant difference in safety pin prick incidents among safety pin users, it remains a potential source of harm. Thus, there is a need to establish community and hospital based strategies that address potential cultural harmful practices while promoting culturally appropriate healthcare services.

    Citation: Kola M Owonikoko, Aramide M Tijani, Olarewaju G Bajowa, Oluseyi O Atanda. Use of Safety Pin on Garments in Pregnancy: A Belief and Cultural Practice with Potential Harmful Effect[J]. AIMS Public Health, 2017, 4(1): 19-32. doi: 10.3934/publichealth.2017.1.19

    Related Papers:

    [1] Yanlin Li, Mehraj Ahmad Lone, Umair Ali Wani . Biharmonic submanifolds of Kaehler product manifolds. AIMS Mathematics, 2021, 6(9): 9309-9321. doi: 10.3934/math.2021541
    [2] Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali . Geometric inequalities of PR-warped product submanifold in para-Kenmotsu manifold. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069
    [3] Yanyu Xiang, Aiping Wang . On symmetry of the product of two higher-order quasi-differential operators. AIMS Mathematics, 2023, 8(4): 9483-9505. doi: 10.3934/math.2023478
    [4] Mehmet Atçeken, Tuğba Mert . Characterizations for totally geodesic submanifolds of a K-paracontact manifold. AIMS Mathematics, 2021, 6(7): 7320-7332. doi: 10.3934/math.2021430
    [5] Fatimah Alghamdi, Fatemah Mofarreh, Akram Ali, Mohamed Lemine Bouleryah . Some rigidity theorems for totally real submanifolds in complex space forms. AIMS Mathematics, 2025, 10(4): 8191-8202. doi: 10.3934/math.2025376
    [6] Aliya Naaz Siddiqui, Meraj Ali Khan, Amira Ishan . Contact CR δ-invariant: an optimal estimate for Sasakian statistical manifolds. AIMS Mathematics, 2024, 9(10): 29220-29234. doi: 10.3934/math.20241416
    [7] Javier de Lucas, Julia Lange, Xavier Rivas . A symplectic approach to Schrödinger equations in the infinite-dimensional unbounded setting. AIMS Mathematics, 2024, 9(10): 27998-28043. doi: 10.3934/math.20241359
    [8] Tanumoy Pal, Ibrahim Al-Dayel, Meraj Ali Khan, Biswabismita Bag, Shyamal Kumar Hui, Foued Aloui . Generalized warped product submanifolds of Lorentzian concircular structure manifolds. AIMS Mathematics, 2024, 9(7): 17997-18012. doi: 10.3934/math.2024877
    [9] Hai-yan Zhang, Ji-jun Ao, Fang-zhen Bo . Eigenvalues of fourth-order boundary value problems with distributional potentials. AIMS Mathematics, 2022, 7(5): 7294-7317. doi: 10.3934/math.2022407
    [10] Mukhamed Aleroev, Hedi Aleroeva, Temirkhan Aleroev . Proof of the completeness of the system of eigenfunctions for one boundary-value problem for the fractional differential equation. AIMS Mathematics, 2019, 4(3): 714-720. doi: 10.3934/math.2019.3.714
  • Background: Culture has been known to influence practices and beliefs of people world over. Several cultural practices have been noted among pregnant women who were passed from one generation to the next with its potential harmful and beneficial effect. The use of safety pin in is one of such cultural practices that are widely practiced by many pregnant Nigerian women. Objective: We sought to gain a deeper understanding of the source of knowledge and motivation behind the use of safety pin on garments during pregnancy as well as explore potential harmful side effects of this cultural practice. Methodology: A total of 419 pregnant women completed questionnaires for a hospital-based cross-sectional study. Safety pin knowledge and motivation for use on garments were assessed using a pre-tested 16 item questionnaire. Consenting women either completed a self-administered structured questionnaire or utilized the help of trained research assistants. Chi-square tests were used to assess relationships between safety pin use on garments and predictor variables. Analysis was done with Statistical Package for Social Sciences version 17. Results: Of 419 participants, over half (n = 227) reported safety pin use on garments in pregnancy. About two-thirds (n = 177) of women who use safety pin reported older female relatives as their source of information. The mean age of the participants
    was 29.1 ± 5.74 (range 16–45 years). Traditional religion worshippers were more likely (81.2%) and Christians were least likely to use safety pin (50.7%) during pregnancy. Pregnant women with a tertiary education (50.4%) were least likely to use safety pin compared with women with no or less than a tertiary level of education. Protection of pregnancy against demons/witchcrafts was the reason given by 129 (56.8%) of participants using safety pin in pregnancy. Conclusion: The use of safety pin on garments during pregnancy is a common cultural practice in southwest Nigeria. Our findings also suggest that religion and education are important determinants of safety pin use. Although our study did not find a statistically significant difference in safety pin prick incidents among safety pin users, it remains a potential source of harm. Thus, there is a need to establish community and hospital based strategies that address potential cultural harmful practices while promoting culturally appropriate healthcare services.


