Citation: Anna Mainka, Barbara Kozielska. Assessment of the BTEX concentrations and health risk in urban nursery schools in Gliwice, Poland[J]. AIMS Environmental Science, 2016, 3(4): 858-870. doi: 10.3934/environsci.2016.4.858
[1] | Wenjun Liu, Zhijing Chen, Zhiyu Tu . New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory. Electronic Research Archive, 2020, 28(1): 433-457. doi: 10.3934/era.2020025 |
[2] | Siyi Luo, Yinghui Zhang . Space-time decay rate for the 3D compressible quantum magnetohydrodynamic model. Electronic Research Archive, 2025, 33(7): 4184-4204. doi: 10.3934/era.2025189 |
[3] | Yi Cheng, Ying Chu . A class of fourth-order hyperbolic equations with strongly damped and nonlinear logarithmic terms. Electronic Research Archive, 2021, 29(6): 3867-3887. doi: 10.3934/era.2021066 |
[4] | Mohammad M. Al-Gharabli, Adel M. Al-Mahdi . Existence and stability results of a plate equation with nonlinear damping and source term. Electronic Research Archive, 2022, 30(11): 4038-4065. doi: 10.3934/era.2022205 |
[5] | Chahrazed Messikh, Soraya Labidi, Ahmed Bchatnia, Foued Mtiri . Energy decay for a porous system with a fractional operator in the memory. Electronic Research Archive, 2025, 33(4): 2195-2215. doi: 10.3934/era.2025096 |
[6] | Jincheng Shi, Shuman Li, Cuntao Xiao, Yan Liu . Spatial behavior for the quasi-static heat conduction within the second gradient of type Ⅲ. Electronic Research Archive, 2024, 32(11): 6235-6257. doi: 10.3934/era.2024290 |
[7] | Jie Qi, Weike Wang . Global solutions to the Cauchy problem of BNSP equations in some classes of large data. Electronic Research Archive, 2024, 32(9): 5496-5541. doi: 10.3934/era.2024255 |
[8] | Xu Liu, Jun Zhou . Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28(2): 599-625. doi: 10.3934/era.2020032 |
[9] | Qin Ye . Space-time decay rate of high-order spatial derivative of solution for 3D compressible Euler equations with damping. Electronic Research Archive, 2023, 31(7): 3879-3894. doi: 10.3934/era.2023197 |
[10] | Huafei Di, Yadong Shang, Jiali Yu . Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28(1): 221-261. doi: 10.3934/era.2020015 |
The Moore-Gibson-Thompson (MGT) equation is one of the equations of nonlinear acoustics describing acoustic wave propagation in gases and liquids [13,15,30] and arising from modeling high frequency ultrasound waves [9,18] accounting for viscosity and heat conductivity as well as effect of the radiation of heat on the propagation of sound. This research field is highly active due to a wide range of applications such as the medical and industrial use of high intensity ultrasound in lithotripsy, thermotherapy, ultraound cleaning, etc. The classical nonlinear acoustics models include the Kuznetson's equation, the Westervelt equation and the Kokhlov-Zabolotskaya-Kuznetsov equation.
In order to gain a better understanding of the nonlinear MGT equation, we shall begin with the linearized model. In [15], Kaltenbacher, Lasiecka and Marchand investigated the following linearized MGT equation
τuttt+αutt+c2Au+bAut=0. | (1.1) |
For equation (1.1), they disclosed a critical parameter
τuttt+αutt+c2Au+bAut=f(u,ut,utt). | (1.2) |
They proved that the underlying PDE generates a well-posed dynamical system which admits a global and finite dimensional attractor. They also overcomed the difficulty of lacking the Lyapunov function and the lack of compactness of the trajectory.
Now, we concentrate on the stabilization of MGT equation with memory which has received a considerable attention recently. For instance, Lasiecka and Wang [17] studied the following equation:
τuttt+αutt+bAut+c2Au−∫t0g(t−s)Aw(s)ds=0, | (1.3) |
where
g′(t)≤−c0g(t), | (1.4) |
they discussed the effect of memory described by three types on decay rates of the energy when
τuttt+αutt+bAut+c2Au−∫∞0g(s)Aw(t−s)ds=0. | (1.5) |
Alves et al. [1] investigated the uniform stability of equation (1.5) encompassing three different types of memory in a history space set by the linear semigroup theory. Moreover, we refer the reader to [3,6,7,12,24,25,26,28] for other works of the equation(s) with memory.
More recently, Filippo and Vittorino [11] considered the fourth-order MGT equation
utttt+αuttt+βutt+γAutt+δAut+ϱAu=0. | (1.6) |
They investigated the stability properties of the related solution semigroup. And, according to the values of certain stability numbers depending on the strictly positive parameters
Motivated by the above results, we intend to study the following abstract version of the fourth-order Moore-Gibson-Thompson (MGT) equation with a memory term
utttt+αuttt+βutt+γAutt+δAut+ϱAu−∫t0g(t−s)Au(s)ds=0, | (1.7) |
where
u(0)=u0,ut(0)=u1,utt(0)=u2,uttt(0)=u3. | (1.8) |
A natural question that arised in dealing with the general decay of fourth-order MGT equation with memory:
● Can we get a general decay result for a class of relaxation functions satisfying
Mustafa answered this question for viscoelastic wave equations in [31,32]. Messaoudi and Hassan [29] considered the similar question for memory-type Timoshenko system in the cases of equal and non-equal speeds of wave propagation. Moreover, they extended the range of polynomial decay rate optimality from
The aim of this paper is to establish the well-posedness and answer the above mention question for fourth-order MGT equation with memory (1.7). We first use the Faedo-Galerkin method to prove the well-posedness result. We then use the idea developed by Mustafa in [31,32], taking into consideration the nature of fourth-order MGT equation, to prove new general decay results for the case
The rest of our paper is organized as follows. In Section
In this section, we consider the following assumptions and state our main results. We use
First, we consider the following assumptions as in [11] for
0<g(0)<2αϱδ(αγ−δ), ϱ−∫+∞0g(s)ds=l>0. |
g′(t)≤−ξ(t)M(g(t)),∀ t≥0. | (2.1) |
Remark 1. ([31,Remark 2.8])
(1) From assumption
g(t)→0ast→+∞andg(t)≤ϱ−lt,∀ t>0. |
Furthermore, from the assumption
g(t0)=randg(t)≤r,∀ t≥t0. |
The non-increasing property of
0<g(t0)≤g(t)≤g(0)and0<ξ(t0)≤ξ(t)≤ξ(0),∀ t∈[0,t0]. |
A combination of these with the continuity of
a≤ξ(t)M(g(t))≤d,∀ t∈[0,t0]. |
Consequently, for any
g′(t)≤−ξ(t)M(g(t))≤−a=−ag(0)g(0)≤−ag(0)g(t) |
and, hence,
g(t)≤−g(0)ag′(t),∀ t∈[0,t0]. | (2.2) |
(2) If
¯M=C2t2+(B−Cr)t+(A+C2r2−Br). |
Then, inspired by the notations in [11], we define the Hilbert spaces
Hr:=D(Ar2),r∈R. |
In order to simplify the notation, we denote the usual space
H=D(A12)×D(A12)×D(A12)×H. |
Moreover, we will denote the inner product of
After that, we introduce the following energy functional
E(t)=12[‖uttt+αutt+αϱδut‖2+δα(ϱ−G(t)ϱ)‖A12utt+αA12ut+αϱδA12u‖2+δαϱG(t)‖A12utt+αA12ut‖2+(γ−δα)‖A12utt‖2+(γ−δα)αϱδ‖A12ut‖2+2∫t0g(t−s)(A12u(t)−A12u(s),A12utt+αA12ut)ds+αϱδ(g∘A12u)(t)−α(g′∘A12u)(t)+αg(t)‖A12u‖2+(β−αϱδ)‖utt‖2+αϱδ(β−αϱδ)‖ut‖2], |
where
(g∘v)(t):=∫Ω∫t0g(t−s)(v(t)−v(s))2dsdx. |
As in [31], we set, for any
Cν=∫∞0g2(s)νg(s)−g′(s)dsandh(t)=νg(t)−g′(t). |
The following lemmas play an important role in the proof of our main results.
Lemma 2.1. ([31] )
Assume that condition
∫Ω(∫t0g(t−s)(A12u(s)−A12u(t))ds)2dx≤Cν(h∘A12u)(t),∀ t≥0. |
Lemma 2.2. (Jensen's inequality) Let
P(1k∫Ωf(x)h(x)dx)≤1k∫ΩP(f(x))h(x)dx. |
Lemma 2.3. ([2])(The generalized Young inequality) If
AB≤f∗(A)+f(B), | (2.3) |
where
f∗(s)=s(f′)−1(s)−f[(f′)−1(s)]. | (2.4) |
We are now in a position to state the well-posedness and the general decay result for problem (1.7)-(1.8).
Theorem 2.4. (Well-posedness)
Assume that
u∈C([0,T];D(A12))∩C1([0,T];H). |
Theorem 2.5. (General decay)
Let
E(t)≤k2M−11(k1∫tg−1(r)ξ(s)ds),∀ t≥g−1(t), | (2.5) |
where
Remark 2. Assume that
E(t)≤{Cexp(−˜k∫t0ξ(s)ds),ifp=1,¯k(1+∫t0ξ(s)ds)−1p−1,if1<p<2. | (2.6) |
In this section, we will prove the global existence and uniqueness of the solution of problem (1.7)-(1.8). Firstly, we give the following lemmas.
Lemma 3.1.
If
Proof. Since
2αϱδ(α−σ)(γ−δα)→2αϱδ(αγ−δ)asσ→0, |
which is trivially true.
Lemma 3.2.
