In this work, we examine a porous-elastic system with a fractional operator incorporated in the memory term, which acts exclusively on one equation within the system. Under appropriate conditions on the polynomially decreasing kernels of the memory type, we establish the result of polynomial decay.
Citation: Chahrazed Messikh, Soraya Labidi, Ahmed Bchatnia, Foued Mtiri. Energy decay for a porous system with a fractional operator in the memory[J]. Electronic Research Archive, 2025, 33(4): 2195-2215. doi: 10.3934/era.2025096
In this work, we examine a porous-elastic system with a fractional operator incorporated in the memory term, which acts exclusively on one equation within the system. Under appropriate conditions on the polynomially decreasing kernels of the memory type, we establish the result of polynomial decay.
| [1] |
M. Malendowski, W. Sumelka, T. Gajewski, R. Studziński, P. Peksa, P. W. Sielicki, Prediction of high-speed debris motion in the framework of time-fractional model: Theory and validation, Arch. Civ. Mech. Eng., 23 (2023). https://doi.org/10.1007/s43452-022-00568-5 doi: 10.1007/s43452-022-00568-5
|
| [2] |
Y. Zhou, Y. Zhang, Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives, Acta Mech., 231 (2020), 3017–3029. https://doi.org/10.1007/s00707-020-02690-y doi: 10.1007/s00707-020-02690-y
|
| [3] |
J. W. Nunziato, S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Ration. Mech. Anal., 72 (1979), 175–201. https://doi.org/10.1007/BF00249363 doi: 10.1007/BF00249363
|
| [4] |
S. C. Cowin, The viscoelastic behavior of linear elastic materials with voids, J. Elast., 15 (1985), 185–191. https://doi.org/10.1007/BF00041992 doi: 10.1007/BF00041992
|
| [5] |
S. C. Cowin, J. W. Nunziato, Linear elastic materials with voids, J. Elast., 13 (1983), 125–147. https://doi.org/10.1007/BF00041230 doi: 10.1007/BF00041230
|
| [6] |
D. Iesan, R. Quintanilla, Decay estimates and energy bounds for porous elastic cylinders, Z. Angew. Math. Phys., 46 (1995), 268–281. https://doi.org/10.1007/BF00944757 doi: 10.1007/BF00944757
|
| [7] | R. Quintanilla, Uniqueness in nonlinear theory of porous elastic materials, Arch. Mech., 49 (1997), 67–75. |
| [8] |
T. A. Apalara, General decay of solutions in one-dimensional porous-elastic system with memory, J. Math. Anal. Appl., 469 (2019), 457–471. https://doi.org/10.1016/j.jmaa.2017.08.007 doi: 10.1016/j.jmaa.2017.08.007
|
| [9] |
T. A. Apalara, On the stability of porous-elastic system with microtemperatures, J. Therm. Stresses, 42 (2019), 265–278. https://doi.org/10.1080/01495739.2018.1486688 doi: 10.1080/01495739.2018.1486688
|
| [10] |
J. R. Fernández, R. Quintanilla, Two-temperatures thermo-porous-elasticity with microtemperatures, Appl. Math. Lett., 111 (2021), 106628. https://doi.org/10.1016/j.aml.2020.106628 doi: 10.1016/j.aml.2020.106628
|
| [11] |
W. Liu, D. Chen, S. A. Messaoudi, General decay rates for one-dimensional porous-elastic system with memory: The case of non-equal wave speeds, J. Math. Anal. Appl., 482 (2020), 123552. https://doi.org/10.1016/j.jmaa.2019.123552 doi: 10.1016/j.jmaa.2019.123552
|
| [12] |
M. L. Santos, A. D. S. Campelo, M. L. S. Oliveira, On porous-elastic systems with Fourier law, Appl. Anal., 98 (2018), 1181–1197. https://doi.org/10.1080/00036811.2017.1419197 doi: 10.1080/00036811.2017.1419197
|
| [13] |
B. Feng, M. Yin, Decay of solutions for a one-dimensional porous elasticity system with memory: The case of non-equal wave speeds, Math. Mech. Solids, 24 (2018), 2361–2373. https://doi.org/10.1177/1081286518757 doi: 10.1177/1081286518757
|
| [14] |
R. Quintanilla, Slow decay for one-dimensional porous dissipation elasticity, Appl. Math. Lett., 16 (2003), 487–491. https://doi.org/10.1016/S0893-9659(03)00025-9 doi: 10.1016/S0893-9659(03)00025-9
|
| [15] |
A. Magaña, R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials, Int. J. Solids Struct., 43 (2006), 3414–3427. https://doi.org/10.1016/j.ijsolstr.2005.06.077 doi: 10.1016/j.ijsolstr.2005.06.077
|
| [16] |
M. Astudillo, H. P. Oquendo, Stability results for a Timoshenko system with a fractional operator in the memory, Appl. Math. Optim., 83 (2021), 1247–1275. https://doi.org/10.1007/s00245-019-09587-w doi: 10.1007/s00245-019-09587-w
|
| [17] |
L. Guo, J. C. Vardakis, D. Chou, Y. Ventikos, A multiple-network poroelastic model for biological systems and application to subject-specific modelling of cerebral fluid transport, Int. J. Eng. Sci., 147 (2020), 103204. https://doi.org/10.1016/j.ijengsci.2019.103204 doi: 10.1016/j.ijengsci.2019.103204
|
| [18] |
M. Botti, D. A. Di Pietro, O. Le Maître, P. Sochala, Numerical approximation of poroelasticity with random coefficients using polynomial Chaos and hybrid high-order methods, Comput. Methods Appl. Mech. Eng., 361 (2020), 112736. https://doi.org/10.1016/j.cma.2019.112736 doi: 10.1016/j.cma.2019.112736
|
| [19] |
H. Dridi, A. Djebabla, Timoshenko system with fractional operator in the memory and spatial fractional thermal effect, Rend. Circ. Mat. Palermo, 70 (2021), 593–621. https://doi.org/10.1007/s12215-020-00513-6 doi: 10.1007/s12215-020-00513-6
|
| [20] |
M. M. Cavalcanti, A. Guesmia, General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type, Differ. Integr. Equ., 18 (2005), 583–600. https://doi.org/10.57262/die/1356060186 doi: 10.57262/die/1356060186
|
| [21] |
S. A. Messaoudi, W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16–22. https://doi.org/10.1016/j.aml.2016.11.002 doi: 10.1016/j.aml.2016.11.002
|