    Totally real submanifolds are one of the typical classes of submanifolds of Kaehler manifold. In 1974, B. Y. Chen and K. Ogiue [10] started the study of the totally real submanifolds from the point of view of their curvatures. Due to its geometrical importance, many geometers studied totally real submanifolds from the different point of views and various results were obtained in different ambient spaces [6,9,13,18]. Kaehler product manifold also attracts the attention of geometers toward itself [24]. S. Y. Cheng and S. T. Yau [11] obtained many well-known results introducing a self-adjoint differential operator defined by

    f=ni,j=1(nHδijζn+1ij)fij, (1.1)

    where fC2(N),(fij) is Hessian of f, H mean curvature, and ζn+1ij is the coefficients of second fundamental form ζ.

    Using this differential operator H. Li [15] obtained a rigidity result for hypersurfaces in space forms with constant scalar curvature. In 2013, X. Gua and H. Li [17] extended the use of the operator for submanifolds and obtained interesting results for submanifolds with constant scalar curvature in a unit sphere.

    Motivated by X. Gua and H. Li, we study the totally real submanifolds of Kaehler product manifold with constant scalar curvature using self-adjoint differential operator and obtain a characterization result.

    Further, we study δinvariant totally real submanifolds in same setting and prove some results.

    Let (¯Nm,Jm,gm) and (¯Np,Jp,gp) are Kaehler manifolds of complex dimension m and complex dimension p respectively. Let Jm and gm be almost complex structure and metric tensor on ¯Nm respectively and Jp and gp almost complex structure and metric tensor on ¯Np respectively. Further, let us assume ¯Nm(c1) and ¯Np(c2) are complex space forms with constant holomorphic sectional curvatures c1 and c2 respectively.

    We suppose ¯N(c1,c2)=¯Nm(c1)ׯNp(c2) the Kaehlerian product manifold with complex dimension (m+p). Let us denote by P and Q the projection operators of the tangent space of ¯N(c1,c2) to the tangent spaces of ¯Nm(c1) and ¯Np(c2) respectively. Then,

    P2=P,Q2=Q,PQ=QP=0.

    By setting ϝ=PQ, it can be easily shown that ϝ2=I. Thus, ϝ is an almost product structure on ¯N(c1,c2). Moreover, for a Riemannian metric g on ¯N(c1,c2) we have [20]

    g(E,F)=gm(PE,PF)+gp(QE,QF),

    for all vector fields E,F on ¯N(c1,c2). We also have

    g(ϝE,F)=g(ϝF,E).

    If we assume JE=JmPE+JpQE for any vector field E of ¯N(c1,c2). Then from [20], we see that

    JmP=PJ,JpQ=QJ,ϝJ=Jϝ,J2=I,g(JE,JF)=g(E,F),¯EJ=0.

    Therefore, J is a Kaehlerian structure on ¯N(c1,c2). Let ¯R be the Riemannian curvature tensor of a Kaehler product manifold ¯N(c1,c2). Then [24]

    ¯R(E,F,G,W)=116(c1+c2)[g(F,G)g(E,W)g(E,G)g(F,W)+g(JF,G)g(JE,W)g(JE,G)g(JF,W)+2g(JE,F)g(JG,W)+2g(ϝF,G)g(ϝE,W)g(ϝE,G)g(ϝF,W)+g(ϝJF,G)g(ϝJE,W)g(ϝJE,G)g(ϝJF,W)+2g(ϝE,JF)g(ϝJG,W)]+116(c1c2)[g(ϝF,G)g(E,W)g(ϝE,G)g(F,W)+g(F,G)g(ϝE,W)g(E,G)g(ϝF,W)+g(ϝJF,G)g(JE,W)g(ϝJE,G)g(JF,W)+g(JF,G)g(ϝJE,W)g(JE,G)g(ϝJF,W)+2g(ϝE,JF)g(JG,W)+2g(E,JF)g(ϝJG,W)], (2.1)

    for any vector fields E,F and G on ¯N(c1,c2).

    Definition 2.1. Let N be a real ndimensional Riemannian manifold isometrically immersed in a (m+p) dimensional Kaehlerian product manifold ¯N(c1,c2). Then N is said to be totally real submanifold of ¯N(c1,c2) if JTx(N)Tx(N) for each xN where Tx(N) denotes the tangent space to N at xN.

    Let g be the metric tensor field on ¯N(c1,c2) as well as that induced on N. Also, we denote by ¯(resp. ) the Levi-Civita connection on ¯N(c1,c2)(resp. N). Then the Gauss and Weingarten formulas are given by

    ¯EF=EF+ζ(E,F), (2.2)
    ¯EN=ΛNE+EN, (2.3)

    for all E,F tangent to N and vector field N normal to N, where ζ,E and ΛN denote the second fundamental form, normal connection and shape operator respectively. The relation between the second fundamental form and the shape operator is given by

    g(ζ(E,F),N)=g(ΛNE,F). (2.4)

    We choose a local field of orthonormal frames e1,,en;en+1,,em+p;e1=Je1,,en=Jen;e(n+1)=Jen+1;e(m+p)=Jem+p in ¯N(c1,c2) in such a way that restricted to N, the vectors e1,,en are tangent to N. With respect to this frame field of ¯N(c1,c2), let ω1,,ωn;ωn+1,,ωm+p;ω1,,ωn;ω(n+1),,ω(m+p) be the field of dual frames. Unless otherwise stated, we use the following conventions over the range of indices:

    A,B,C,D=1,,m+p,1,,(m+p);i,j,k,l,t,s=1,,n;α,β,γ=n+1,,m+p;1,,(m+p);λ,μ,ν=n+1,,m+p.