Assume that
12[‖uttt+αutt+αϱδut‖2+δα(ϱ−G(t)ϱ)‖A12utt+αA12ut+αϱδA12u‖2+(γ−δα)‖A12utt‖2+(γ−δα)αϱδ‖A12ut‖2−α(g′∘A12u)(t)+αg(t)‖A12u‖2+(β−αϱδ)‖utt‖2+αϱδ(β−αϱδ)‖ut‖2]≤E(t)≤12[‖uttt+αutt+αϱδut‖2+δα(ϱ−G(t)ϱ)‖A12utt+αA12ut+αϱδA12u‖2+(γ−δα)‖A12utt‖2+(γ−δα)αϱδ‖A12ut‖2−α(g′∘A12u)(t)+2αϱδ(g∘A12u)(t)+αg(t)‖A12u‖2+(β−αϱδ)‖utt‖2+αϱδ(β−αϱδ)‖ut‖2+2δαϱG(t)‖A12utt+αA12ut‖2]. |
Proof. From the definition of
E(t)=12[‖uttt+αutt+αϱδut‖2+δα(ϱ−G(t)ϱ)‖A12utt+αA12ut+αϱδA12u‖2+δαϱG(t)‖A12utt+αA12ut‖2+(γ−δα)‖A12utt‖2+(γ−δα)αϱδ‖A12ut‖2+2∫t0g(t−s)(A12u(t)−A12u(s),A12utt+αA12ut)ds+αϱδ(g∘A12u)(t)−α(g′∘A12u)(t)+αg(t)‖A12u‖2+(β−αϱδ)‖utt‖2+αϱδ(β−αϱδ)‖ut‖2]. |
Then, we estimate the sixth term of the above equality
2|∫t0g(t−s)(A12u(t)−A12u(s),A12utt+αA12ut)ds|≤∫t0g(t−s)[αϱδ‖A12u(t)−A12u(s)‖2+δαϱ‖A12utt+αA12ut‖2]ds=αϱδ(g∘A12u)(t)+δαϱG(t)‖A12utt+αA12ut‖2. |
A combination of the above results, we complete the proof of lemma.
Now, we prove the well-posedness result of problem (1.7)-(1.8).
Proof of Theorem 2.1. The proof is given by Faedo-Galerkin method and combines arguments from [16,39,38]. We present only the main steps.
Step
We construct approximations of the solution
um(t)=m∑j=1amj(t)wj(x), | (3.1) |
where
∫Ωumtttt(t)wjdx+α∫Ωumttt(t)wjdx+β∫Ωumtt(t)wjdx+γ∫ΩA12umtt(t)A12wjdx+δ∫ΩA12umt(t)A12wjdx+ϱ∫ΩA12um(t)A12wjdx−∫t0g(t−s)∫ΩA12um(t)A12wjdxds=0 | (3.2) |
with initial conditions
(um(0),umt(0),umtt(0),umttt(0))=(um0,um1,um2,um3). | (3.3) |
According to the standard theory of ordinary differential equation, the finite dimensional problem (3.2)-(3.3) has a local solution
Step
Multiplying equation (3.2) by
ddtEm(t)+α(β−αϱδ)‖umtt‖2−αg′(t)2‖A12um‖2+δ2αϱg(t)‖A12umtt+αϱδA12um‖2+α2(g″∘A12um)(t)=−[α(γ−δα)−δg(t)2αϱ]‖A12umtt‖2+∫t0g′(t−s)(A12um(t)−A12um(s),A12umtt)ds+αϱ2δ(g′∘A12um)(t), |
where
Em(t)=12[‖umttt+αumtt+αϱδumt‖2+δα(ϱ−G(t)ϱ)‖A12umtt+αA12umt+αϱδA12um‖2+δαϱG(t)‖A12umtt+αA12umt‖2+(γ−δα)‖A12umtt‖2+(γ−δα)αϱδ‖A12umt‖2+2∫t0g(t−s)(A12um(t)−A12um(s),A12umtt+αA12umt)ds+αϱδ(g∘A12um)(t)−α(g′∘A12um)(t)+αg(t)‖A12um‖2+(β−αϱδ)‖umtt‖2+αϱδ(β−αϱδ)‖umt‖2]. | (3.4) |
From assumptions
∫t0g′(t−s)(A12um(t)−A12um(s),A12umtt)ds≤−(α−ε)ϱ2δ(g′∘A12um)(t)−δ2(α−ε)ϱ‖A12umtt‖2∫t0g′(t−s)ds=−(α−ε)ϱ2δ(g′∘A12um)(t)+δ(g(0)−g(t))2(α−ε)ϱ‖A12umtt‖2 |
and so
−[α(γ−δα)−δg(t)2αϱ]‖A12umtt‖2+∫t0g′(t−s)(A12um(t)−A12um(s),A12umtt)ds+αϱ2δ(g′∘A12um)(t)≤−[α(γ−δα)−δg(t)2αϱ]‖A12umtt‖2−(α−ε)ϱ2δ(g′∘A12um)(t)+δ(g(0)−g(t))2(α−ε)ϱ‖A12umtt‖2+αϱ2δ(g′∘A12um)(t)=−[α(γ−δα)−δg(0)2(α−ε)ϱ]‖A12umtt‖2+εϱ2δ(g′∘A12um)(t)−[δg(t)2(α−ε)ϱ−δg(t)2αϱ]‖A12umtt‖2≤0. | (3.5) |
Therefore, we have
ddtEm(t)+α(β−αϱδ)‖umtt‖2−αg′(t)2‖A12um‖2+δ2αϱg(t)‖A12umtt+αϱδA12um‖2+α2(g″∘A12um)(t)≤0. | (3.6) |
Integrating (3.6) from
Em(t)+∫t0[α(β−αϱδ)‖umtt‖2−αg′(τ)2‖A12um‖2+δ2αϱg(τ)‖A12umtt+αϱδA12um‖2+α2(g″∘A12um)(τ)]dτ≤Em(0). | (3.7) |
Now, since the sequences
Em(t)≤C. | (3.8) |
Therefore, using the fact
(um)m∈NisboundedinL∞(0,T;D(A12))(umt)m∈NisboundedinL∞(0,T;D(A12))(umtt)m∈NisboundedinL∞(0,T;D(A12))(umttt)m∈NisboundedinL∞(0,T;H). | (3.9) |
Consequently, we may conclude that
um⇀uweak∗inL∞(0,T;D(A12))umt⇀utweak∗inL∞(0,T;D(A12))umtt⇀uttweak∗inL∞(0,T;D(A12))umttt⇀utttweak∗inL∞(0,T;H). |
From (3.9), we get that
Since the embedding
un→ustronglyinL2(0,T;H(Ω)). |
Therefore,
un→ustronglyanda.e.on(0,T)×Ω. |
The proof now can be completed arguing as in [21].
Step
It is sufficient to show that the only weak solution of (1.7)-(1.8) with
u≡0. | (3.10) |
According to the energy estimate (3.8) and noting that
E(u(t))=0,∀t∈[0,T]. |
So, we have
‖uttt+αutt+αϱδut‖2=‖A12utt+αA12ut+αϱδA12u‖2=‖A12utt‖2=‖A12ut‖2=‖A12u‖2=‖utt‖2=0,∀t∈[0,T]. |
And this implies (3.10). Thus, we conclude that problem (1.7)-(1.8) has at most one solution.
In this section, we state and prove some lemmas needed to establish our general decay result.
Lemma 4.1.
Let
ddtE(t)≤−α(β−αϱδ)‖utt‖2−[α(γ−δα)−δg(0)2(α−ε)ϱ]‖A12utt‖2+αg′(t)2‖A12u‖2−[δg(t)2(α−ε)ϱ−δg(t)2αϱ]‖A12utt‖2−δ2αϱg(t)‖A12utt+αϱδA12u‖2−α2(g″∘A12u)(t)+εϱ2δ(g′∘A12u)≤0. |
Proof. Multiplying (1.7) by
ddtE(t)=−α(β−αϱδ)‖utt‖2−[α(γ−δα)−δg(t)2αϱ]‖A12utt‖2+αg′(t)2‖A12u‖2−δ2αϱg(t)‖A12utt+αϱδA12u‖2+∫t0g′(t−s)(A12u(t)−A12u(s),A12utt)ds−α2(g″∘A12u)(t)+αϱ2δ(g′∘A12u)(t). | (4.1) |
We proceed to show that, for a constant
|∫t0g′(t−s)(A12u(t)−A12u(s),A12utt)ds|≤−(α−ε)ϱ2δ(g′∘A12u)(t)+δ(g(0)−g(t))2(α−ε)ϱ‖A12utt‖2. | (4.2) |
Then, combining (4.1) and (4.2), we can obtain
ddtE(t)≤−α(β−αϱδ)‖utt‖2−[α(γ−δα)−δg(0)2(α−ε)ϱ]‖A12utt‖2+αg′(t)2‖A12u‖2−[δg(t)2(α−ε)ϱ−δg(t)2αϱ]‖A12utt‖2−δ2αϱg(t)‖A12utt+αϱδA12u‖2−α2(g″∘A12u)(t)+εϱ2δ(g′∘A12u). |
According to
Lemma 4.2.
Assume that
F1(t)=∫Ω(utt+αut+αϱδu)(uttt+αutt+αϱδut)dx |
satisfies the estimate
F′1(t)≤−δ2α‖A12utt+αA12ut+αϱδA12u‖2+2αλ0δ(β−αϱδ)2‖utt‖2+2αδ(γ−δα)2‖A12utt‖2+‖uttt+αutt+αϱδut‖2+2α(ϱ−l)2δ‖A12u‖2+2αδCν(h∘A12u)(t). | (4.3) |
Proof. Taking the derivative of
F′1(t)=∫Ω[−(β−αϱδ)utt](utt+αut+αϱδu)dx−δα‖A12utt+αA12ut+αϱδA12u‖2+‖uttt+αutt+αϱδut‖2−∫Ω(γ−δα)A12utt(A12utt+αA12ut+αϱδA12u)dx+∫Ω(∫t0g(t−s)A12u(s)ds)(A12utt+αA12ut+αϱδA12u)dx. |
Using Young's inequality, Lemma 2.1,
∫Ω[−(β−αϱδ)utt](utt+αut+αϱδu)dx≤2αλ0δ(β−αϱδ)2‖utt‖2+δ8αλ0‖utt+αut+αϱδu‖2≤2αλ0δ(β−αϱδ)2‖utt‖2+δ8α‖A12utt+αA12ut+αϱδA12u‖2 |
and
∫Ω(∫t0g(t−s)A12u(s)ds)(A12utt+αA12ut+αϱδA12u)dx=∫Ω(∫t0g(t−s)(A12u(s)−A12u(t))ds)(A12utt+αA12ut+αϱδA12u)dx+∫Ω(∫t0g(t−s)A12u(t)ds)(A12utt+αA12ut+αϱδA12u)dx≤2αδCν(h∘A12u)(t)+δ4α‖A12utt+αA12ut+αϱδA12u‖2+2α(ϱ−l)2δ‖A12u‖2. |
Also, we have
−∫Ω(γ−δα)A12utt(A12utt+αA12ut+αϱδA12u)dx≤2αδ(γ−δα)2‖A12utt‖2+δ8α‖A12utt+αA12ut+αϱδA12u‖2. |
Then, combining the above inequalities, we complete the proof of (4.3).