    Then the mean curvature vector H is defined as

    H=αHαeα,whereHα=1niζαii. (2.5)

    Also, the structure equations of ¯N(c1,c2) are given by [24]

    {dωA=ωABωB,ωAB+ωBA=0,ωij+ωji=0,ωij=ωij,ωij=ωji,ωλμ+ωμλ=0,ωλμ=ωλμ,ωλμ=ωμλ. (2.6)
    {ωiλ+ωλi=0,ωiμ=ωiμ,ωiλ=ωλi,dωAB=ωACωCB+ϕAB,ϕAB=12¯RABCDωCωD. (2.7)

    Restricting these forms to N, we have

    ωα=0, (2.8)
    dωi=ωikωk, (2.9)
    dωij=ωikωkj+Ωij,Ωij=12Rijklωkωl. (2.10)

    Since 0=dωα=ωαiωi, by Cartan's Lemma we get

    ωαi=ζαijωj,ζαij=ζαji, (2.11)
    dωαβ=ωαγωγβ+Ωαβ,Ωαβ=12Rαβklωkωl. (2.12)

    From (2.6) and (2.11) we find

    ζijk=ζjik=ζkij. (2.13)

    The covariant derivative of ζαij is given by

    ζαijk=dζαijζαilωljζαljωli+ζβijωαβ. (2.14)

    The Laplacian Δζαij of ζαij is defined as

    Δζαij=kζαijkk, (2.15)

    where we have put ζαijklωl=dζαijkζαljkωliζαilkωljζβijkωαβ.

    Now, from [17] we have a trace-free linear map Θα:TxNTxN given by

    g(ΘαE,F)=g(ΛαE,F)Hα(E,F),

    where xN and the shape operator Λα of eα is given by

    Λα(ei)=jg(¯eieα,ej)ej=jζαijej,

    and Θ is a bilinear map Θ:TxN×TxNTxN defined by

    Θ(E,F)=m+pα=n+1g(ΘαE,F)eα. (2.16)

    Then we have |Θ|2=|Λ|2nH2, where H2=α(Hα)2.

    The Gauss equation is given by

    Rijkl=¯Rijkl+α(ζαikζαjlζαilζαjk). (2.17)

    From (2.1) and Gauss equation, we obtain

    2τ116(c1+c2)n(n+1)=n2H2|Λ|2, (2.18)

    where τ is scalar curvature.

    The Codazzi and the Ricci equation are respectively

    ζαij,k=ζαik,l, (2.19)
    Rαβij=k(ζαikζβkjζαjkζβki). (2.20)

    Then, by using Codazzi equation one can easily see that the operator is self-adjoint. That is

    Nfdv=0,fC2(N). (2.21)

    Since we have constant scalar curvature, Eq (2.18) implies that

    |Λ|2=n2|H2|. (2.22)

    We can choose a unit normal vector field en+1 which is parallel to H. Hence we have [16]

    Hn+1=H,Hα=0(n+2αm+p), (2.23)
    Θn+1ij=ζn+1ijHδij,Θαij=ζαij,(n+2αm+p). (2.24)

    Now, we quote the following lemmas for later use.

    Lemma 2.2. [19] Let B:RnRn be a symmetric linear map such that trB=0, then

    n2n(n1)|B|3trB3n2n(n1)|B|3,

    where |B|2=trB2, and the equality holds if and only if at least n1 eigenvalues of B are equal.

    Lemma 2.3. [21] Let C,B:RnRn be a symmetric linear map such that [C,B]=0 and trC=trB=0, then

    n2n(n1)|C|2|B|tr(C2B)n2n(n1)|C|2|B|.

    Lemma 2.4. [14] Let B1,B2,,Bm, be symmetric (n×n)matrices.

    Set Sαβ=tr(BαBβ),Sα=Sαα,S=αSα, then

    α,β|BαBβBβBα|2+α,βS2αβ32(αSα)2.

    This section is devoted to the proof of main result.

    Theorem 3.1. Let Nn be a totally real submanifold in Kaehlerian product manifold ¯N(c1,c2)=¯Nm1(c1)ׯNp2(c2), c1,c2>0, with constant scalar curvature. If trϝ vanishes, then N is totally geodesic.

    For proving that result, we need to prove the following preliminary Lemmas. Since ϝ is symmetric and J is skew-symmetric, following result is obvious.

    Lemma 3.2. Let N be a totally real submanifold in Kaehler product manifold

    ¯N(c1,c2)=¯Nm1(c1)ׯNp2(c2), then trϝJ=trJϝ=0.