Lemma 4.3.
Assume that
F2(t)=−∫Ω(uttt+αutt+αϱδut)∫t0g(t−s)[(utt+αut+αϱδu)(t)−αϱδu(s)]dsdx |
satisfies the estimate
F′2(t)≤−G(t)4‖uttt+αutt+αϱδut‖2+[(ϱ−l)2α22ε1+4λ0g2(0)α2G(t)]‖A12ut‖2+[λ0(ϱ−l)22+(δ2α2+ϱ2)+3(ϱ−l)2]ε1‖A12utt+αA12ut+αϱδA12u‖2+[α2ϱ2(ϱ−l)2λ0ε12δ2+(ϱ−l)22ε1+3(ϱ−l)2(αϱδ)2ε1+(ϱ−l)22(αϱδ)2]‖A12u‖2+[(ϱ−l)22ε1+12ε1(γ−δα)2+12(αϱδ)2(γ−δα)2]‖A12utt‖2+[(ε1α2ϱ2λ04δ2+34ε1+1+αϱδ+2α4ϱ2λ0G(t)δ2)Cν+2α2ϱ2λ0G(t)δ2](h∘A12u)(t)+[2(β−αϱδ)2ε1+4g2(0)G(t)]‖utt‖2, | (4.4) |
where
Proof. By differentiating
\begin{align*} &F'_{2}(t)\nonumber\\ = &\int_{\Omega}\left[\beta u_{tt}+\gamma\mathcal{A}u_{tt}+\delta\mathcal{A}u_{t}+\varrho\mathcal{A}u-\int_{0}^{t}g(t-s)\mathcal{A}u(s)ds -\frac{\alpha\varrho}{\delta}u_{tt}\right] \nonumber\\ &\times\int_{0}^{t}g(t-s)\left[\left(u_{tt}+\alpha u_{t} +\frac{\alpha\varrho}{\delta}u\right)(t)-\frac{\alpha\varrho}{\delta}u(s)\right]dsdx\nonumber\\ &-g(0)\int_{\Omega}\left(u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right)\left(u_{tt}+\alpha u_{t}\right)dx \nonumber\\ &-\int_{\Omega}\left(u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right)\int_{0}^{t}g'(t-s)\left[\left(u_{tt}+\alpha u_{t}+\frac{\alpha\varrho}{\delta}u\right)(t)\right. \nonumber\\ &\left.-\frac{\alpha\varrho}{\delta}u(s)\right]dsdx-\int_{0}^{t}g(s)ds\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2} \nonumber\\ = &\int_{\Omega}\left[\left(\beta-\frac{\alpha\varrho}{\delta}\right)u_{tt}+\frac{\delta}{\alpha}\left(\mathcal{A}u_{tt} +\alpha\mathcal{A}u_{t}+\frac{\alpha\varrho}{\delta}\mathcal{A}u\right) +\left(\gamma-\frac{\delta}{\alpha}\right)\mathcal{A}u_{tt}\right. \nonumber\\ &\left.-\int_{0}^{t}g(s)ds\mathcal{A}u(t)\right] \int_{0}^{t}g(t-s)\left[\left(u_{tt}+\alpha u_{t}+\frac{\alpha\varrho}{\delta}u\right)(t)- \frac{\alpha\varrho}{\delta}u(s)\right]dsdx\nonumber\\ &-\int_{0}^{t}g(s)ds\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2} \nonumber\\ &-\int_{\Omega}\left(u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right)\int_{0}^{t}g'(t-s)\left[\left(u_{tt}+\alpha u_{t}+\frac{\alpha\varrho}{\delta}u\right)(t)-\frac{\alpha\varrho}{\delta}u(s)\right]dsdx \nonumber\\ &+\left(\int_{0}^{t}g(s)ds\right)\int_{\Omega}\int_{0}^{t}g(t-s)\left(\mathcal{A}u(t)-\mathcal{A}u(s)\right)ds(u_{tt}+\alpha u_{t})dx \nonumber\\ &+\frac{\alpha\varrho}{\delta}\int_{\Omega}\left(\int_{0}^{t}g(t-s)\left(\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(s)\right)ds\right)^{2}dx \nonumber\\ &-g(0)\int_{\Omega}\left(u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right)\left(u_{tt}+\alpha u_{t}\right)dx. \end{align*} |
Now, we estimate the terms in the right-hand side of the above identity.
Using Young's inequality, we obtain, for
\begin{align*} &\int_{\Omega}\left[\left(\beta-\frac{\alpha\varrho}{\delta}\right)u_{tt}+\frac{\delta}{\alpha}\left(\mathcal{A}u_{tt} +\alpha\mathcal{A}u_{t}+\frac{\alpha\varrho}{\delta}\mathcal{A}u\right)+\left(\gamma-\frac{\delta}{\alpha}\right)\mathcal{A}u_{tt} \right. \nonumber\\ &\left.-\int_{0}^{t}g(s)ds\mathcal{A}u(t)\right] \int_{0}^{t}g(t-s)\left[\left(u_{tt}+\alpha u_{t}+\frac{\alpha\varrho}{\delta}u\right)-\frac{\alpha\varrho}{\delta}u(s)\right]dsdx \nonumber\\ \leq&\left[\frac{\lambda_{0}(\varrho-l)^{2}}{2}+\left(\frac{\delta^{2}}{\alpha^{2}}+\varrho^{2}\right) +2(\varrho-l)^{2}\right]\varepsilon_{1}\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}+\alpha\mathcal{A}^{\frac{1}{2}}u_{t} +\frac{\alpha\varrho}{\delta}\mathcal{A}^{\frac{1}{2}}u\right\|^{2}\nonumber\\ &+\frac{2\left(\beta-\frac{\alpha\varrho}{\delta}\right)^{2}} {\varepsilon_{1}}\|u_{tt}\|^{2}+\left[\frac{\alpha^{2}\varrho^{2}(\varrho-l)^{2}\lambda_{0}\varepsilon_{1}}{2\delta^{2}} +\frac{(\varrho-l)^{2}}{2\varepsilon_{1}}\right. \nonumber\\ &\left. +2(\varrho-l)^{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\varepsilon_{1}+\frac{(\varrho-l)^{2}}{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\right]\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2} \nonumber\\ &+\left[\frac{(\varrho-l)^{2}}{2\varepsilon_{1}}+\frac{1}{2\varepsilon_{1}}\left(\gamma -\frac{\delta}{\alpha}\right)^{2}+\frac{1}{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\left(\gamma -\frac{\delta}{\alpha}\right)^{2}\right]\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}\right\|^{2} \nonumber\\ &+\frac{(\varrho-l)^{2} \alpha^{2}}{2\varepsilon_{1}}\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2}+\left(\frac{\varepsilon_{1}\alpha^{2}\varrho^{2}\lambda_{0}}{4\delta^{2}}+\frac{1}{4\varepsilon_{1}}+1\right)C_{\nu}\left(h\circ\mathcal{A}^{\frac{1}{2}}u\right)(t) \end{align*} |
and
\begin{align*} &\left(\int_{0}^{t}g(s)ds\right)\int_{\Omega}\int_{0}^{t}g(t-s)\left(\mathcal{A}u(t)-\mathcal{A}u(s)\right)ds(u_{tt}+\alpha u_{t})dx \nonumber\\ = &\left(\int_{0}^{t}g(s)ds\right)\int_{\Omega}\int_{0}^{t}g(t-s)\left(\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(s)\right)ds(\mathcal{A}^{\frac{1}{2}}u_{tt}+\alpha \mathcal{A}^{\frac{1}{2}}u_{t})dx \nonumber\\ \leq&\frac{1}{2\varepsilon_{1}}C_{\nu}\left(h\circ\mathcal{A}^{\frac{1}{2}}u\right)(t)+\frac{(\varrho-l)^{2}}{2}\varepsilon_{1}\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}+\alpha\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2} \nonumber\\ \leq&\frac{1}{2\varepsilon_{1}}C_{\nu}\left(h\circ\mathcal{A}^{\frac{1}{2}}u\right)(t)+(\varrho-l)^{2}\varepsilon_{1} \left\|\mathcal{A}^{\frac{1}{2}}u_{tt}+\alpha\mathcal{A}^{\frac{1}{2}}u_{t}+\frac{\alpha\varrho}{\delta}\mathcal{A}^{\frac{1}{2}}u\right\|^{2} \nonumber\\ &+(\varrho-l)^{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\varepsilon_{1}\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}. \end{align*} |
Also, we have
\begin{align*} \frac{\alpha\varrho}{\delta}\int_{\Omega}\left(\int_{0}^{t}g(t-s)\left(\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(s)\right)ds\right)^{2}dx\leq&\frac{\alpha\varrho} {\delta}C_{\nu}\left(h\circ\mathcal{A}^{\frac{1}{2}}u\right)(t) \end{align*} |
and
\begin{align*} &-g(0)\int_{\Omega}\left(u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right)\left(u_{tt}+\alpha u_{t}\right)dx \nonumber\\ \leq&\frac{G(t)}{4}\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2}+\frac{g^{2}(0)}{G(t)}\left\|u_{tt}+\alpha u_{t}\right\|^{2} \nonumber\\ \leq&\frac{G(t)}{4}\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2}+\frac{2g^{2}(0)}{G(t)}\left\|u_{tt}\right\|^{2}+\frac{2\lambda_{0}g^{2}(0)\alpha^{2}}{G(t)}\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2}. \end{align*} |
Exploiting Young's inequality and
\begin{align*} &-\int_{\Omega}\left(u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right)\int_{0}^{t}g'(t-s)\left[\left(u_{tt}+\alpha u_{t}+\frac{\alpha\varrho}{\delta}u\right)(t)-\frac{\alpha\varrho}{\delta}u(s)\right]dsdx \nonumber\\ = &-\int_{\Omega}\left(u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right)\int_{0}^{t}g'(t-s)\left(u_{tt}+\alpha u_{t}\right)(t)dsdx \nonumber\\ &-\frac{\alpha\varrho}{\delta}\int_{\Omega}\left(u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right)\int_{0}^{t}g'(t-s)(u(t)-u(s))dsdx \nonumber\\ \leq&\frac{G(t)}{2}\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2}+\frac{2g^{2}(0)}{G(t)}\|u_{tt}\|^{2}+\frac{2\lambda_{0}\alpha^{2}g^{2}(0)}{G(t)}\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2} \nonumber\\ &+\frac{2\alpha^{2}\varrho^{2}\lambda_{0}}{G(t)\delta^{2}}\left(\alpha^{2} C_{\nu}+1\right)\left(h\circ\mathcal{A}^{\frac{1}{2}}u\right)(t). \end{align*} |
A combination of all the above estimates gives the desired result.
As in [11], we introduce the following auxiliary functional
\begin{align*} F_{3}(t) = \int_{\Omega}\left(u_{ttt}+\alpha u_{tt}\right)u_{t}dx+\frac{\varrho}{2}\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}. \end{align*} |
Lemma 4.4.
Assume that
\begin{align} F'_{3}(t)\leq&-\left(\frac{3\delta}{8}-\frac{\varepsilon_{2}\delta}{4}\right)\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2}+\frac{\varepsilon_{2}\delta^{3}}{8\alpha^{2}\varrho^{2}\lambda_{0}}\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2} \\ &+\frac{2\gamma^{2}}{\delta}\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}\right\|^{2}+\left(\frac{\varepsilon_{2}\delta^{3}}{4\varrho^{2}\lambda_{0}} +\frac{4\alpha^{2}\varrho^{2}\lambda_{0}}{\varepsilon_{2}\delta^{3}} +\frac{2\beta^{2}\lambda_{0}}{\delta}\right)\|u_{tt}\|^{2}\\ &+\frac{1}{\delta}C_{\nu}\left(h\circ\mathcal{A}^{\frac{1}{2}}u\right)(t)+\frac{2(\varrho-l)^{2}}{\delta}\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}, \end{align} | (4.5) |
where
Proof. Using the equation (1.7), a direct computation leads to the following identity
\begin{align} F'_{3}(t) = &\int_{\Omega}(u_{ttt}+\alpha u_{tt})u_{tt}dx+\int_{\Omega}(u_{tttt}+\alpha u_{ttt})u_{t}dx+\varrho\left(\mathcal{A}^{\frac{1}{2}}u,\mathcal{A}^{\frac{1}{2}}u_{t}\right) \\ = &(u_{ttt},u_{tt})+\alpha\|u_{tt}\|^{2}-\beta(u_{tt},u_{t})-\gamma\left(\mathcal{A}^{\frac{1}{2}}u_{tt},\mathcal{A}^{\frac{1}{2}}u_{t}\right)-\delta\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2} \\ &+\left(\int_{0}^{t}g(t-s)\mathcal{A}^{\frac{1}{2}}u(s)ds,\mathcal{A}^{\frac{1}{2}}u_{t}\right). \end{align} | (4.6) |
Now, the first and third terms in the right-hand side of (4.6) can be estimated as follows:
\begin{align*} & (u_{ttt},u_{tt}) \nonumber\\ \leq& \frac{\varepsilon_{2}\delta^{3}}{16\alpha^{2}\varrho^{2}\lambda_{0}}\|u_{ttt}\|^{2} +\frac{4\alpha^{2}\varrho^{2}\lambda_{0}}{\varepsilon_{2}\delta^{3}}\|u_{tt}\|^{2} \nonumber\\ \leq& \frac{\varepsilon_{2}\delta^{3}}{8\alpha^{2}\varrho^{2}\lambda_{0}}\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2} +\frac{\varepsilon_{2}\delta^{3}}{8\alpha^{2}\varrho^{2}\lambda_{0}}\left\|\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2} +\frac{4\alpha^{2}\varrho^{2}\lambda_{0}}{\varepsilon_{2}\delta^{3}}\|u_{tt}\|^{2} \nonumber\\ \leq& \frac{\varepsilon_{2}\delta^{3}}{8\alpha^{2}\varrho^{2}\lambda_{0}}\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2} +\alpha^{2}\left(\frac{\varepsilon_{2}\delta^{3}}{4\alpha^{2}\varrho^{2}\lambda_{0}}+\frac{4\varrho^{2}\lambda_{0}}{\varepsilon_{2}\delta^{3}}\right)\|u_{tt}\|^{2} +\frac{\varepsilon_{2}\delta}{4}\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2} \end{align*} |
and
\begin{align*} -\beta(u_{tt},u_{t})\leq\frac{2\beta^{2}\lambda_{0}}{\delta}\|u_{tt}\|^{2}+\frac{\delta}{8\lambda_{0}}\|u_{t}\|^{2}\leq\frac{2\beta^{2}\lambda_{0}}{\delta}\|u_{tt}\|^{2}+\frac{\delta}{8}\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2}, \end{align*} |
where
Using Young's inequality and Lemma 2.1, we get
\begin{align*} -\gamma\left(\mathcal{A}^{\frac{1}{2}}u_{tt},\mathcal{A}^{\frac{1}{2}}u_{t}\right)\leq\frac{2\gamma^{2}}{\delta}\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}\right\|^{2}+\frac{\delta}{8}\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2} \end{align*} |
and
\begin{align*} & \left(\int_{0}^{t}g(t-s)\mathcal{A}^{\frac{1}{2}}u(s)ds,\mathcal{A}^{\frac{1}{2}}u_{t}\right) \nonumber\\ = & \left(\int_{0}^{t}g(t-s)\left(\mathcal{A}^{\frac{1}{2}}u(s)-\mathcal{A}^{\frac{1}{2}}u(t)+\mathcal{A}^{\frac{1}{2}}u(t)\right)ds,\mathcal{A}^{\frac{1}{2}}u_{t}\right) \nonumber\\ \leq& \frac{1}{\delta}\int_{\Omega}\left(\int_{0}^{t}g(t-s)\left(\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(s)\right)ds\right)^{2}dx \nonumber\\ &+\frac{\delta}{4}\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2} +\frac{2(\varrho-l)^{2}}{\delta}\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2} +\frac{\delta}{8}\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2} \nonumber\\ \leq& \frac{1}{\delta}C_{\nu}\left(h\circ\mathcal{A}^{\frac{1}{2}}u\right)(t) +\frac{3\delta}{8}\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2} +\frac{2(\varrho-l)^{2}}{\delta}\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}. \end{align*} |
Then, combining the above inequalities, we obtain the desired result.
Lemma 4.5.
Assume that
\begin{align*} F_{4}(t) = \int_{\Omega}\int_{0}^{t}f(t-s)\left|\mathcal{A}^{\frac{1}{2}}u(s)\right|^{2}dsdx \end{align*} |
satisfies the estimate
\begin{align} F'_{4}(t)\leq-\frac{1}{2}\left(g\circ\mathcal{A}^{\frac{1}{2}}u\right)(t)+3(\varrho-l)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}, \end{align} | (4.7) |
where
Proof. Noting that
\begin{align*} &F'_{4}(t)\nonumber\\ = &f(0)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}-\int_{\Omega}\int_{0}^{t}g(t-s)\left|\mathcal{A}^{\frac{1}{2}}u(s)\right|^{2}dsdx \nonumber\\ = &f(0)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}-\int_{\Omega}\int_{0}^{t}g(t-s)\left|\mathcal{A}^{\frac{1}{2}}u(s)-\mathcal{A}^{\frac{1}{2}}u(t)\right|^{2}dsdx \nonumber\\ &-2\int_{\Omega}\mathcal{A}^{\frac{1}{2}}u\int_{0}^{t}g(t-s)\left(\mathcal{A}^{\frac{1}{2}}u(s)-\mathcal{A}^{\frac{1}{2}}u(t)\right)dsdx-\left(\int_{0}^{t}g(s)ds\right)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2} \nonumber\\ = &-\left(g\circ\mathcal{A}^{\frac{1}{2}}u\right)(t)-2\int_{\Omega}\mathcal{A}^{\frac{1}{2}}u\int_{0}^{t}g(t-s)\left(\mathcal{A}^{\frac{1}{2}}u(s)-\mathcal{A}^{\frac{1}{2}}u(t)\right)dsdx+f(t)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}. \end{align*} |
Exploiting Young's inequality and the fact
\begin{align*} &-2\int_{\Omega}\mathcal{A}^{\frac{1}{2}}u\int_{0}^{t}g(t-s)\left(\mathcal{A}^{\frac{1}{2}}u(s)-\mathcal{A}^{\frac{1}{2}}u(t)\right)dsdx \nonumber\\ \leq&2(\varrho-l)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}\nonumber\\ &+\frac{1}{2(\varrho-l)}\left(\int_{0}^{t}g(t-s)ds\right)\int_{\Omega}\int_{0}^{t}g(t-s)\left(\mathcal{A}^{\frac{1}{2}}u(s)-\mathcal{A}^{\frac{1}{2}}u(t)\right)^{2}dsdx \nonumber\\ \leq&2(\varrho-l)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}+\frac{1}{2}\left(g\circ\mathcal{A}^{\frac{1}{2}}u\right)(t). \end{align*} |
Moreover, taking account of
\begin{align*} f(t)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}\leq(\varrho-l)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}. \end{align*} |
Combining the above estimates, we arrive at the desired result.
Lemma 4.6.