    Lemma 3.3. Let N be a totally real submanifold in Kaehler product manifold

    ¯N(c1,c2)=¯Nm1(c1)ׯNp2(c2), then

    12Δ|Λ|2=|Λ|2+α,i,j,kζαijζαkkij+116(c1+c2)α[(n+9+6(trϝ)2)trΛ2α(3+(trϝ)2)]+116(c1c2)α[(n+1)(trϝ)trΛ2α2(trϝ)(trΛα)2]+116(c1+c2)t[(4(trϝ)22)trΛ2t(1+(trϝ)2)(trΛt)2]+116(c1c2)t[2(trϝ)trΛ2t2(trϝ)(trΛt)2]α,β,i,j(Rαβij)2α,β(ζαijζβkl)2+α,βnHβζβklζαjlζαjk. (3.1)

    Proof. From [12], we have

    α,i,jζαijΔζαij=α,i,j,k(ζαijζαkkij¯Rαijβζαijζβkk+4¯Rαβkiζβjkζαjk¯Rαkβkζαijζβij+2¯Rlkikζαljζαij+2¯Rlijkζαlkζαij)α,β,i,j,k,l(ζαikζβjkζαjkζβik)(ζαilζβjlζαjlζβil)α,β,i,j,k,lζαijζαklζβijζβkl+α,β,i,j,k,lζαjiζαkiζβkjζβll. (3.2)

    On the other hand, one has

    α,i,jζαijΔζαij=12Δ|Λ|2|Λ|2. (3.3)

    By using Eqs (2.5), (2.20) and (3.3) in (3.2), we obtain

    12Δ|Λ|2=|Λ|2+α,i,j,kζαijζαkkij+α,i,j,k(¯Rαijβζαijζβkk+4¯Rαβkiζβjkζαjk¯Rαkβkζαijζβij+2¯Rlkikζαljζαij+2¯Rlijkζαlkζαij)α,β,i,j(Rαβij)2α,β(ζαijζβkl)2+α,βnHβζβkjζαjiζαki. (3.4)

    Using (2.1) and Lemma 3.2, we now compute the values of curvature terms involving ¯R of the Eq (3.4) as follows:

    ¯Rαijβζαijζβkk=g(¯R(ej,eβ)ei,eα)ζαijζβkk=116(c1+c2)[αtrΛ2α3t(trΛt)23t(trϝ)2(trΛt)2α(trϝ)2(trΛα)2]+116(c1c2)[2(trϝ)α(trΛα)2t6(trϝ)(trΛt)2]. (3.5)

    Similarly we obtain,

    ¯Rαβkiζβjkζαij=g(¯R(ek,ei)eβ,eα)ζβjkζαij=116(c1+c2)[t(trΛ2t)t(trΛt)2+α(trΛ2α)+t(trϝ)2(trΛ2t)t(trϝ)2(trΛt)2]+116(c1c2)[2t(trϝ)(trΛ2t)2t(trϝ)(trΛt)2], (3.6)
    ¯Rαkβkζαijζβij=g(¯R(eβ,ek)ek,eα)ζαijζβij=116(c1+c2)[(n1)α(trΛ2α)+t6(trΛ2t)+2α(trϝ)2(trΛ2α)]+116(c1c2)[(n+1)α(trϝ)(trΛ2α)+t6(trϝ)(trΛ2t)], (3.7)
    ¯Rlkikζαljζαij=g(¯R(ei,ek)ek,el)ζαljζαij=116(c1+c2)[αn(trΛ2α)+α2(trϝ)(trΛ2α)+α(trΛ2α)]+116(c1c2)[nα(trϝ)(trΛ2α)α(trϝ)(trΛ2α)], (3.8)

    and

    ¯Rlijkζαlkζαij=g(¯R(ej,ek)ei,el)ζαlkζαij=116(c1+c2)[α(trΛ2α)α(trΛα)2+α(trϝ)2(trΛ2α)α(trϝ)2(trΛα)2]+116(c1c2)[2α(trϝ)(trΛ2α)2α(trϝ)(trΛα)2]. (3.9)

    Thus, making use of Eqs (3.5)–(3.9) in (3.4), we get (3.1).

    Proof of Theorem 3.1. From (1.1) and (2.22), we obtain

    (nH)=12Δ|Λ|2n2|H|2nζijH,ij. (3.10)

    Now, using (3.1) in the above equation, we get

    (nH)=|Λ|2+α,i,j,kζαijζαkkij+116(c1+c2)α[(n+9+6(trϝ)2)trΛ2α(3+(trϝ)2)]+116(c1c2)α[(n+1)(trϝ)trΛ2α2(trϝ)(trΛα)2]+116(c1+c2)t[(4(trϝ)22)trΛ2t(1+(trϝ)2)(trΛt)2]+116(c1c2)t[2(trϝ)trΛ2t2(trϝ)(trΛt)2]α,β,i,j(Rαβij)2α,β(ζαijζβkl)2+α,βnHβζβklζαjlζαjkn2|H|2nζijH,ij,

    which implies

    (nH)=116(c1+c2)α[(n+9+6(trϝ)2)trΛ2α(3+(trϝ)2)]+116(c1c2)α[(n+1)(trϝ)trΛ2α2(trϝ)(trΛα)2]+116(c1+c2)t[(4(trϝ)22)trΛ2t(1+(trϝ)2)(trΛt)2]+116(c1c2)t[2(trϝ)trΛ2t2(trϝ)(trΛt)2]α,β,i,j(Rαβij)2α,β(ζαijζβkl)2+α,βnHβζβklζαjlζαjk. (3.11)

    A direct computation gives

    α(trΛα)2=αζαiiζαjj=n2H2. (3.12)

    Moreover, it is easy to see that

    α(trΛ2α)=αζαijζαij=|Θ|2+nH2 (3.13)

    and

    α(trΛ2t)=ζ2, (3.14)

    where ζij=g(ζ(ei,ej),et) and ζij=¯ζijζij.