Assume that
\begin{align*} \mathcal{L}(t) = NE(t)+F_{1}(t)+N_{2}F_{2}(t)+N_{3}F_{3}(t) \end{align*} |
satisfies, for a suitable choice of
\begin{align*} \mathcal{L}(t)\sim E(t) \end{align*} |
and the estimate, for all
\begin{align} \mathcal{L'}(t)\leq&-c\left[\|u_{tt}\|^{2}+\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}\right\|^{2}+\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2}\right. \\ &\left. +\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}+\alpha\mathcal{A}^{\frac{1}{2}}u_{t}+\frac{\alpha\varrho}{\delta}u\right\|^{2}\right]-4(\varrho-l)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}+\frac{1}{8}\left(g\circ\mathcal{A}^{\frac{1}{2}}u\right)(t), \end{align} | (4.8) |
where
Proof. Combining Lemmas 4.1-4.4 and recalling that
\begin{align*} &\mathcal{L'}(t)\nonumber\\ \leq&-\left[\alpha\left(\beta-\frac{\alpha\varrho}{\delta}\right)N-\frac{2\alpha\lambda_{0}}{\delta}\left(\beta-\frac{\alpha\varrho}{\delta}\right)^{2}-\left(\frac{2\left(\beta-\frac{\alpha\varrho}{\delta}\right)^{2}}{\varepsilon_{1}}+\frac{4g^{2}(0)}{G(t)}\right)N_{2}\right. \nonumber\\ &\left.-\left(\frac{\varepsilon_{2}\delta^{3}}{4\varrho^{2}\lambda_{0}}+\frac{4\alpha^{2}\varrho^{2}\lambda_{0}}{\varepsilon_{2}\delta^{3}}+\frac{2\beta^{2}\lambda_{0}}{\delta}\right)N_{3}\right]\|u_{tt}\|^{2}-\left[\left(\alpha\left(\gamma-\frac{\delta}{\alpha}\right)-\frac{\delta g(0)}{2(\alpha-\varepsilon)\varrho}\right)N\right. \nonumber\\ &\left.+\left(\frac{\delta g(t)}{2(\alpha-\varepsilon)\varrho}-\frac{\delta g(t)}{2\alpha\varrho}\right)N-\frac{2\alpha}{\delta}\left(\gamma-\frac{\delta}{\alpha}\right)^{2}-\left(\frac{(\varrho-l)^{2}}{2\varepsilon_{1}}+\frac{1}{2\varepsilon_{1}}\left(\gamma-\frac{\delta}{\alpha}\right)^{2}\right.\right. \nonumber\\ &\left.\left.+\frac{1}{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\left(\gamma-\frac{\delta}{\alpha}\right)^{2}\right)N_{2}-\frac{2\gamma^{2}}{\delta}N_{3}\right]\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}\right\|^{2}-\frac{\alpha}{2}N\left(g''\circ\mathcal{A}^{\frac{1}{2}}u\right)(t) \nonumber\\ &-\left[\left(\frac{3\delta}{8}-\frac{\varepsilon_{2}\delta}{4}\right)N_{3}-\left(\frac{(\varrho-l)^{2}\alpha^{2}}{2\varepsilon_{1}}+\frac{4\lambda_{0}g^{2}(0)\alpha^{2}}{G(t)}\right)N_{2}\right]\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2} \nonumber\\ &-\left(\frac{G(t)}{4}N_{2}-1-\frac{\varepsilon_{2}\delta^{3}N_{3}}{8\alpha^{2}\varrho^{2}\lambda_{0}}\right)\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2}+\frac{\varepsilon\varrho\nu}{2\delta}N\left(g\circ\mathcal{A}^{\frac{1}{2}}u\right)(t) \nonumber\\ &-\left[\frac{\delta}{2\alpha}-\left(\frac{\lambda_{0}(\varrho-l)^{2}}{2} +\left(\frac{\delta^{2}}{\alpha^{2}}+\varrho^{2}\right) +3(\varrho-l)^{2}\right)\varepsilon_{1}N_{2}\right]\nonumber\\ &\times\left\|\mathcal{A}^{\frac{1}{2}}u_{tt} +\alpha\mathcal{A}^{\frac{1}{2}}u_{t}+\frac{\alpha\varrho}{\delta}\mathcal{A}^{\frac{1}{2}}u\right\|^{2} \nonumber\\ &-\left[-\frac{\alpha g'(t)}{2}N-\frac{2\alpha(\varrho-l)^{2}}{\delta} -\left(\frac{\alpha^{2}\varrho^{2}(\varrho-l)^{2}\lambda_{0}\varepsilon_{1}}{2\delta^{2}} +\frac{(\varrho-l)^{2}}{2\varepsilon_{1}}\right.\right. \nonumber\\ &\left.\left.+3(\varrho-l)^{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\varepsilon_{1}+\frac{(\varrho-l)^{2}}{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\right)N_{2} -\frac{2(\varrho-l)^{2}}{\delta}N_{3}\right]\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2} \nonumber\\ &-\left[\frac{\varepsilon\varrho}{2\delta}N-\frac{2\alpha}{\delta}C_{\nu} -\left(\left(\frac{\varepsilon_{1}\alpha^{2}\varrho^{2}\lambda_{0}}{4\delta^{2}} \right.\right.\right.\left.+\frac{3}{4\varepsilon_{1}}+1+\frac{\alpha\varrho}{\delta} +\frac{2\alpha^{4}\varrho^{2}\lambda_{0}}{G(t)\delta^{2}}\right)C_{\nu} \nonumber\\ &\left.\left. +\frac{2\alpha^{2}\varrho^{2}\lambda_{0}}{G(t)\delta^{2}}\right)N_{2} -\frac{N_{3}}{\delta}C_{\nu}\right]\left(h\circ\mathcal{A}^{\frac{1}{2}}u\right)(t). \end{align*} |
At this point, we need to choose our constants very carefully. First, we choose
\begin{align*} \varepsilon_{1} = \frac{\alpha\delta}{2N_{2}\left[\lambda_{0}\alpha^{2}(\varrho-l)^{2}+2(\delta^{2}+\alpha^{2}\varrho^{2})+6\alpha^{2}(\varrho-l)^{2}\right]}\quad\quad and \quad\quad \varepsilon_{2} = \frac{1}{N_{3}}. \end{align*} |
The above choice yields
\begin{align*} &\mathcal{L'}(t)\nonumber\\ &\leq-\left[\alpha\left(\beta-\frac{\alpha\varrho}{\delta}\right)N-\frac{2\alpha\lambda_{0}}{\delta}\left(\beta-\frac{\alpha\varrho}{\delta}\right)^{2}-\left(\frac{2\left(\beta-\frac{\alpha\varrho}{\delta}\right)^{2}}{\varepsilon_{1}}+\frac{4g^{2}(0)}{G(t)}\right)N_{2}\right. \nonumber\\ &\left.-\frac{\delta^{3}}{4\varrho^{2}\lambda_{0}}-\frac{4\alpha^{2}\varrho^{2}\lambda_{0}}{\delta^{3}}N_{3}^{2}-\frac{2\beta^{2}\lambda_{0}}{\delta}N_{3}\right]\|u_{tt}\|^{2}-\left[\left(\alpha\left(\gamma-\frac{\delta}{\alpha}\right)-\frac{\delta g(0)}{2(\alpha-\varepsilon)\varrho}\right)N\right. \nonumber\\ &\left.+\left(\frac{\delta g(t)}{2(\alpha-\varepsilon)\varrho}-\frac{\delta g(t)}{2\alpha\varrho}\right)N-\frac{2\alpha}{\delta}\left(\gamma-\frac{\delta}{\alpha}\right)^{2}-\left(\frac{(\varrho-l)^{2}}{2\varepsilon_{1}}+\frac{1}{2\varepsilon_{1}}\left(\gamma-\frac{\delta}{\alpha}\right)^{2}\right.\right. \nonumber\\ &\left.\left.+\frac{1}{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\left(\gamma-\frac{\delta}{\alpha}\right)^{2}\right)N_{2}-\frac{2\gamma^{2}}{\delta}N_{3}\right]\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}\right\|^{2}-\frac{\alpha}{2}N\left(g''\circ\mathcal{A}^{\frac{1}{2}}u\right)(t) \nonumber\\ &-\left[\frac{3\delta}{8}N_{3}-\frac{\delta}{4}-\left(\frac{(\varrho-l)^{2}\alpha^{2}}{2\varepsilon_{1}}+\frac{4\lambda_{0}g^{2}(0) \alpha^{2}}{G(t)}\right)N_{2}\right]\left\|\mathcal{A}^{\frac{1}{2}}u_{t}\right\|^{2} \nonumber\\ &+\frac{\varepsilon\varrho\nu}{2\delta}N\left(g\circ\mathcal{A}^{\frac{1}{2}}u\right)(t)-\left(\frac{G(t)}{4}N_{2}-1-\frac{\delta^{3}}{8\alpha^{2}\varrho^{2}\lambda_{0}}\right)\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2}\nonumber\\ & -\frac{\delta}{4\alpha}\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}+\alpha\mathcal{A}^{\frac{1}{2}}u_{t}+\frac{\alpha\varrho}{\delta}\mathcal{A}^{\frac{1}{2}}u\right\|^{2} \nonumber\\ &-\left[-\frac{\alpha g'(t)}{2}N-\frac{2\alpha(\varrho-l)^{2}}{\delta}-\left(\frac{\alpha^{2}\varrho^{2}(\varrho-l)^{2} \lambda_{0}\varepsilon_{1}}{2\delta^{2}}+\frac{(\varrho-l)^{2}}{2\varepsilon_{1}}+3(\varrho-l)^{2} \left(\frac{\alpha\varrho}{\delta}\right)^{2}\varepsilon_{1}\right.\right. \nonumber\\ &\left.\left.+\frac{(\varrho-l)^{2}}{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\right)N_{2} -\frac{2(\varrho-l)^{2}}{\delta}N_{3}\right]\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2} -\left[\frac{\varepsilon\varrho}{2\delta}N-\frac{2\alpha}{\delta}C_{\nu} \right. \nonumber\\ &-\left(\left(\frac{\varepsilon_{1}\alpha^{2}\varrho^{2}\lambda_{0}}{4\delta^{2}}\right.\right.\left. \left.\left.+\frac{3}{4\varepsilon_{1}}+1+\frac{\alpha\varrho}{\delta}+\frac{2\alpha^{4}\varrho^{2}\lambda_{0}}{G(t)\delta^{2}}\right) C_{\nu}+\frac{2\alpha^{2}\varrho^{2}\lambda_{0}}{G(t)\delta^{2}}\right)N_{2}\right. \nonumber\\ &\left.-\frac{N_{3}}{\delta}C_{\nu}\right]\left(h\circ\mathcal{A}^{\frac{1}{2}}u\right)(t). \end{align*} |
Then, we choose
\begin{align*} \frac{G(t)}{4}N_{2}-1-\frac{\delta^{3}}{8\alpha^{2}\varrho^{2}\lambda_{0}} > 0. \end{align*} |
Next, we choose
\begin{align*} \frac{3\delta}{8}N_{3}-\frac{\delta}{4}-\left(\frac{(\varrho-l)^{2}\alpha^{2}}{2\varepsilon_{1}}+\frac{4\lambda_{0}g^{2}(0)\alpha^{2}}{G(t)}\right)N_{2} > 0. \end{align*} |
Now, as
\begin{align*} \nu C_{\nu} = \int_{0}^{\infty}\frac{\nu^{2}g(s)}{\nu g(s)-g'(s)}ds\rightarrow 0, \quad\quad as \quad\quad \nu\rightarrow 0. \end{align*} |
Hence, there is
\begin{align*} \nu C_{\nu} < \frac{1}{16\left(\frac{2\alpha}{\delta}+\left(\frac{\varepsilon_{1}\alpha^{2}\varrho^{2}\lambda_{0}}{4\delta^{2}}+\frac{3}{4\varepsilon_{1}}+1+\frac{\alpha\varrho}{\delta}+\frac{2\alpha^{4}\varrho^{2}\lambda_{0}}{G(t)\delta^{2}}\right)N_{2}+\frac{N_{3}}{\delta}\right)}. \end{align*} |
Now, let us choose
\begin{align*} \frac{\varepsilon\varrho}{4\delta}N-\frac{2\alpha^{2}\varrho^{2}\lambda_{0}}{G(t)\delta^{2}}N_{2} > 0 \quad\quad and \quad\quad \nu = \frac{\delta}{4\varepsilon\varrho N} < \nu_{0}, \end{align*} |
which means
\begin{align*} &\frac{\varepsilon\varrho}{2\delta}N-\frac{2\alpha^{2}\varrho^{2}\lambda_{0}}{G(t)\delta^{2}}N_{2}\nonumber\\ &-C_{\nu}\left(\frac{2\alpha}{\delta}+\left(\frac{\varepsilon_{1}\alpha^{2}\varrho^{2}\lambda_{0}}{4\delta^{2}}+\frac{3}{4\varepsilon_{1}} +1+\frac{\alpha\varrho}{\delta}+\frac{2\alpha^{4}\varrho^{2}\lambda_{0}}{G(t)\delta^{2}}\right)N_{2}+\frac{N_{3}}{\delta}\right) \nonumber\\ > &\frac{\varepsilon\varrho}{2\delta}N-\frac{2\alpha^{2}\varrho^{2}\lambda_{0}}{G(t)\delta^{2}}N_{2}-\frac{1}{16\nu} = \frac{\varepsilon\varrho}{4\delta}N-\frac{2\alpha^{2}\varrho^{2}\lambda_{0}}{G(t)\delta^{2}}N_{2} > 0 \end{align*} |
and
\begin{align*} &\alpha\left(\beta-\frac{\alpha\varrho}{\delta}\right)N-\frac{2\alpha\lambda_{0}}{\delta}\left(\beta-\frac{\alpha\varrho}{\delta}\right)^{2}-\left(\frac{2\left(\beta-\frac{\alpha\varrho}{\delta}\right)^{2}}{\varepsilon_{1}}+\frac{4g^{2}(0)}{G(t)}\right)N_{2} \nonumber\\ &-\frac{\delta^{3}}{4\varrho^{2}\lambda_{0}}-\frac{4\alpha^{2}\varrho^{2}\lambda_{0}}{\delta^{3}}N_{3}^{2}-\frac{2\beta^{2}\lambda_{0}}{\delta}N_{3} > 0, \nonumber\\ &\left(\alpha\left(\gamma-\frac{\delta}{\alpha}\right)-\frac{\delta g(0)}{2(\alpha-\varepsilon)\varrho}\right)N +\left(\frac{\delta g(t)}{2(\alpha-\varepsilon)\varrho}-\frac{\delta g(t)}{2\alpha\varrho}\right)N-\frac{2\alpha}{\delta}\left(\gamma-\frac{\delta}{\alpha}\right)^{2} \nonumber\\ &-\left(\frac{(\varrho-l)^{2}}{2\varepsilon_{1}}+\frac{1}{2\varepsilon_{1}}\left(\gamma-\frac{\delta}{\alpha}\right)^{2} +\frac{1}{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\left(\gamma-\frac{\delta}{\alpha}\right)^{2}\right)N_{2}-\frac{2\gamma^{2}}{\delta}N_{3} > 0, \nonumber\\ &-\frac{\alpha g'(t)}{2}N-\frac{2\alpha(\varrho-l)^{2}}{\delta}-\left(\frac{\alpha^{2}\varrho^{2}(\varrho-l)^{2}\lambda_{0}\varepsilon_{1}}{2\delta^{2}}+\frac{(\varrho-l)^{2}}{2\varepsilon_{1}}+3(\varrho-l)^{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\varepsilon_{1}\right. \nonumber\\ &\left.+\frac{(\varrho-l)^{2}}{2}\left(\frac{\alpha\varrho}{\delta}\right)^{2}\right)N_{2}-\frac{2(\varrho-l)^{2}}{\delta}N_{3} > 4(\varrho-l). \end{align*} |
So we arrive at, for positive constant
\begin{align*} \mathcal{L'}(t)\leq&-c\left[\|u_{tt}\|^{2}+\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}\right\|^{2}+\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2} \right. \nonumber\\ &\left.+\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}+\alpha\mathcal{A}^{\frac{1}{2}}u_{t}+\frac{\alpha\varrho}{\delta}u\right\|^{2}\right]-4(\varrho-l)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}+\frac{1}{8}\left(g\circ\mathcal{A}^{\frac{1}{2}}u\right)(t). \end{align*} |
On the other hand, from Lemma 3.2, we find that
\begin{align*} &\left|\mathcal{L}(t)-NE(t)\right| \nonumber\\ \leq&\int_{\Omega}\left|u_{tt}+\alpha u_{t}+\frac{\alpha\varrho}{\delta}u\right|\left|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right|dx \nonumber\\ &+N_{2}\int_{\Omega}\left|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right|\int_{0}^{t}g(t-s) \nonumber\\ & \times\left|\left(u_{tt}+\alpha u_{t}+\frac{\alpha\varrho}{\delta}u\right)(t)-\frac{\alpha\varrho}{\delta} u(s)\right|dsdx \nonumber\\ &+N_{3}\int_{\Omega}\left|u_{ttt}+\alpha u_{tt}\right||u_{t}|dx+N_{3}\frac{\varrho}{2}\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2} \nonumber\\ \leq&c E(t). \end{align*} |
Therefore, we can choose
In this section, we will give an estimate to the decay rate for the problem (1.7)-(1.8).
Proof of Theorem 2.2. Our proof starts with the observation that, for any
\begin{align*} &\int_{0}^{t_{0}}g(s)\int_{\Omega}\left|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right|^{2}dxds\nonumber\\ \leq&-\frac{g(0)}{a}\int_{0}^{t_{0}}g'(s)\int_{\Omega}\left|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right|^{2}dxds \nonumber\\ \leq&-\frac{g(0)}{a}\int_{0}^{t}g'(s)\int_{\Omega}\left|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right|^{2}dxds \nonumber\\ \leq&-c E'(t), \end{align*} |
which are derived from (2.2) and Lemma 4.1 and can be used in (4.8).
Taking
\begin{align*} &\mathcal{L'}(t)\nonumber\\ \leq&-c\left[\|u_{tt}\|^{2}+\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}\right\|^{2}+\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2}+\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}+\alpha\mathcal{A}^{\frac{1}{2}}u_{t}+\frac{\alpha\varrho}{\delta}u\right\|^{2}\right] \nonumber\\ &-4(\varrho-l)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}+\frac{1}{8}\left(g\circ\mathcal{A}^{\frac{1}{2}}u\right)(t) \nonumber\\ \leq&-mE(t)+c\left(g\circ\mathcal{A}^{\frac{1}{2}}u\right)(t) \nonumber\\ \leq&-mE(t)-cE'(t)+c\int_{t_{0}}^{t}g(s)\int_{\Omega}\left|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right|^{2}dxds, \end{align*} |
where
\begin{align} \mathcal{F'}(t)& = \mathcal{L'}(t)+cE'(t)\\ & \leq-mE(t)+c\int_{t_{0}}^{t}g(s)\int_{\Omega}\left|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right|^{2}dxds. \end{align} | (5.1) |
We consider the following two cases relying on the ideas presented in [31].
(ⅰ)
We multiply (5.1) by
\begin{align*} \xi(t)\mathcal{F'}(t)\leq&-m\xi(t)E(t)+c\xi(t)\int_{t_{0}}^{t}g(s)\int_{\Omega}\left|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right|^{2}dxds \nonumber\\ \leq&-m\xi(t)E(t)+c\int_{t_{0}}^{t}\xi(s)g(s)\int_{\Omega}\left|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right|^{2}dxds \nonumber\\ \leq&-m\xi(t)E(t)-c\int_{t_{0}}^{t}g'(s)\int_{\Omega}\left|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right|^{2}dxds \nonumber\\ \leq&-m\xi(t)E(t)-c\int_{0}^{t}g'(s)\int_{\Omega}\left|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right|^{2}dxds \nonumber\\ \leq&-m\xi(t)E(t)-cE'(t). \end{align*} |
Therefore,
\begin{align*} \xi(t)\mathcal{F'}(t)+cE'(t)\leq-m\xi(t)E(t). \end{align*} |
As
\begin{align*} \xi(t)\mathcal{F}(t)+cE(t)\sim E(t) \end{align*} |
and
\begin{align*} (\xi\mathcal{F}+cE)'(t)\leq -m\xi(t)E(t), \quad\quad \forall\ t\geq t_{0}. \end{align*} |
It follows immediately that
\begin{align*} E'(t)\leq -m\xi(t)E(t), \quad\quad \forall\ t\geq t_{0}. \end{align*} |
We may now integrate over
\begin{align*} E(t)\leq k_{2}\exp\left(-k_{1}\int_{t_{0}}^{t}\xi(s)ds\right), \quad\quad \forall\ t\geq t_{0}. \end{align*} |
By the continuity of
\begin{align*} E(t)\leq k_{2}\exp\left(-k_{1}\int_{0}^{t}\xi(s)ds\right), \quad\quad \forall\ t > 0. \end{align*} |
(ⅱ)
First, we define the functional
\begin{align*} L(t) = \mathcal{L}(t)+F_{4}(t). \end{align*} |
Obviously,
\begin{align*} L'(t) = &\mathcal{L}'(t)+F_{4}'(t) \nonumber\\ \leq&-c\left[\|u_{tt}\|^{2}+\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}\right\|^{2}+\left\|u_{ttt}+\alpha u_{tt}+\frac{\alpha\varrho}{\delta}u_{t}\right\|^{2} \right. \nonumber\\ &\left.+\left\|\mathcal{A}^{\frac{1}{2}}u_{tt}+\alpha\mathcal{A}^{\frac{1}{2}}u_{t}+\frac{\alpha\varrho}{\delta}u\right\|^{2}\right]-(\varrho-l)\left\|\mathcal{A}^{\frac{1}{2}}u\right\|^{2}-\frac{3}{8}\left(g\circ\mathcal{A}^{\frac{1}{2}}u\right)(t) \nonumber\\ \leq& -b E(t). \end{align*} |
Therefore, integrating the above inequality over
\begin{align*} -L(t_{0})\leq L(t)-L(t_{0})\leq-b\int_{t_{0}}^{t}E(s){\rm d}s. \end{align*} |
It is sufficient to show that
\begin{align} \int_{0}^{\infty}E(s){\rm d}s < \infty \end{align} | (5.2) |
and
\begin{align*} E(t)\leq \frac{c}{t-t_{0}}, \quad\quad\quad \forall t > t_{0}. \end{align*} |
Now, we define a functional
\begin{align*} \lambda(t): = -\int_{t_{0}}^{t}g'(s)\left\|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}{\rm d}s. \end{align*} |
Clearly, we have
\begin{align} \lambda(t)\leq&-\int_{0}^{t}g'(s)\left\| \mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}ds \\ \leq&-cE'(t), \quad\quad\quad \forall\ t\geq t_{0}. \end{align} | (5.3) |
After that, we define another functional
\begin{align*} I(t): = q\int_{t_{0}}^{t}\left\|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}{\rm d}s. \end{align*} |
Now, the following inequality holds under Lemma 4.1 and (5.2) that
\begin{align} \int_{t_{0}}^{t}\left\|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}{\rm d}s \leq & 2\int_{t_{0}}^{t}\left(\left\|\mathcal{A}^{\frac{1}{2}}u(t)\right\|^{2}+\left\|\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}\right)ds \\ \leq& 4\int_{t_{0}}^{t}\left(E(t)+E(t-s)\right)ds \\ \leq& 8\int_{t_{0}}^{t}E(0)ds \\ < & \infty. \end{align} | (5.4) |
Then (5.4) allows for a constant
\begin{align} 0 < I(t) < 1; \end{align} | (5.5) |
otherwise we get an exponential decay from (5.1).