    Also we have

    α,β(ζαijζβkl)2+α,β,i,j(Rαβij)2=α,β[tr(ΛαΛβ)]2+αn+1,βn+1,i,j(Rαβij)2. (3.15)

    Using Lemma 2.4 in (3.15), we get

    α,β(ζαijζβkl)2+α,β,i,j(Rαβij)2[tr(Λn+1Λn+1)]2+2βn+1(trΛn+1Λβ)2+32[βn+1|Θβ|2]2=52|Θn+1|4+2nH2|Θn+1|2+n2H4+2βn+1(trΘn+1Θβ)22(trΘn+1Θn+1)2+32|Θ|43|Θ|2|Θn+1|252|Θn+1|4+2nH2|Θn+1|2+n2H4+2|Θn+1|2(|Θ|2|Θn+1|2)+32|Θ|43|Θ|2|Θn+1|2=12|Θn+1|4+2nH2|Θn+1|2+n2H4|Θ|2|Θn+1|2+32|Θ|4. (3.16)

    Taking into account the Eq (2.24), we derive

    α,β,i,j,kHβζβklζαjlζαjk=α,i,j,kHζn+1klζαjlζαjk=Htr(Θn+1)3+3H2(Θn+1)2+nH4+3trΘn+1H2+m+pα=n+2H2|Θα|2+m+pα=n+2i,j,kHΘn+1ijΘαjkΘαki. (3.17)

    Taking Lemma 2.2 and Eq (3.17) into account, we have

    α,β,i,j,kHβζβklζαjlζαjkn2n(n1)|Θn+1|3|H|+3H2|Θn+1|2+nH4+(α=n+2H2|Θα|2H2|Θn+1|2)+α=n+2Htr(Θn+1)(Θα)2. (3.18)

    Which by virtue of Lemma 2.3 and (3.18), yields

    α,β,i,j,kHβζβklζαjlζαjkn2n(n1)|Θn+1|3|H|+3H2|Θn+1|2+nH4+H2|Θ|2n2n(n1)α=n+2|Θn+1||Θα|2|H|=2H2|Θn+1|2+H2|Θ|2+nH4n2n(n1)|Θn+1||Θ|2|H|. (3.19)

    Now, substituting (3.12)–(3.14), (3.16) and (3.19) in (3.11), we find

    (nH)116(c1+c2)[(n+9+6(trϝ)2)(|Θ|2+nH2)3(trϝ)2]+116(c1c2)[(trϝ)(n|Θ|2n2H2+|Θ|2+nH2)]+116(c1+c2)[(4(trϝ)22)ζ2]+116(c1c2)[2(trϝ)ζ2]n2n(n1)|Θn+1|Θ|2||H|+nH2|Θ|212|Θn+1|4+|Θ|2|Θn+1|232|Θ|4=116(c1+c2)[(n+9+6(trϝ)2)(|Θ|2+nH2)3(trϝ)2]+116(c1c2)[(trϝ)(n|Θ|2n2H2+|Θ|2+nH2)]+116(c1+c2)[(4(trϝ)22)ζ2]+116(c1c2)[2(trϝ)ζ2]+|Θ|2[n2n(n1)|Θ||H|+nH2|Θ|2]+(|Θ||Θn+1|)[n2n(n1)|Θ|2|H|12(|Θ||Θn+1|)(|Θ|+|Θn+1|)2]. (3.20)

    It is known that [17],

    (|Θ||Θn+1|)[n2n(n1)|Θ|2|H|12(|Θ||Θn+1|)(|Θ|+|Θn+1|)2]0.

    Therefore, from (3.20) we have

    (nH)116(c1+c2)[(n+9+6(trϝ)2)(|Θ|2+nH2)3(trϝ)2]+116(c1c2)[(trϝ)(n|Θ|2n2H2+|Θ|2+nH2)]+116(c1+c2)[(4(trϝ)22)ζ2]+116(c1c2)[2(trϝ)ζ2]+|Θ|2[n2n(n1)|Θ||H|+nH2|Θ|2]. (3.21)

    Since, c1,c2>0 and trϝ=0. Then the above inequality implies the following inequality

    (nH)116(c1+c2)[(n+9)(|Θ|2+nH2)32ζ2]+|Θ|2[n2n(n1)|Θ||H|+nH2|Θ|2]116(c1+c2)[(n+9)(|Θ|2+nH2)]+nH2|Θ|2. (3.22)

    From (2.21) we have N(nH)dv=0. Thus we have following two cases:

    Case 1:

    |Θ|2+nH2=0    and    nH2|Θ|2=0

    which yields Λ=0 and H=0. Thus, the submanifold is totally geodesic.

    Case 2:

    116(c1+c2)(n+9)(|Θ|2+nH2)=nH2|Θ|2

    which implies that Λ=0 and H=0. It is again totally geodesic.

    Hence, we have our assertion.

    Now, we give an example in the support of the Theorem 3.1.

    Example. It is known that the real projective space RPn(1) is totally geodesic submanifold of the complex projective space CPn(4) [3]. Also from [23] we know that, if N1 is any submanifolds of Kaehler manifold M1 and N2 is any submanifold of Kaehler manifold M2, then the natural product N=N1×N2 is a submanifold of the Kaehler product manifold M=M1×M2. Hence, RPn(1)×RPn(1) is a submanifolds of the Kaehler product manifold CPn(4)×CPn(4), which satisfies all the hypothesis of the Theorem 3.1 and indeed totally geodesic.

    Remark 3.4. In the above example, it can be noticed that trϝ vanishes, due to the fact that the projection operators P and Q coincide.

    Let N be a Riemannian manifold and K(π) denotes the sectional curvature of N of the plane section πTxN at a point xN. Let {e1,,en} and {en+1,,e2(m+p)} be the orthonormal basis of TxN and TxN at any xN, then the scalar curvature τ at that point is given by

    τ(x)=1i<jnK(eiej).

    If we consider that L is an r-dimensional subspace of TN, r2, and {e1,e2,,er} is an orthonormal basis of L. Then the scalar curvature of the r-plane section L is given as

    τ(L)=1γ<βrK(eγeβ),1γ,βr, (4.1)

    for n3 and k1. Let us assume S(n,k) the finite set consisting of ktuples (n1,,nk) of integers satisfying

    2n1,,nk<nandn1++nkn.

    Also denote by S(n) the union k1S(n,k).

    For each (n1,,nk)S(n) and each point xN, B. Y. Chen [8] introduced a Riemannian invariant δ(n1,,nk)(x) defined by

    δ(n1,,nk)(x)=τ(x)inf{τ(L1)++τ(Lk)}, (4.2)

    where L1,,Lk run over all k mutually orthogonal subspaces of TxN such that dimLj=nj, j=1,,k.

    We recall the following Lemma [7]:

    Lemma 4.1. Let a1,,an,an+1 be n+1 real numbers such that

    (ni=1ai)2=(n1)(an+1+ni=1a2i). (4.3)

    Then 2a1a2an+1, with equality holding if and only if a1+a2=a3==an.

    In this section we state and prove the following.

    Theorem 4.2. Let N be a totally real submanifold in Kaehler product manifold ¯N(c1,c2)=¯Nm1(c1)ׯNp2(c2) and if trP coincides with trQ, then

    δ(n1,,nk)n2(n+k1nj)2(n+knj)H2+132[n(n+1)kj=1nj(nj+1)](c1+c2), (4.4)

    and the equality holds in (4.4) if and only if at a point xN there exists an orthonormal basis e1,,e2(m+p) at x such that the shape operator of N in ¯N(c1,c2) at x takes the forms:

    Λr=(Λr10 O0ΛrkOμrI), r=n+1,,2(m+p), (4.5)

    where O is a null matrix, I is an identity matrix and each Λrj is a symmetric nj×nj submatrix such that

    tr(Λr1)==tr(Λrk)=μr. (4.6)

    Proof. We put

    ε=2τ116(c1+c2)n(n+1)n2(n+k1nj)2(n+knj)H2. (4.7)

    By combining (2.18) and (4.7), we obtain

    n2H2=(n+knj)(ε+|Λ|2).

    With respect to the orthonormal basis, the last equation can be written as

    (ni=1ζn+1ii)2=(n+knj)(ε+ni=1(ζn+1ii)2+ij(ζn+1ij)2+2(m+p)r=n+2ni,j=1(ζrij)2), (4.8)

    which implies that

    (ni=1ai)2=(n+knj)(ε+ni=1(ai)2+ij(ζn+1ij)2+2(m+p)r=n+2ni,j=1(ζrij)2). (4.9)

    Now, let us set

    Δ1={1,,n1},,Δk={n1++nk1+1,,n1++nk},

    and

    ¯a1=a1,¯a2=a2++an1,¯a3=an1+1++an1+n2,,¯ak+1=an1++nk1+1++an1++nk,¯ak+2=an1++nk+1,,¯an+k+1nj=an.

    Then Eq (4.9) is equivalent to

    (n+k+1nji=1¯ai)2=(n+knj)(ε+n+k+1nji=1(¯ai)2+ij(ζn+1ij)2+2(m+p)r=n+2ni,j=1(ζrij)2)2α1β1n1aα1aβ1α1β1aα2aβ2αkβkaαkaβk, (4.10)

    where α2,β2Δ2,,αk,βkΔk.

    Using Lemma 4.1 in (4.10) yields

    α1<β1aα1aβ1α2<β2aα2aβ2αk<βkaαkaβkε2+ij(ζn+1ij)2+122(m+p)r=n+2ni,j=1(ζrij)2, (4.11)

    where αj,βjΔj,j=1,,k.