Moreover, recalling that
\begin{align*} M(\theta x)\leq \theta M(x), \quad\quad\quad for \quad\quad 0\leq \theta\leq 1 \quad\quad and \quad\quad x\in(0,r]. \end{align*} |
From assumptions
\begin{align*} \lambda(t) = &-\int_{t_{0}}^{t}g'(s)\left\|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}{\rm d}s \nonumber\\ = &\frac{1}{qI(t)}\int_{t_{0}}^{t}I(t)(-g'(s))q\left\|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}{\rm d}s \nonumber\\ \geq& \frac{1}{qI(t)}\int_{t_{0}}^{t}I(t)\xi(s)M(g(s))q\left\|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}{\rm d}s \nonumber\\ \geq&\frac{\xi(t)}{qI(t)}\int_{t_{0}}^{t}M(I(t)g(s))q\left\|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}{\rm d}s \nonumber\\ \geq&\frac{\xi(t)}{q}M\left(\frac{1}{I(t)}\int_{t_{0}}^{t}I(t)g(s)q\left\|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}{\rm d}s\right) \nonumber\\ = &\frac{\xi(t)}{q}M\left(q\int_{t_{0}}^{t}g(s)\left\|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}{\rm d}s\right). \end{align*} |
According to
\begin{align*} \lambda(t)\geq&\frac{\xi(t)}{q}\overline{M}\left(q\int_{t_{0}}^{t}g(s)\left\|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}{\rm d}s\right). \end{align*} |
In this way,
\begin{align*} \int^{t}_{t_{0}}g(s)\left\|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right\|^{2}{\rm d}s\leq\frac{1}{q}\overline{M}^{-1}\left(\frac{q\lambda(t)}{\xi(t)}\right) \end{align*} |
and (5.1) becomes
\begin{align} \mathcal{F'}(t) \leq&-mE(t)+c\int_{t_{0}}^{t}g(s)\int_{\Omega}\left|\mathcal{A}^{\frac{1}{2}}u(t)-\mathcal{A}^{\frac{1}{2}}u(t-s)\right|^{2}dxds \\ \leq&-mE(t)+c\overline{M}^{-1}\left(\frac{q\lambda(t)}{\xi(t)}\right), \quad\quad\quad \forall\ t\geq t_{0}. \end{align} | (5.6) |
Let
\begin{align*} \mathcal{F}_{1}(t): = \overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)\mathcal{F}(t)+E(t), \quad\quad\quad \forall\ t\geq 0. \end{align*} |
Then, recalling that
\begin{align} \mathcal{F}'_{1}(t) \leq& -mE(t)\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)+c\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)\overline{M}^{-1}\left(\frac{q\lambda(t)}{\xi(t)}\right)+E'(t). \end{align} | (5.7) |
Taking account of Lemma 2.3, we obtain
\begin{align} &\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)\overline{M}^{-1}\left(\frac{q\lambda(t)}{\xi(t)}\right) \\ \leq&\overline{M}^{*}\left(\overline{H}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)\right)+\overline{M}\left(\overline{M}^{-1}\left(\frac{q\lambda(t)}{\xi(t)}\right)\right) \\ = &\overline{M}^{*}\left(\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)\right)+\frac{q\lambda(t)}{\xi(t)} \end{align} | (5.8) |
where
\begin{align} &\overline{M}^{*}\left(\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)\right) \\ = &\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)\left(\overline{M}'\right)^{-1}\left(\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)\right)-\overline{M}\left[\left(\overline{M}'\right)^{-1}\left(\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)\right)\right] \\ = &\varepsilon_{0}\frac{E(t)}{E(0)}\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)-\overline{M}\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right) \\ \leq&\varepsilon_{0}\frac{E(t)}{E(0)}\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right). \end{align} | (5.9) |
So, combining (5.7), (5.8) and (5.9), we obtain
\begin{align*} \mathcal{F}'_{1}(t)\leq-(mE(0)-c\varepsilon_{0})\frac{E(t)}{E(0)}\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)+c\frac{q\lambda(t)}{\xi(t)}+E'(t). \end{align*} |
From this, we multiply the above inequality by
\begin{align*} \xi(t)\mathcal{F}'_{1}(t)\leq-(mE(0)-c\varepsilon_{0})\xi(t)\frac{E(t)}{E(0)}\overline{M}'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)+cq\lambda(t)+\xi(t)E'(t). \end{align*} |
Then, using the fact that, as
\begin{align*} \xi(t)\mathcal{F}'_{1}(t) \leq&-(mE(0)-c\varepsilon_{0})\xi(t)\frac{E(t)}{E(0)}M'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right)-cE'(t). \end{align*} |
Consequently, defining
\begin{align} \mathcal{F}_{2}(t)\sim E(t), \end{align} | (5.10) |
and with a suitable choice of
\begin{align} \mathcal{F}'_{2}(t)\leq-k\xi(t)\left(\frac{E(t)}{E(0)}\right)M'\left(\varepsilon_{0}\frac{E(t)}{E(0)}\right). \end{align} | (5.11) |
Define
\begin{align*} R(t) = \frac{\lambda_{1}\mathcal{F}_{2}(t)}{E(0)}, \quad\quad\lambda_{1} > 0\quad\quad\quad and \quad\quad\quad M_{2}(t) = tM'(\varepsilon_{0} t). \end{align*} |
Moreover, it suffices to show that
\begin{align} \mathcal{F}'_{2}(t) \leq -k\xi(t)M_{2}\left(\frac{E(t)}{E(0)}\right). \end{align} | (5.12) |
According to (5.10) and (5.12), there exist
\begin{align} \lambda_{2}R(t)\leq E(t)\leq\lambda_{3}R(t). \end{align} | (5.13) |
Then, it follows that there exists
\begin{align} k_{1}\xi(t)\leq-\frac{R'(t)}{M_{2}(R(t))}, \quad\quad\quad \forall\ t\geq t_{0}. \end{align} | (5.14) |
Next, we define
\begin{align*} M_{1}(t): = \int_{t}^{r}\frac{1}{sM'(s)}{\rm d}s. \end{align*} |
And based on the properties of
Now, we integrate (5.14) over
\begin{align*} -\int_{t_{0}}^{t}\frac{R'(s)}{M_{2}(R(s))}{\rm d}s\geq k_{1}\int_{t_{0}}^{t}\xi(s){\rm d}s \end{align*} |
so
\begin{align*} k_{1}\int_{t_{0}}^{t}\xi(s){\rm d}s\leq M_{1}\left(\varepsilon_{0}R(t)\right)-M_{1}\left(\varepsilon_{0}R(t_{0})\right), \end{align*} |
which implies that
\begin{align*} M_{1}\left(\varepsilon_{0}R(t)\right)\geq k_{1}\int_{t_{0}}^{t}\xi(s){\rm d}s. \end{align*} |
It is easy to obtain that
\begin{align} R(t)\leq\frac{1}{\varepsilon_{0}}M^{-1}_{1}\left(k_{1}\int_{t_{0}}^{t}\xi(s){\rm d}s\right), \quad\quad\quad \forall\ t\geq t_{0}. \end{align} | (5.15) |
A combining of (5.13) and (5.15) gives the proof.
The authors are grateful to the anonymous referees and the editor for their useful remarks and comments.
[1] |
Ashmore MR, Dimitroulopoulou C (2009) Personal exposure of children to air pollution. Atmos Environ 43: 128-141. doi: 10.1016/j.atmosenv.2008.09.024
![]() |
[2] |
Son B, Breysse P, Yang W (2003) Volatile organic compounds concentrations in residential indoor and outdoor and its personal exposure in Korea. Environ Int 29: 79-85. doi: 10.1016/S0160-4120(02)00148-4
![]() |
[3] |
Park KH, Jo WK (2004) Personal volatile organic compound (VOC) exposure of children attending elementary schools adjacent to industrial complex. Atmos Environ 38: 1303-1312. doi: 10.1016/j.atmosenv.2003.11.032
![]() |
[4] |
Salvi S (2007) Health effects of ambient air pollution in children. Paediatr Respir Rev 8: 275-280. doi: 10.1016/j.prrv.2007.08.008
![]() |
[5] |
Daisey JM, Angell WJ, Apte MG, et al. (2003) Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 13: 53-64. doi: 10.1034/j.1600-0668.2003.00153.x
![]() |
[6] |
Sofuoglu SC, Aslan G, Inal F, et al. (2011) An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools. Int J Hyg Environ Health 214: 36-46. doi: 10.1016/j.ijheh.2010.08.008
![]() |
[7] |
de Gennaro G, Farella G, Marzocca A, et al. (2013) Indoor and outdoor monitoring of volatile organic compounds in school buildings: Indicators based on health risk assessment to single out critical issues. Int J Environ Res Public Health 10: 6273-6291. doi: 10.3390/ijerph10126273
![]() |
[8] |
Godwin C, Batterman S (2007) Indoor air quality in Michigan schools. Indoor Air 17: 109-121. doi: 10.1111/j.1600-0668.2006.00459.x
![]() |
[9] |
Rizk M, Verriele M, Dusanter S, et al. (2016) Fast sorption measurements of volatile organic compounds on building materials: Part 1 - Methodology developed for field applications. Data Br 6: 953-958. doi: 10.1016/j.dib.2016.01.011
![]() |
[10] | ASHRAE (1999) Standard 62-1999 Ventilation for Acceptable Indoor Air Quality. |
[11] | IARC (2015) International Agency for Research on Cancer: Monographs on the Evaluation of Carcinogenic Risks to Humans. Available from: http: //monographs.iarc.fr/ENG/Classification/ index.php |
[12] | Mendell MJ, Heath GA (2005) Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 15: 27-52. |
[13] |
Santamouris M, Synnefa A, Asssimakopoulos M, et al. (2008) Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation. Energy Build 40: 1833-1843. doi: 10.1016/j.enbuild.2008.04.002
![]() |
[14] |
Yoon C, Lee K, Park D (2011) Indoor air quality differences between urban and rural preschools in Korea. Environ Sci Pollut Res 18: 333-345. doi: 10.1007/s11356-010-0377-0
![]() |
[15] |
Branco PTBS, Alvim-Ferraz MCM, Martins FG, et al. (2014) Indoor air quality in urban nurseries at Porto city: Particulate matter assessment. Atmos Environ 84: 133-143. doi: 10.1016/j.atmosenv.2013.11.035
![]() |
[16] |
Mainka A, Brągoszewska E, Kozielska B, et al. (2015) Indoor air quality in urban nursery schools in Gliwice, Poland: Analysis of the case study. Atmos Pollut Res 6: 1098-1104. doi: 10.1016/j.apr.2015.06.007
![]() |
[17] | Mainka A, Zajusz-Zubek E, Kozielska B, et al. (2015) Badanie zanieczyszczeń powietrza oddziałujących na dzieci w przedszkolu miejskim zlokalizowanym przy drodze o dużym natężeniu ruchu. Inżynieria i Ochr Środowiska 18: 119-133. |
[18] | Mainka A, Zajusz-Zubek E, Kozielska B, et al. (2014) Badanie zanieczyszczeń powietrza oddziałujących na dzieci w wybranym przedszkolu miejskim. In: Konieczyński J (ed) Ochr powietrza w Teor i Prakt Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk, Zabrze, 1: 115-128. |
[19] | Kozielska B (2013) Concentration of benzene and its alkyl derivatives in Gliwice air. Arch Environ Prot Waste Manag Environ Prot 15: 81-88. |
[20] |
Brągoszewska E, Mainka A, Pastuszka JS (2016) Bacterial aerosols in an urban nursery school in Gliwice, Poland: a case study. Aerobiologia 32: 469-480. doi: 10.1007/s10453-015-9419-x
![]() |
[21] | SKC (2012) VOC method update SKC appendices to EPA method TO-17 determination of volatile organic compounds (VOCs) in ambient or indoor air. |
[22] | Dz.U. (2012) (Journal of Laws) Regulation of the Minister of Environment of 13 September 2012, No. 1031 - The levels of certain substances in the ambient air. |
[23] |
Demirel G, Özden Ö, Döǧeroǧlu T, et al. (2014) Personal exposure of primary school children to BTEX, NO2 and ozone in Eskişehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment. Sci Total Environ 473-474: 537-548. doi: 10.1016/j.scitotenv.2013.12.034
![]() |
[24] |
Marć M, Zabiegała B, Simeonov V, et al. (2014) The Relationships Between BTEX, NOx, and O3 Concentrations in Urban Air in Gdansk and Gdynia, Poland. CLEAN Soil Air Water 42: 1326-1336. doi: 10.1002/clen.201300188
![]() |
[25] | Rogula-Kozłowska W, Pastuszka JS, Talik E (2008) Influence of vehicular traffic on concentration and particle surface composition of PM10 and PM2.5 in Zabrze, Poland. Polish J Environ Stud 17: 539-548. |
[26] |
Jung KH, Artigas F, Shin JY (2011) Personal, indoor, and outdoor exposure to VOCs in the immediate vicinity of a local airport. Environ Monit Assess 173: 555-567. doi: 10.1007/s10661-010-1404-9
![]() |
[27] |
Buczyńska AJ, Krata A, Stranger M, et al. (2009) Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmos Environ 43: 311-318. doi: 10.1016/j.atmosenv.2008.09.071
![]() |
[28] |
Delgado-Saborit JM, Aquilina NJ, Meddings C, et al. (2011) Relationship of personal exposure to volatile organic compounds to home, work and fixed site outdoor concentrations. Sci Total Environ 409: 478-488. doi: 10.1016/j.scitotenv.2010.10.014
![]() |
[29] | EPA U (1999) Environmental Technology Protocol Verification Report Emissions of VOCs and Aldehydes from Commercial Furniture. |
[30] |
Kotzias D (2005) Indoor air and human exposure assessment - Needs and approaches. Exp Toxicol Pathol 57: 5-7. doi: 10.1016/j.etp.2005.05.002
![]() |
[31] | ATSDR (2015) Agency for Toxic Substances and Diseases Registry. Available from: http://www.atsdr.cdc.gov/toxfaq.html. |
[32] | Guo H, Lee SC, Li WM, et al. (2003) Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmos Environ 37: 73-82. |
[33] |
Hoque RR, Khillare PS, Agarwal T, et al. (2008) Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Sci Total Environ 392: 30-40. doi: 10.1016/j.scitotenv.2007.08.036
![]() |
[34] | ASHRAE (2009) ASHRAE Handbook - Fundamentals (SI Edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. |
[35] | WHO (2010) WHO guidelines for indoor air quality: selected pollutants. |
[36] |
Kim KH, Jahan SA, Kabir E (2011) A review of diseases associated with household air pollution due to the use of biomass fuels. J Hazard Mater 192: 425-431. doi: 10.1016/j.jhazmat.2011.05.087
![]() |
[37] |
Wu XM, Fan ZT, Zhu X, et al. (2012) Exposures to volatile organic compounds (VOCs) and associated health risks of socio-economically disadvantaged population in a “hot spot” in Camden, New Jersey. Atmos Environ 57: 72-79. doi: 10.1016/j.atmosenv.2012.04.029
![]() |
[38] |
Hinwood AL, Rodriguez C, Runnion T, et al. (2007) Risk factors for increased BTEX exposure in four Australian cities. Chemosphere 66: 533-541. doi: 10.1016/j.chemosphere.2006.05.040
![]() |
[39] | U.S. EPA (2002) Child-Specific Exposure Factors Handbook. EPA/600/R-06/096F. |
[40] | Johnson-Restrepo B, Kannan K (2009) An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States. Chemosphere 76: 542-548. |
[41] | U.S. EPA (2004) Risk Assessment: “Supplemental Guidance for Dermal Risk Assessment”, Part E of Risk Assessment Guidance for Superfund, Human Health Evaluation Manual (Volume I), August 16, 2004. |
[42] | Ott WR, Steinemann AC, Wallace LA (2006) Exposure Analysis, CRC Press, London. |
[43] |
Guo H, Lee SC, Chan LY, et al. (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94: 57-66. doi: 10.1016/S0013-9351(03)00035-5
![]() |
[44] |
Li H, Qian X, Hu W, et al. (2013) Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Sci Total Environ 456-457: 212-221. doi: 10.1016/j.scitotenv.2013.03.094
![]() |
1. | Zhiyu Tu, Wenjun Liu, Well‐posedness and exponential decay for the Moore–Gibson–Thompson equation with time‐dependent memory kernel, 2023, 0170-4214, 10.1002/mma.9133 | |
2. | Marina Murillo‐Arcila, Well‐posedness for the fourth‐order Moore–Gibson–Thompson equation in the class of Banach‐space‐valued Hölder‐continuous functions, 2023, 46, 0170-4214, 1928, 10.1002/mma.8618 | |
3. | Carlos Lizama, Marina Murillo-Arcila, Well-posedness for a fourth-order equation of Moore–Gibson–Thompson type, 2021, 14173875, 1, 10.14232/ejqtde.2021.1.81 | |
4. | Danhua Wang, Wenjun Liu, Well-posedness and decay property of regularity-loss type for the Cauchy problem of the standard linear solid model with Gurtin–Pipkin thermal law, 2021, 123, 18758576, 181, 10.3233/ASY-201631 | |
5. | Yang Liu, Wenke Li, A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films, 2021, 14, 1937-1632, 4367, 10.3934/dcdss.2021112 | |
6. | Danhua Wang, Wenjun Liu, Kewang Chen, Well-posedness and decay property for the Cauchy problem of the standard linear solid model with thermoelasticity of type III, 2023, 74, 0044-2275, 10.1007/s00033-023-01964-4 | |
7. | Doaa Atta, Ahmed E. Abouelregal, Hamid M. Sedighi, Rasmiyah A. Alharb, Thermodiffusion interactions in a homogeneous spherical shell based on the modified Moore–Gibson–Thompson theory with two time delays, 2023, 1385-2000, 10.1007/s11043-023-09598-9 | |
8. | İbrahim TEKİN, Identification of the time-dependent lowest term in a fourth order in time partial differential equation, 2023, 72, 1303-5991, 500, 10.31801/cfsuasmas.1127250 | |
9. | Husam Alfadil, Ahmed E. Abouelregal, Marin Marin, Erasmo Carrera, Goufo-Caputo fractional viscoelastic photothermal model of an unbounded semiconductor material with a cylindrical cavity, 2023, 1537-6494, 1, 10.1080/15376494.2023.2278181 | |
10. | Danhua Wang, Wenjun Liu, Global Existence and Decay Property for the Cauchy Problem of the Nonlinear MGT Plate Equation, 2024, 89, 0095-4616, 10.1007/s00245-024-10126-5 | |
11. | Flank D. M. Bezerra, Lucas A. Santos, Maria J. M. Silva, Carlos R. Takaessu, A Note on the Spectral Analysis of Some Fourth-Order Differential Equations with a Semigroup Approach, 2023, 78, 1422-6383, 10.1007/s00025-023-01999-z | |
12. | Carlos Lizama, Marina Murillo-Arcila, On the existence of chaos for the fourth-order Moore–Gibson–Thompson equation, 2023, 176, 09600779, 114123, 10.1016/j.chaos.2023.114123 | |
13. | Wen-jun Liu, Zhi-yu Tu, Equivalence between the internal observability and exponential decay for the Moore-Gibson-Thompson equation, 2024, 39, 1005-1031, 89, 10.1007/s11766-024-4133-5 | |
14. | Ahmed E. Abouelregal, Marin Marin, Holm Altenbach, Thermally stressed thermoelectric microbeam supported by Winkler foundation via the modified Moore–Gibson–Thompson thermoelasticity theory, 2023, 103, 0044-2267, 10.1002/zamm.202300079 |