    Furthermore, combining (4.1) with the Gauss equation, we obtain

    τ(Lj)=132nj(nj+1)(c1+c2)+2(m+p)r=n+1αj<βj(ζrαjαjζrβjβj(ζrαjβj)2). (4.12)

    Combining (4.11) and (4.12) gives

    τ(L1)++τ(Lk)ε2+132kj=1nj(nj+1)(c1+c2)+122(m+p)r=n+1(α,β)Δ2(ζrαβ)2+122(m+p)r=n+2kj=1(αjΔjζrαjαj)2ε2+132kj=1nj(nj+1)(c1+c2), (4.13)

    where Δ=Δ1Δk,Δ2=(Δ1×Δ1)(Δk×Δk).

    Thus, Eqs (4.2), (4.7) and (4.13) imply (4.4).

    Moreover, equality in (4.11) and (4.13) holds at a point x, if it holds for (4.4) at a point x. In this case from Lemma 4.1 and Eqs (4.10)–(4.13), we have (4.5) and (4.6). A straightforward computation yields the converse part.

    Example. Due to the fact that the real hyperbolic space Hn(1) can be isometrically embedded in the complex hyperbolic space CHn(4) as a totally real totally geodesic submanifold of minimal codimension [22]. It follows that N=RPn(1)×RPn(1) is a totally real submanifold of M=HPn(4)×HPn(4). This submanifold satisfies all hypotheses of Theorem 4.2. In this case the inequality is satisfied with equality at all points.

    Theorem 4.2 yields the following obstruction result.

    Corollary 4.3. Let N be a totally real submanifold in Kaehler product manifold ¯N(c1,c2)=¯Nn1(c1)ׯNp2(c2) and if trϝ vanishes, then for c1+c2=0, N can not be minimally immersed in ¯N(c1,c2).

    We characterized totally real submanifold using self-adjoint differential operator. The self-adjoint differential operators are mainly used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Drac-Von Neumann formulation of quantum mechanics in which momentum, angular momentum and spin are represented by self-adjoint operators on Hilbert space. A self-adjoint differential operator is an important class of unbounded operators. Therefore, we can use such operator for infinite dimensional cases and we resemble the finite dimensional case. Thus, use of the operator for such characterization may open a new path to link results in differential geometry with quantum mechanics as well as well with functional analysis.

    This work is supported by Taif University Researchers Supporting Project number (TURSP-2020/223), Taif University, Taif, Saudi Arabia.

    The authors declare that there is no conflict of interests.

    [1] Song FW, West JE, Lundy L, et al. (2012) Women, Pregnancy, and Health Information Online The Making of Informed Patients and Ideal Mothers. Gend Soc 26: 773-798. doi: 10.1177/0891243212446336
    [2] Linden K, Berg M, Sparud-Lundin C (2012) Web-based information for pregnant women and new mothers with type 1 diabetes- a description of the development process. BMC Med Inform Decis Mak 12: 134. doi: 10.1186/1472-6947-12-134
    [3] Sayakhot P, Carolan-Olah M (2016) Internet use by pregnant women seeking pregnancy-related information: a systematic review. BMC Pregnancy Childbirth 16: 65. doi: 10.1186/s12884-016-0856-5
    [4] Gao L-l, Larsson M, Luo S-y (2013) Internet use by Chinese women seeking pregnancy-related information. Midwifery 29: 730-735. doi: 10.1016/j.midw.2012.07.003
    [5] Lagan BM, Sinclair M, George Kernohan W (2010) Internet use in pregnancy informs women’s decision making: a web‐based survey. Birth 37: 106-115. doi: 10.1111/j.1523-536X.2010.00390.x
    [6] Bert F, Gualano MR, Brusaferro S, et al. (2013) Pregnancy e-health: a multicenter Italian cross-sectional study on Internet use and decision-making among pregnant women. J Epidemiol Community Health 67: 1013-1018. doi: 10.1136/jech-2013-202584
    [7] Larsson M (2009) A descriptive study of the use of the Internet by women seeking pregnancy-related information. Midwifery 25: 14-20. doi: 10.1016/j.midw.2007.01.010
    [8] Wadesango N, Rembe S, Chabaya O (2011) Violation of women’s rights by harmful traditional practices. Anthropologist 13: 121-129.
    [9] Naim M, Bhutto E (2000) Sexuality during pregnancy in Pakistani women. J Pak Med Assoc 50: 38-43.
    [10] Maimbolwa MC, Yamba B, Diwan V, et al. (2003) Cultural childbirth practices and beliefs in Zambia. J Adv Nurs 43: 263-274. doi: 10.1046/j.1365-2648.2003.02709.x
    [11] Gibeau AM (1998) Female genital mutilation: when a cultural practice generates clinical and ethical dilemmas. J Obstet Gynecol Neonatal Nurs 27: 85-91. doi: 10.1111/j.1552-6909.1998.tb02595.x
    [12] Shrivastava A, Murrin C, Sweeney MR, et al. (2013) Familial intergenerational and maternal aggregation patterns in nutrient intakes in the Lifeways Cross-Generation Cohort Study. Public Health Nutr 16: 1476-1486. doi: 10.1017/S1368980012003667
    [13] Limaye RJ, Rimal RN, Mkandawire G, et al. (2015) Tapping Into Traditional Norms for Preventing HIV and Unintended Pregnancy Harnessing the Influence of Grandmothers (Agogos) in Malawi. Int Q Community Health Educ 36.
    [14] Okonofua F (2013) Prevention of child marriage and teenage pregnancy in Africa: need for more research and innovation. Afr J Reprod Health 17: 9-13.
    [15] Igberase G (2012) Harmful cultural practices and reproductive health in Nigeria. Cont J Trop Med 6: 27.
    [16] Tahzib F (1983) Epidemiological determinants of vesicovaginal fistulas. BJOG 90: 387-391. doi: 10.1111/j.1471-0528.1983.tb08933.x
    [17] Ityavyar DA (1984) A traditional midwife practice, Sokoto State, Nigeria. Soc Sci Med 18: 497-501. doi: 10.1016/0277-9536(84)90007-8
    [18] Alabi EM (1990) Cultural practices in Nigeria. Newsl Inter Afr Comm Tradit Pract Affect Health Women Child 6-7.
    [19] Ezeama M, Ezeamah I (2014) Attitude and socio-cultural practice during pregnancy among women in Akinyele LGA of Oyo State Nigeria. J Res Nurs Midwifery 3: 14-20.
    [20] Lefeber Y, Voorhoever H (1997) Practices and beliefs of traditional birth attendants: lessons for obstetrics in the north? Trop Med Int Health 2: 1175-1179. doi: 10.1046/j.1365-3156.1997.d01-219.x
    [21] Barragan DI, Ormond KE, Strecker MN, et al. (2011) Concurrent use of cultural health practices and Western medicine during pregnancy: exploring the Mexican experience in the United States. J Genet Couns 20: 609-624. doi: 10.1007/s10897-011-9387-4
    [22] Torres E, Sawyer TL (2005) Curandero: A life in Mexican folk healing. UNM Press.
    [23] Purim KSM, Rosario BA, Rosario CS, et al. (2014) Piercings in medical students and their effects on the skin. An Bras Dermatol 89: 905-910. doi: 10.1590/abd1806-4841.20142878
    [24] Sarihan H, Kaklikkaya I, Ozcan F (1998) Pediatric safety pin ingestion. J Cardiovasc Surg (Torino) 39: 515-518.
    [25] Kalayci A, Tander B, Kocak S, et al. (2007) Removal of open safety pins in infants by flexible endoscopy is effective and safe. J Laparoendosc Adv Surg Tech A 17: 242-245. doi: 10.1089/lap.2006.0060
    [26] Aydogdu S, Arikan C, Cakir M, et al. (2009) Foreign body ingestion in Turkish children. Turk J Pediatr 51: 127-132.
    [27] Opatola MO, Jegede CT (2016) Empowering Entrepreneurial Women in Traditional Herb Business in Southwestern Nigeria. In: ICIE2016-Proceedings of the 4th International Conference on Innovation and Entrepreneurship: ICIE2016: Academic Conferences and publishing limited, 207.
    [28] Owojaiye SO, Kajang YG (2015) Female human’s physio-psycho-social health variables as factors of birth of defects children in sub-urban Nigeria.
    [29] Kamwaria A, Katola M (2012) The Role of African Traditional Religion, Culture and World-View in the Context of Post-War Healing among the Dinka Community of Southern Sudan. Int J Humanit Soc Sci 2: 48-55.
    [30] Omobola OC. Influence of Yoruba Culture in Christian Religious Worship.
    [31] Mathibela MK, Egan BA, Du Plessis HJ, et al. (2015) Socio-cultural profile of Bapedi traditional healers as indigenous knowledge custodians and conservation partners in the Blouberg area, Limpopo Province, South Africa. J Ethnobiol Ethnomed 11: 49. doi: 10.1186/s13002-015-0025-3
    [32] Hill JP (2011) Faith and Understanding: Specifying the Impact of Higher Education on Religious Belief. J Sci Study Religion 50: 533-551. doi: 10.1111/j.1468-5906.2011.01587.x
    [33] Feinstein L, Sabates R, Anderson TM, et al. (2006) What are the effects of education on health? In: Measuring the effects of education on health and civic engagement: Proceedings of the Copenhagen symposium.
    [34] Osagiobare OE, Oronsaye RO, Ekwukoma V (2015) Influence of Religious and Cultural Beliefs on Girl-Child Educational Aspiration in Nigeria. J Educ Soc Res 5: 165.
    [35] Bishop R, Glynn T (2003) Culture counts: Changing power relations in education: Zed Books.
    [36] Singleton K, Krause E (2009) Understanding cultural and linguistic barriers to health literacy. The Ky Nurs 58: 4, 6-9.
    [37] Ocbian MM (2012) Culture-Based Beliefs and Practices on Pregnancy and Childbirth among Sorsoguenos, Philippines. IAMURE Int J Health Educ 1: 1.
    [38] Jimenez J (2002) The history of grandmothers in the African‐American Community. Soc Serv Rev 76: 523-551. doi: 10.1086/342994
    [39] Leininger MM (1988) Leininger's theory of nursing: Cultural care diversity and universality. Nurs Sci Q 1: 152-160. doi: 10.1177/089431848800100408
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(12620) PDF downloads(1119) Cited by(1)

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog