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2 LR Analyse Non-Linéaire et Géométrie, LR21ES08, Department of Mathematics, Faculty of
Sciences of Tunis, University of Tunis El Manar, Tunisia

3 Department of Mathematics, Applied College in Mahayil, King Khalid University, Abha 61421,
Saudi Arabia

* Correspondence: Email: ahmed.bchatnia@fst.utm.tn; Tel: +21698651585.
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1. Introduction

In this paper, we are concerned with the porous system where the damping mechanism is presented
by a fractional term of memory type:

ρ1φtt − (µφxx + bψx) = 0, in (0, L) × (0,∞),

ρ2ψtt − δψxx + bφx + ξψ −

∫ +∞

0
g(s)Bθ

∗ψ(t − s)ds = 0, in (0, L) × (0,∞),
(1.1)

with the boundary conditions

φ(0, t) = φ(L, t) = ψx(0, t) = ψx(L, t) = 0, t ∈ (0,∞), (1.2)

and the initial conditions{
φ(x, 0) = φ0(x), φt(x, 0) = ψ1(x),
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), ψ(x,−s) = ϕ0(x, s), s > 0, x ∈ (0, L).

(1.3)
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Here, φ represents the longitudinal displacement, while ψ denotes the volume fraction of the solid
elastic material. The parameters ρ1, µ, b, ρ2, δ, and ξ are positive constitutive constants that satisfy the
inequality µξ > b2. The operator B∗ corresponds to the differential operator (−∂xx), and the parameter
θ is taken within the range θ ∈ (0, 1).

The selection of boundary conditions (BCs) in Eq (1.2) and initial conditions (ICs) in Eq (1.3) plays
a fundamental role in both the mathematical analysis and the physical interpretation of the problem.
Below, we briefly discuss their significance:
Importance of boundary conditions (Eq (1.2))

• The conditions φ(0, t) = φ(L, t) = 0 correspond to a longitudinal displacement that is fixed at
both ends of the domain, modeling a clamped or fixed boundary. This is a standard assumption
in structural mechanics and implies that no axial motion occurs at the boundaries.
• The conditions ψx(0, t) = ψx(L, t) = 0 imply that the flux of porosity vanishes at the endpoints,

i.e., no net transfer of the volume fraction across the boundaries. This is physically reasonable in
many porous materials where the microstructure remains static near the edges.
• From a mathematical standpoint, these boundary conditions are critical in establishing the energy

framework of the problem, particularly in demonstrating the dissipation mechanism introduced
by the memory term. They also play a central role in the stability and decay analysis carried out
in later sections.

Importance of initial conditions (Eq (1.3))

• The initial values φ(x, 0), φt(x, 0), ψ(x, 0), and ψt(x, 0) specify the initial configuration and
velocity fields for the displacement and volume fraction. These are standard requirements for
second-order hyperbolic systems.
• In addition, due to the presence of a memory-type damping term, the model requires an initial

history condition ψ(x,−s) = ϕ0(x, s) for s > 0. This condition is essential for capturing the
hereditary effects inherent in fractional damping mechanisms and ensures the proper functioning
of the convolution integral.
• Without appropriate initial conditions—especially for the memory component—the system would

be ill-posed, leading to issues of non-uniqueness or lack of existence of solutions.

Relevance to the present work

• Physical accuracy: The choice of BCs and ICs reflects physically meaningful constraints typical
in porous elastic materials subject to damping.
• Well-posedness: These conditions are essential in ensuring that the problem admits a unique,

physically interpretable solution.
• Energy and stability framework: The BCs, in particular, facilitate the derivation of energy

inequalities and decay rates, which are central contributions of this paper.
• Mathematical coherence: The imposed conditions are compatible with the differential structure

of the system and the properties of the fractional damping operator.

The function g serves as the kernel of the memory term and satisfies the following conditions:

H: The function g : R+ → R+ is a C1-decreasing function that satisfies

g(0) > 0, g′(t) ≤ −m(t)gp(t), 1 < p <
3
2
,
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2197∫ +∞

0
g(s) ds < b

(
π

L

)2(1−θ)
,

where m : R+ → R+ is a C1 non-increasing function.
Noting that short memory can be considered in our model. This corresponds to replacing the
integral over (0,+∞) with an integral over (0, t) or, more generally, over (t0, t). Mathematically,
this can be achieved by setting the function g to zero for s ∈ (t,+∞) and ensuring that hypothesis
H remains satisfied. This modification would still allow us to analyze the effect of fractional
damping within a finite memory framework (see [1, 2]).

The fundamental evolution equations governing the one-dimensional theory of porous materials are
given by

ρ1φtt = Tx,

ρ2ψtt = Hx +G.
(1.4)

Here, T represents the stress, H denotes the equilibrated stress, and G corresponds to the
equilibrated body force. The variables φ and ψ describe the displacement of the solid elastic material
and the volume fraction, respectively.

The constitutive relations governing the system are expressed as

T = µφx + bψ,

H = δψx −

∫ +∞

0
g(s)Bθ−1/2

∗ ψ(t − s) ds,

G = −bφx − ξψ.

(1.5)

Substituting these expressions into Eq (1.4), we derive the governing system given by Eq (1.1).
The development of this model follows the fundamental balance laws of continuum mechanics,
combined with constitutive equations that incorporate memory effects.

The porous-elastic system studied in this paper is based on the well-established theory of
poroelasticity, which describes the behavior of fluid-saturated porous materials. The governing
equations are derived from the fundamental balance laws of continuum mechanics, incorporating
constitutive relations that account for the interaction between the solid matrix and the fluid within the
pores. The memory term in our model represents the hereditary effects observed in real-world porous
materials, where the stress–strain relationship is influenced by past deformations.

This framework is particularly relevant in applications where energy dissipation and wave
propagation are significantly affected by the internal structure of the material. For instance, in
geophysics, porous-elastic models are widely used to study seismic wave propagation in sedimentary
rocks, where fluid flow and viscoelastic effects play a crucial role. Similarly, in biomechanics, these
models help describe the behavior of biological tissues, such as bones and cartilage, which exhibit
poroelastic properties due to their fluid-filled microstructure. In engineering, porous-elastic materials
are used in acoustic insulation, filtration systems, and energy absorption applications.

By incorporating a fractional damping term in the memory effect, our model extends classical
poroelasticity theories to account for more complex dissipation mechanisms. This provides a more
accurate description of materials that exhibit long-term relaxation behavior, making the results
applicable to a broader range of porous media, including viscoelastic foams, polymer-based
composites, and other engineered materials with internal fluid interactions.
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Porous materials represent a highly significant area of materials science due to their broad range
of applications. They are widely used in various fields, including soil mechanics, engineering, power
technology, biology, and material science, among others. The theoretical framework for porous elastic
materials was introduced by Cowin and Nunziato [3], who developed a nonlinear theory of elastic
materials with voids.

Theory is based on the observation that, in addition to the usual elastic effects, these materials
possess a microstructure with the property that the mass at each point is obtained as the product of
the mass density of the material matrix and the volume fraction. For more details, we refer the reader
to [4–7] and the references therein.

Recent works, such as [8–13], have focused on the asymptotic behavior of solutions under
different damping conditions, revealing intricate stability properties that depend on the interaction
between porosity and viscoelasticity. In [14], Quintanilla considered (1.1) with a linear damping term
τut (τ is constant) in the second equation (without the memory term g = 0) and initial and mixed
boundary conditions. He obtained a decay result, but it is non-exponential decay.

In [15], the authors introduced a viscoelastic damping term of the form τutxx in the first equation of
(1.1), assuming g = 0. They established that the decay rate of the solution is polynomial and cannot
be exponential. In [8], Apalara investigated system (1.1) with Neumann–Dirichlet boundary

conditions, incorporating a finite memory term
∫ t

0
g(s)ψxx(t − s)ds instead of an infinite memory term∫ +∞

0
g(s)Bθ

∗ψ(t − s)ds. Under the assumption of equal wave propagation speeds and an exponentially

decaying relaxation function, a general decay result was obtained, encompassing both exponential
and polynomial decay as special cases. Recently, this result in [13] was extended to the case of
non-equal wave speeds, which is more realistic from a physical perspective.

When µ = b = ξ = K, it is well known that system (1.1) reduces to the Timoshenko system with a
fractional operator in the infinite memory:

ρ1φtt − K(φxx + ψx) = 0, in (0, L) × (0,∞),

ρ2ψtt − δψxx + K(φx + ψ) −
∫ +∞

0
g(s)Bθ

∗ψ(t − s)ds = 0, in (0, L) × (0,∞).
(1.6)

Astudillo and Oquendo [16] investigated system (1.6) under the assumption of an exponentially
decreasing kernel and Dirichlet–Neumann boundary conditions. Using semigroup theory and the
spectral approach, they established polynomial decay rates. Specifically, they demonstrated that if the
wave propagation speeds are different and θ , 1, the solutions decay polynomially with a rate of
t−1/(4−2θ), while if the wave propagation speeds are equal, the solutions decay polynomially with a rate
of t−1/(2−2θ). In addition, they proved that these decay rates are optimal. Moreover, when θ = 1 and the
wave propagation speeds are equal, they obtained exponential decay of the solutions. In their study,
they also established the global existence of weak solutions.

From a numerical perspective, advanced finite element and spectral methods have been employed
to approximate solutions to complex poroelastic systems, enabling more precise simulations of wave
propagation and energy dissipation in porous structures [17, 18]. These studies provide a solid
foundation for further exploration of porous-elastic models with memory effects, as considered in
this work.
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In the present work, we address the following question: By applying the multiplier method to the
systems (1.1)–(1.3) under assumption (H), do we obtain the same polynomial decay result as in [16]?
It is important to emphasize that the method used in our study differs from the approach used in [16].

The remainder of this paper is organized as follows: In Section 2, we present some preliminary
results that are essential for proving our main result. In Section 3, we establish the well-posedness of
the systems (1.1)–(1.3). Finally, in Section 4, we state and prove the main result concerning the energy
decay of the system using the multiplier technique.

2. Preliminaries

In this section, we introduce some preliminary material needed for the proof of our results.
Throughout this paper, C denotes a generic positive constant.

First, we define the functional spaces used in our analysis. The space L2 = L2(0, L) denotes the
usual Lebesgue space, equipped with the norm ∥ · ∥L2 . For simplicity, we will use ∥ · ∥ instead of ∥ · ∥L2

and ⟨·, ·⟩ instead of ⟨·, ·⟩L2 .
Let s be a non-negative number. The Sobolev space H s = H s(0, L) consists of functions in L2(0, L)

whose weak derivatives up to order s also belong to L2(0, L), and it is endowed with the norm ∥ · ∥Hs .
Next, we introduce the following Hilbert spaces:

L2
∗(0, L) =

{
f ∈ L2(0, L) :

∫ L

0
f (x) dx = 0

}
,

H1
∗ (0, L) = H1(0, L) ∩ L2

∗(0, L).

Next, we define the operators:

B = −∂xx : D(B) ⊂ L2(0, L)→ L2(0, L),

B∗ = −∂xx : D(B∗) ⊂ L2
∗(0, L)→ L2

∗(0, L),

where
D(B) = H2(0, L) ∩ H1

0(0, L),

and
D(B∗) =

{
ψ ∈ H2(0, L) ∩ L2

∗(0, L) : ψx(0) = ψx(L)
}
.

The operators B and B∗ are positive, self-adjoint, and have a compact inverse. Consequently, the
operators Bσ and Bσ

∗ are positive, bounded for σ ≤ 0, and self-adjoint for all σ ∈ R. Furthermore,
the embeddings

D(Bσ1) ↪→ D(Bσ2), D(Bσ1
∗ ) ↪→ D(Bσ2

∗ ),

are continuous for σ1 > σ2.
We define the norms:

∥Bσφ∥ = ∥φ∥D(Bσ), ∥Bσ
∗ φ∥ = ∥φ∥D(Bσ∗ ),

for σ ≥ 0.
If φ ∈ D(Bσ+1/2) and ψ ∈ D(Bσ+1/2

∗ ), we have

∥Bσ+1/2φ∥ = ∥Bσ
∗ ∂xφ∥, ∥Bσ+1/2

∗ ψ∥ = ∥Bσ∂xψ∥.
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In the case when σ = 0, it follows that

∥B1/2φ∥ = ∥∂xφ∥, ∥B1/2
∗ ψ∥ = ∥∂xψ∥.

If φ ∈ D(Bσ0) and ψ ∈ D(Bσ0
∗ ) with σ0 = max(σ, 1/2), then we have

⟨Bσ
∗ψ, φx⟩ = −⟨φx, Bσφ⟩.

If ψ ∈ D(B∗) and
∫ +∞

0
g(s)ds < b

(
π
L

)2(1−θ)
, then ∥Bσ

∗ψ∥ and ∥Eσ
∗ ψ∥ are equivalent for all σ ∈ R, where

E∗ψ = δ B∗ψ −
(∫ +∞

0
g(s)ds

)
Bθ
∗ψ.

For more details on this context, we refer to [16, 19].
Now, let η(t, s) = ψ(t) − ψ(t − s); then the system (1.1) becomes

ρ1φtt − (µφxx + bψx) = 0, in (0, L) × (0,∞),
ρ2ψtt + E∗ψ + bφx + ξψ +

∫ +∞
0

g(s) Bθ
∗ η(s)ds = 0, in (0, L) × (0,∞),

ηt − ψt + ∂sη = 0.
(2.1)

We end with the following crucial lemma, which will be used in the proof of our main result.

Lemma 2.1. Let α, c1, and c2 be three positive constants; F, m, and h be positive functions such that
F is differentiable and m and h are continuous on R+, satisfying

∀t > 0, F′(t) ≤ −c1 mα+1(t) Fα+1(t) + c2 h(t).

Then, for some constant C > 0, we have

F(t) ≤ C(1 + t)
−1
α m−

α+1
α

[
1 +

∫ t

0
(s + 1)

1
α m

α+1
α h(s) ds

]
∀t > 0. (2.2)

Proof. In order to prove the relation (2.2), we follow the same steps as in [20] (page 598).

3. Well-posedness result

In this section, we study the existence of solutions for the porous system. For this purpose, we
consider the following Hilbert space:

H = H1
0(0, L) × H1

∗ (0, L) × L2(0, L) × L2
∗(0, L) × L2

g(R+; D(Bθ/2
∗ )).

The energy associated with the solution of the problem is given by

E(t) =
ρ1

2
∥φt∥

2 +
ρ2

2
∥ψt∥

2 +
µ

2
∥φx∥

2 +
1
2
∥E1/2
∗ ψ∥2 +

ξ

2
∥ψ∥2 + b

∫ L

0
ψφx dx +

1
2
∥η∥2

L2
g

(
R+ ; D(Bθ/2∗ )

), (3.1)

for all (φ, ψ, φt, ψt, η) ∈ H .
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Lemma 3.1. Let (φ, ψ, η) be a regular solution of the problem (2.1). Then, the energy functional defined
by (3.1) satisfies

E′(t) =
1
2

∫ L

0

∫ +∞

0
g′(s)

[
Bθ/2
∗ η

]2
dsdx ≤ 0.

Proof. Multiplying (2.1)1 by φt and (2.1)2 by ψt and integrating over (0, L), we obtain

d
dt

[
ρ1∥φt∥

2 + µ∥φx∥
2
]
+ b

∫ L

0
ψφxt dx = 0, (3.2)

and

1
2

d
dt

[
ρ2∥ψt∥

2 + ∥E1/2
∗ ψ∥2 + µ∥φx∥

2
]
+ b

∫ L

0
φxψt dx +

∫ L

0

∫ +∞

0
g(s) Bθ/2

∗ η(s) Bθ/2
∗ ψt dsdx = 0. (3.3)

We remark that ∫ L

0

∫ +∞

0
g(s)

d
ds

(Bθ/2
∗ η)2 ds dx = −

∫ L

0

∫ +∞

0
g′(s)

(
Bθ/2
∗ η

)2
ds dx. (3.4)

Using the relation (3.4) and (2.1)3, we obtain∫ L

0

∫ +∞

0
Bθ/2
∗ ψt g(s) Bθ/2

∗ η(s) ds dx =
1
2

d
dt

[∫ L

0

∫ +∞

0
g(s)

(
Bθ/2
∗ η

)2
(s) ds dx

]
−

1
2

∫ L

0

∫ +∞

0
g′(s)

(
Bθ/2
∗ η(s)

)2
ds dx.

(3.5)

Inserting (3.5) into (3.3), we obtain

1
2

d
dt

[
ρ2∥ψt∥

2 + ∥E1/2
∗ ψ∥2 + µ∥φx∥

2 +

∫ L

0

∫ +∞

0
g(s)

(
Bθ/2
∗ η

)2
(s) ds dx

]
+ b

∫ L

0
φxψt dx −

1
2

∫ L

0

∫ +∞

0
g′(s)

(
Bθ/2
∗ η(s)

)2
ds dx.

(3.6)

Summing (3.2) and (3.6), we arrive at

E′(t) =
1
2

∫ L

0

∫ +∞

0
g′(s) (Bθ/2

∗ η)2 dsdx ≤ 0.

Hence, the proof of this lemma is achieved.

For completeness, we state and prove the existence result of (2.1), (1.2), (1.3) by the Galerkin
method together with some energy estimates.

Theorem 3.2. For (φ0, ψ0, φ1, ψ1, η) ∈ H and T > 0. Assume that (H) is satisfied; then the problems
(1.1)–(1.3) has a unique weak solution such that

(φ, ψ) ∈ C
(
[0,T ],H1

0(0, L) × H1
∗ (0, L)

)
∩C1

(
[0,T ], L2(0, L) × L2

∗(0, L)
)
.
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Proof. The proof can be done in two steps:
Step 1: Faedo-Galerkin approximation: We construct an approximation of the solution (φ, ψ, η)

using the Faedo–Galerkin method. Specifically, let Wn = span(w1, . . . ,wn) be a Hilbert basis of the
space H1

0(0, 1).
We choose a sequence

(φn
0, ψ

n
0, η

n
0) ∈ Wn, (φn

1, ψ
n
1, η

n
1) ∈ Wn,

such that

(φn
0, φ

n
1, ψ

n
0, ψ

n
1, η

n
0, η

n
1)→ (φ0, φ1, ψ0, ψ1, η0, η1) strongly inH .

We now define the approximation:

(φn(x, t), ψn(x, t), ηn(x, t, s)) =
n∑

j=1

( f n
j (x, t), gn

j(x, t), gn
j(x, t) − gn

j(x, t − s))w j,

which satisfies the following problem:



ρ1

∫ L

0
φn

tt w jdx +
∫ L

0
(µφn

x + bψn)w j x dx = 0,

ρ2

∫ L

0
ψn

tt w j dx +
∫ L

0
E1/2
∗ ψn E1/2

∗ w j dx +
∫ L

0
(bφn

x + ξψ
n) w j dx

+

∫ L

0

(∫ +∞

0
g(s) Bθ/2

∗ ηn(s)ds
)

Bθ/2
∗ w j dx = 0,

(3.7)

with the initial conditions:

(φn(0), ψn(0)) = (φn
0, ψ

n
0) and (φn

t , ψ
n
t ) = (φn

1, ψ
n
1). (3.8)

According to the standard theory of ordinary differential equations, the finite-dimensional problems
(3.7) and (3.8) has a solution ( f n

j , g
n
j) j=1,...,n defined on [0, tn). The following estimate allows us to

conclude that tn = T.
Step 2: Energy estimate: Multiplying (3.7)1 by f ′nj , (3.7)2 by g′nj , summing over j = 1, . . . , n for

each obtained equation, and finally integrating over (0, t), we obtain:



ρ1

∫ t

0

∫ L

0
φn

tt φ
n
t dx dt −

∫ t

0

∫ L

0
(µφn

xx + bψx)φn
t dx dt = 0,

ρ2

∫ t

0

∫ L

0
ψn

tt ψ
n
t dx +

∫ t

0

∫ L

0
E∗ψn ψn

t dx +
∫ t

0

∫ L

0
(bφn

x + ξψ
n)ψn

t dx

+

∫ t

0

∫ L

0

(∫ +∞

0
g(s) Bθ

∗ η
n(s)ds

)
ψn

t dx = 0.
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By integrating by parts, as Bθ
∗ and Eθ

∗ are positive self-adjoint operators, we obtain using (3.5)3:

ρ1

2

∫ t

0

∫ L

0
(φn

t )2 dx dt +
∫ t

0

∫ L

0
(µφn

x + bψn)φn
xt dx dt =

ρ1

2

∫ L

0
(φn

t )2(0) dx,

ρ2

2

∫ L

0
(ψn

t )2 dx +
1
2

∫ L

0
(E1/2
∗ ψn)2 dx +

ξ

2

∫ L

0
(ψn)2 dx +

1
2

∫ L

0

(∫ +∞

0
g(s) Bθ/2

∗ (ηn(s))2ds
)

dx

+ b
∫ t

0

∫ L

0
φn

x ψ
n
t dx dx =

ρ2

2

∫ L

0
(ψn

t )2(0) dx +
1
2

∫ L

0
E1/2
∗ ψn2

(0) dx +
ξ

2

∫ L

0
(ψn)2(0) dx

+
1
2

∫ L

0

(∫ +∞

0
g(s)

(
Bθ/2
∗ ηn(0, s)

)2
ds

)
dx +

1
2

∫ t

0

∫ L

0

(∫ +∞

0
g′(s) Bθ/2

∗ (ηn(s))2ds
)

dx.

(3.9)

Now, we denote:

En(t) =
ρ1

2
∥φn

t ∥
2 +

ρ2

2
∥ψn

t ∥
2 +

µ

2
∥φn

x∥
2 +

1
2
∥E1/2
∗ ψ∥2 +

ξ

2
∥ψ∥2 + b

∫ L

0
ψnφn

xdx +
1
2
∥ηn∥2.

Summing up, we obtain:
En(t) ≤ En(0).

Since the sequence converges, we can find a positive constant C independent of n such that:

En(t) ≤ C.

From there we can pass to the limit in (3.7) and (3.8). The rest of the proof follows.

Remark 3.3. If the condition µ ξ > b2 is satisfied, then the energy E(t) defined in (3.1) is equivalent to
the norm

ρ1

2
∥φt∥

2 +
ρ2

2
∥ψt∥

2 +
µ

2
∥φx∥

2 +
1
2
∥E1/2
∗ ψ∥2 +

ξ

2
∥ψ∥2 +

1
2
∥η∥2

L2
g(R+;D(Bθ/2∗ ))

.

This equivalence ensures that the energy E(t) properly measures the total dynamics of the system and
provides a useful tool for stability analysis.

4. Decay result

In this section, we prove a decay result for the energy of the systems (1.1)–(1.3) using the multiplier
technique. To this end, we first establish the following lemmas.

Lemma 4.1. Assume that g satisfies (H). Then, for all t ∈ R+, we have:

(i) For 1 < p < 3
2 , there exists a constant C > 0 such that

m(t)
∫ L

0

∫ t

0
g(s)[Bθ/2

∗ η]2 ds dx ≤ C
[
−E′(t)

] 1
2p−1 .

(ii) If there exists a positive constant n0 such that ∥B1/2ϕ0(t)∥2 ≤ n0, then for σ ∈ (0, 1], we have:

m(t)
∫ L

0

∫ +∞

t
g(s)[Bσ/2

∗ η]2 ds ≤ C
(∫ +∞

t
g(s) ds

)
m(t) = Ch(t). (4.1)
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Proof. For the proof of (i), we refer to Corollary 2.1 in [21].
Now, we prove (ii). We estimate:∫ L

0

∫ +∞

t
g(s)[Bσ/2

∗ η]2 ds ≤ 2∥Bσ/2ψ(t)∥2
∫ +∞

t
g(s) ds + 2

∫ +∞

t
g(s)∥Bσ/2ψ(t − s)∥2 ds

≤ 2E(0)
∫ +∞

t
g(s) ds + 2 sup

z≤0
∥Bσ/2ψ(z)∥2

∫ +∞

t
g(s) ds

≤ (2E(0) + n0)
∫ +∞

t
g(s) ds = C

∫ +∞

t
g(s) ds.

Thus, relation (4.1) is verified.

Corollary 4.2. Assume that g satisfies (H). Then, for all t ∈ R+, we have

m(t)
(∫ L

0

∫ +∞

0
g(s)[Bθ/2

∗ η]2 ds +
∫ L

0

∫ +∞

t
g(s)[B1/2

∗ η]2 ds
)
≤ C

([
−E′(t)

] 1
2p−1 + h(t)

)
.

Proof. This result follows directly from (i) and (ii) in Lemma 4.1.

Lemma 4.3. The functional

F1(t) = ρ2

∫ L

0
ψψtdx +

bρ1

µ

∫ L

0
ψ

∫ x

0
φt(y)dy dx

satisfies

F′1(t) ≤ −
1
2
∥E1/2
∗ ψ∥2 − (ξ −

b2

µ
)∥ψ∥2 + ε1∥φt∥

2 +C(1 +
1
ε1

)∥ψt∥
2 +Cg ◦ Bθ/2

∗ η, (4.2)

where

g ◦ Bθ/2
∗ η =

∫ L

0

∫ +∞

0
g(s)[Bθ/2

∗ η]2 ds dx.

Proof. We compute the derivative of F1 with respect to t. Using (2.1)1, (2.1)2, and integration by parts,
we obtain

F′1(t) = −∥E1/2
∗ ψ∥2 − (ξ −

b2

µ
)∥ψ∥2 + ρ2∥ψt∥

2

−

∫ +∞

0
g(s)

∫ L

0
Bθ/2
∗ ηBθ/2

∗ ψ(t)dx ds +
bρ1

µ

∫ L

0
ψt

∫ x

0
φt(y)dy dx.

Now, we estimate the last two terms on the right-hand side as follows:
Using Young’s inequality, we estimate

bρ1

µ

∫ L

0
ψt

∫ x

0
φt(y) dy dx ≤

ε1

L2

∫ L

0

(∫ x

0
φt(y) dy

)2

dx +
(
bρ1

µ

)2 L2

4ε1

∫ L

0
ψ2

t dx

≤ ε1

∫ L

0
φ2

t dx +
C
ε1

∫ L

0
ψ2

t dx.

(4.3)
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For the integral involving g(s), using Young’s and Cauchy–Schwarz’s inequalities along with the
fact that

∥E1/2
∗ ψ∥ ∼ ∥B1/2

∗ ψ∥, and ∥B1/2
∗ ψ∥ ↪→ ∥Bθ/2

∗ ψ∥,

we obtain

−

∫ +∞

0
g(s)

∫ L

0
Bθ/2
∗ ηBθ/2

∗ ψ(t) dx ds

≤ δ1

∫ L

0

∫ +∞

0

[
Bθ/2
∗ ψ

]2
dx +

1
4δ1

∫ L

0

[∫ +∞

0
g(s)Bθ/2

∗ η ds
]2

dx

≤ δ1

∫ L

0

∫ +∞

0

[
Bθ/2
∗ ψ

]2
dx +

∫ +∞
0

g(s)ds

4δ1

∫ L

0

∫ +∞

0
g(s)

[
Bθ/2
∗ η

]2
ds dx

≤ c1δ1∥E1/2
∗ ψ∥2 +

C
δ1

g ◦ Bθ/2
∗ η.

Choosing δ1 =
1

2c1
, we obtain

∫ +∞

0
g(s)

∫ L

0
Bθ/2
∗ ηBθ/2

∗ ψ(t)dx ds ≤
1
2
∥E1/2
∗ ψ∥2 +Cg ◦ Bθ/2

∗ η. (4.4)

By combining (4.3) and (4.4), we verify inequality (4.2), completing the proof.

Lemma 4.4. Let T be a positive constant, and let the functional

F2(t) = −ρ2

∫ L

0
ψt

∫ +∞

t
g(s) η(s) ds dx

satisfy, for any ε2 > 0 and ε3 > 0, the inequality for all t ≤ T

F′2(t) ≤ −
ρ2g0

2
∥ψt∥

2 + 2ε2∥E1/2
∗ ψ∥2 + ε3∥φx∥

2 −Cg′ ◦ Bθ/2
∗ η

+
C
ε2

g̃ ◦ B1/2
∗ η +C

(
1
ε2
+

1
ε3
+ 1

)
g ◦ Bθ/2

∗ η,

where

g0 =

∫ ∞

T
g(s)ds for all t ≤ T,

g ◦ Bθ/2
∗ η =

∫ L

0

∫ +∞

0
g(s)[Bθ/2

∗ η]2ds dx,

and

g̃ ◦ B1/2
∗ η =

∫ L

0

∫ +∞

t
g(s)[B1/2

∗ η]2ds dx.

Proof. Differentiating F2 with respect to t, we obtain

F′2(t) = −ρ2

∫ L

0
ψtt

∫ +∞

t
g(s) η(s) ds dx + ρ2

∫ L

0
ψtg(t) η(t) dx − ρ2

∫ L

0
ψt

∫ +∞

t
g(s) ηt(s) ds dx.
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Using (2.1)2 and (2.1)3, and also the self-adjointness of E1/2
∗ and Bθ/2

∗ , we obtain

F′2(t) =
∫ L

0
E1/2
∗ ψ

(∫ +∞

t
g(s)E1/2

∗ η(s) ds
)

dx +
∫ L

0
(bφx + ξψ)

(∫ +∞

t
g(s)η(s) ds

)
dx

+

∫ L

0

(∫ +∞

0
g(s)Bθ/2

∗ η(s) ds
) (∫ +∞

t
g(s)Bθ/2

∗ η(s)
)

dx

− ρ2

∫ L

0
ψt

(∫ +∞

t
g′(s)η(s) ds

)
dx − ρ2

(∫ +∞

t
g(s) ds

)
∥ψt∥

2.

Now, using Young’s and Cauchy–Schwarz inequalities, and noting that D(Bθ/2
∗ ) ↪→ L2(0, L) and

D(E1/2
∗ ) ∼ D(B1/2

∗ ), we obtain the following estimates:

J1 =

∫ L

0
E1/2
∗ ψ

(∫ +∞

t
g(s)E1/2

∗ η(s) ds
)

dx ≤ ε2∥E1/2
∗ ψ∥2 +

1
4ε2

∫ L

0

[∫ +∞

t
g(s)E1/2

∗ η ds
]2

dx

≤ ε2∥E1/2
∗ ψ∥2 +

∫ +∞
t

g(s) ds

4ε2

∫ L

0

∫ +∞

t
g(s)

[
E1/2
∗ η

]2
ds dx

≤ ε2∥E1/2
∗ ψ∥2 +

C
ε2

g̃ ◦ B1/2
∗ η.

(4.5)
Similarly to (4.5), we find

J2 = b
∫ L

0
φx

(∫ +∞

t
g(s)η(s) ds

)
dx ≤ ε3∥φx∥

2 +
C
ε3

g ◦ Bθ/2
∗ η, (4.6)

J3 = ξ

∫ L

0
ψ

(∫ +∞

t
g(s)η(s) ds

)
dx ≤ ε2∥E1/2

∗ ψ∥2 +
C
ε2

g ◦ Bθ/2
∗ η, (4.7)

J4 =

∫ L

0

(∫ +∞

t
g(s)Bθ/2

∗ η(s) ds
) (∫ +∞

0
g(s)Bθ/2

∗ η(s) ds
)

dx

≤

∫ L

0

(∫ +∞

0
g(s)Bθ/2

∗ η(s) ds
)2

dx

≤ Cg ◦ Bθ/2
∗ η,

(4.8)

and

J5 = −ρ2

∫ L

0
ψt

(∫ +∞

t
g′(s)η(s) ds

)
dx

≤ ρ2

δ1

∫ L

0
ψ2

t dx +
1

4δ1

∫ L

0

(∫ +∞

t
g′(s)η(s) ds

)2

dx


≤ ρ2δ1

∫ L

0
ψ2

t dx −
ρ2

4δ1

(∫ +∞

t
g′(s) ds

) ∫ L

0

∫ +∞

0
−g′(s) (η(s))2 ds dx

≤ ρ2δ1∥ψt∥
2 −

C
δ1

g′ ◦ Bθ/2
∗ η.

Putting δ1 =
g0
2 , we obtain

J5 ≤ ρ2
g0

2
∥ψt∥

2 −Cg′ ◦ Bθ/2
∗ η. (4.9)
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From (4.5)–(4.9) and since g is a decreasing function, it follows that the relation (4.4) is verified.
Hence, the proof is completed.

Lemma 4.5. Assume (H) holds and that µ

ρ1
= δ

ρ2
. Then, the functional

F3(t) =
∫ L

0
φt

[
ψx +

ρ1

µρ2

∫ +∞

0
g(s)Bθ−1/2

∗

[
ψ(t) − η(s)

]
ds

]
dx +

∫ L

0
φxψt dx

satisfies, for any ε4 > 0,

F′3(t) ≤ C(1 + ε4)∥E1/2
∗ ψ∥2 −

b
2ρ2
∥φx∥

2 + ε4∥φt∥
2 +

C
ε4

g ◦ Bθ/2
∗ η −

C
ε4

g′ ◦ Bθ/2
∗ η. (4.10)

Proof. We take the derivative of F3(t), which gives

F′3(t) =
∫ L

0
φtt

[
ψx +

ρ1

µρ2

∫ +∞

0
g(s)Bθ−1/2

∗

[
ψ(t) − η(s)

]
ds

]
dx

+

∫ L

0
φt

[
ψxt +

ρ1

µρ2

∫ +∞

0
g(s)Bθ−1/2

∗

[
ψt(t) − ηt(s)

]
ds

]
dx +

∫ L

0
φxtψt dx +

∫ L

0
φxψtt dx.

Using Eqs (2.1)1 to (2.1)3, we obtain

F′3(t) =
µ

ρ1

∫ L

0
φxxψx dx +

1
ρ2

(∫ +∞

0
g(s) ds

) ∫ L

0
Bθ−1/2
∗ ψφxx dx

−
1
ρ2

∫ L

0
φxx

∫ +∞

0
g(s)Bθ−1/2

∗ η(s) ds dx +
b
ρ1
∥ψx∥

2 +
b
µρ2

(∫ +∞

0
g(s) ds

) ∫ L

0
Bθ−1/2
∗ ψψx dx

−
b
µρ2

∫ L

0
ψx

∫ +∞

0
g(s)Bθ−1/2

∗ η(s) ds dx −
1
ρ2

∫ L

0
φx E∗ψ dx −

b
ρ2
∥φx∥

2 −
ξ

ρ2

∫ L

0
φxψ dx

−
1
ρ2

∫ L

0
φx

∫ +∞

0
g(s)Bθ

∗η(s) ds dx −
ρ1

µρ2

∫ L

0
φt

∫ +∞

0
g′(s)Bθ−1/2

∗ η(s) ds dx.

(4.11)
We recall that −ψx = B1/2

∗ ψ and −Bθ−1/2
∗ ψx = Bθ

∗ψ. Then, applying integration by parts to Eq (4.11)
and taking into account the boundary conditions, as well as the self-adjointness of E1/2

∗ and Bσ/2
∗ for all

σ ∈ R, we obtain

F′3(t) =
b
ρ1
∥ψx∥

2 −
b
ρ2
∥φx∥

2 +
b
µρ2

(∫ +∞

0
g(s) ds

) ∫ L

0
Bθ−1/2
∗ ψψx dx

−
b
µρ2

∫ L

0
ψx

∫ +∞

0
g(s)Bθ−1/2

∗ η(s) dsdx −
ρ1

µρ2

∫ L

0
φt

∫ +∞

0
g′(s)Bθ−1/2

∗ η(s) dsdx

−
ξ

ρ2

∫ L

0
φxψ dx.

(4.12)

Next, we estimate the terms on the right-hand side as follows:
- Using Young’s and Cauchy–Schwarz’s inequalities and the fact that D(Bθ/2

∗ ) ↪→ D(Bθ−1/2
∗ ), we obtain

I1 =
b
µρ2

(∫ +∞

0
g(s) ds

) ∫ L

0
Bθ−1/2
∗ ψψx dx ≤ C∥E1/2

∗ ψ∥2. (4.13)
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- For the second term,

I2 = −
b
µρ2

∫ L

0
ψx

∫ +∞

0
g(s)Bθ−1/2

∗ η(s) ds dx ≤ ε4∥ψx∥
2 +

(
b
µρ2

)2

4ε4

∫ L

0

[∫ +∞

0
g(s)Bθ−1/2

∗ η(s) ds
]2

dx

≤ ε4∥ψx∥
2 +

(
b
µρ2

)2 ∫ +∞
0

g(s) ds

ε4
g ◦ Bθ−1/2

∗ η

≤ Cε4∥E1/2
∗ ψ∥2 +

C
ε4

g ◦ Bθ/2
∗ η.

(4.14)
- For the third term,

I3 = −
ρ1

µρ2

∫ L

0
φt

∫ +∞

0
g′(s)Bθ−1/2

∗ η(s) ds dx ≤ ε4∥φt∥
2 −

C
ε4

g′ ◦ Bθ/2
∗ η. (4.15)

- For the fourth term,

I4 = −
ξ

ρ2

∫ L

0
φxψ dx ≤ δ1∥φx∥

2 +

(
ξ

ρ2

)2 1
4δ1
∥ψ∥2

≤ δ1∥φx∥
2 +C1

(
ξ

ρ2

)2 1
4δ1
∥E1/2
∗ ψ∥2.

(4.16)

Putting δ1 =
b

2ρ2
, we obtain

I4 ≤
b

2ρ2
∥φx∥

2 +C∥E1/2
∗ ψ∥2. (4.17)

Inserting inequalities (4.13) through (4.17) into Eq (4.12), we obtain the desired result, and thus
inequality (4.10) holds.

Lemma 4.6. The functional

F4(t) = −ρ1

∫ L

0
φtφ dx

satisfies the following inequality:

F′4 ≤
3µ
2
∥φx∥

2 − ρ1∥φt∥
2 +C∥E1/2

∗ ψ∥2. (4.18)

Proof. We take the derivative of F4, using (2.1)1, integrating by parts, and applying the boundary
conditions. This leads to the expression

F′4(t) = −ρ1µ

∫ L

0
(φx)2 dx − ρ1

∫ L

0
φ2

t dx + b
∫ L

0
ψφx dx.

Next, we apply Young’s inequality to the term
∫ L

0
ψφx dx, and since ∥B1/2

∗ ψ∥ ∼ ∥E1/2
∗ ψ∥ we arrive at

the inequality

F′4 ≤
3µ
2
∥φx∥

2 − ρ1∥φt∥
2 +C∥E1/2

∗ ψ∥2,

which completes the proof.
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We are now ready to state and prove the main result, which concerns the decay of energy in our
system and its important physical implications, particularly in the context of porous-elastic materials
with memory effects. The derived decay rates describe how the system dissipates energy over time,
reflecting the internal damping mechanisms induced by the memory term. Physically, this corresponds
to the stabilization of mechanical vibrations and the gradual attenuation of wave propagation within
the material. Such behavior is crucial in applications involving viscoelastic or porous structures, where
controlling long-term stability is essential for maintaining structural integrity.

Theorem 4.7. Assume (H) holds. If
µ

ρ1
=
δ

ρ2

and
∃n0 > 0 such that ∥B1/2

∗ ϕ0∥ ≤ n0,

where ϕ0 is defined in (1.3), then for any T > 0, there exists a positive constant C such that for all
t ≤ T, the energy functional E(t) given in (3.1) satisfies the following inequality:

E(t) ≤ C(1 + t)−
1

2p−2 m−
2p−1
2p−2

[
1 +

∫ t

0
(s + 1)

1
2p−2 m

2p−1
2p−2 h2p−1(s) ds

]
, (4.19)

where h(t) = m(t)
∫ ∞

t
g(s) ds.

Proof. We define a Lyapunov functional

L(t) = NE(t) + N1F1(t) + N2F2(t) + N3F3(t) + F4(t), (4.20)

where N,N1,N2, and N3 are positive constants to be chosen later. By differentiating (4.20) and using
Lemmas 4.3–4.6, we find

L′(t) ≤ −
[N1

2
− 2ε2N2 −C −CN3(1 + ε4)

] ∥∥∥E1/2
⋆ ψ

∥∥∥2
−

(
ξ −

b2

µ

)
N1 ∥ψ∥

2

−
[
ρ1 − ε4N3 − ε1N1

]
∥φt∥

2
−

[
b

2ρ2
N3 −

3
2
µ − ε3N2

]
∥φx∥

2

−

[
ρ2

2
g0 N2 −C

(
1 +

1
ε1

)
N1

]
∥ψt∥

2 +C
[
N1 + N2

(
1
ε3
+

1
ε2
+ 1

)
+

N3

ε4

]
g ◦ Bθ/2

⋆ η

+

[
N
2
−C

N3

ε4
−CN2

]
g′ ◦ Bθ/2

⋆ η +C
N2

ε2
g̃ ◦ B1/2

⋆ η.

By setting ε1 =
ρ1

4N1
, ε2 =

N1

8N2
, ε3 =

b
4ρ2

N3

N2
, ε4 =

ρ1

4N3
, we obtain

L′(t) ≤ −
[N1

4
−C −CN3

] ∥∥∥E1/2
⋆ ψ

∥∥∥2
−

[
ξ −

b2

µ

]
N1 ∥ψ∥

2
−
ρ1

2
∥φt∥

2
−

[
b

4ρ2
N3 −

3
2
µ

]
∥φx∥

2

−

[
ρ2

2
g0 N2 −CN1 (1 + N1)

]
∥ψt∥

2 +C
[
N1 + N2

(
N2

N1
+

N2

N3
+ 1

)
+ N2

3

]
g ◦ Bθ/2

⋆ η

−

[N
2
−CN2 −CN2

3

]
g′ ◦ Bθ/2

∗ η +C
N2

2

N1
g̃ ◦ B1/2

⋆ η.
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First, we choose N3 large enough such that α1 =
bN3
4ρ2
− 3

2µ > 0, then we choose N1 large enough
such that α2 =

N1
4 − CN3 (1 + N3) − C > 0, and finally, we choose N2 large enough such that α3 =

ρ2N2g0
2 −CN1 (1 + N1) > 0, so we have

L′(t) ≤ −α2

∥∥∥E1/2
∗ ψ

∥∥∥2
− α0 ∥ψ∥

2
−
ρ1

2
∥φt∥

2
− α1 ∥φx∥

2
− α3 ∥ψt∥

2

+Cg ◦ Bθ/2
⋆ η +

[N
2
−C′

]
g′ ◦ Bθ/2

⋆ η +C g̃ ◦ B1/2
⋆ η,

(4.21)

where α0 =
(
ξ − b2

µ

)
N1 and g0 =

∫ ∞

T
g(s)ds.

On the other hand, we have

|L(t) − NE(t)| ≤ N1 |F1(t)| + N2 |F2(t)| + N2 |F3(t)| + |F4(t)| .

Exploiting Young’s, Cauchy–Schwarz, and Poincaré inequalities, and recalling that∥∥∥E1/2
⋆ ψ

∥∥∥ ∼ ∥∥∥B1/2
⋆ ψ

∥∥∥ and
∥∥∥B1/2

⋆ ψ
∥∥∥ ∼ ∥ψx∥ ,

we can estimate each of |F1(t)| , |F2(t)| , |F3(t)| , |F4(t)| one by one.
Specifically, we have

|F1(t)| ≤ ρ2

∫ L

0
|ψψt| dx +

bρ1

µ

∫ L

0
|ψ|

(∫ x

0
|φt(y)| dy

)
dx

≤
ρ2

2

(
∥ψ∥2 + ∥ψt∥

2
)
+

bρ1

µ

∫ L

0

∫ L

0
|ψ(x)| |φt(y)| dy dx

≤
ρ2

2

(
∥ψ∥2 + ∥ψt∥

2
)
+

bρ1L
2µ

(
∥φt∥

2 + ∥ψ∥2
)

≤ C
(
∥ψ∥2 + ∥ψt∥

2 + ∥φt∥
2
)
.

Using D
(
Bδ1
⋆

)
↪→ D

(
Bδ2
⋆

)
for δ1 > δ2 (we take δ2 = 0, δ1 =

θ
2 ), we have the following estimate:

|F2(t)| ≤ ρ2

∫ L

0
|ψt|

∣∣∣∣∣∣
∫ +∞

t
g(s)η(s) ds

∣∣∣∣∣∣ dx

≤ ρ2 ∥ψt∥

∥∥∥∥∥∥
∫ +∞

t
g(s)η(s) ds

∥∥∥∥∥∥
≤
ρ2

2

∥ψt∥
2 +

∥∥∥∥∥∥
∫ +∞

0
g(s)η(s) ds

∥∥∥∥∥∥2
≤
ρ2

2

(
∥ψt∥

2 +

(∫ +∞

0
g(s) ds

)
· g ◦ Bθ/2

⋆ η

)
≤ C

(
∥ψt∥

2 + g ◦ Bθ/2
⋆ η

)
.
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Using again D
(
B1/2
⋆

)
↪→

(
Bθ/2
⋆

)
↪→ D

(
Bθ−1/2
⋆

)
for all θ ∈ (0, 1), we obtain the following estimate:

|F3(t)| ≤
∫ L

0
|φtψx| dx +

ρ1

µ ρ2

∫ ∞

0
g(s) ds

∫ L

0

∣∣∣φtB
θ−1/2
⋆ ψ

∣∣∣ dx

+
ρ1

µ ρ2

∫ ∞

0
g(s)

(∫ L

0
|φt|

∣∣∣Bθ−1/2
⋆ η(s)

∣∣∣ dx
)

ds +
∫ L

0
|φxψt| dx

≤
1
2

(
∥φt∥

2 + ∥ψx∥
2 + ∥ψt∥

2 + ∥φx∥
2
)
+

ρ1

µ ρ2

∫ ∞

0
g(s) ds

(
∥φt∥

2 +
∥∥∥Bθ−1/2

⋆ ψ
∥∥∥2

)
+

ρ1

2 µ ρ2

∫ ∞

0
g(s)

(∥∥∥Bθ−1/2
⋆ η(s)

∥∥∥2
+ ∥φt∥

2
)

ds

≤ C
(
∥φt∥

2 + ∥ψt∥
2 + ∥φx∥

2 +
∥∥∥B1/2

⋆ ψ
∥∥∥2
+

∥∥∥Bθ−1/2
⋆ ψ

∥∥∥2
+ g ◦ Bθ−1/2

⋆ η
)

≤ C
(
∥φt∥

2 + ∥ψt∥
2 + ∥φx∥

2 +
∥∥∥E1/2

⋆ ψ
∥∥∥2
+ g ◦ Bθ/2

⋆ η
)
.

Using Poincaré’s inequality, we have:

|F4(t)| ≤ ρ1

∫ L

0
|φtφ| dx ≤ C

(
∥φt∥

2 + ∥φx∥
2
)
.

From here, we can deduce that:

∥L(t) − NE(t)∥ ≤ C
(
∥φt∥

2 + ∥φx∥
2 + ∥ψt∥

2 + ∥ψ∥2 + g ◦ Bθ/2
⋆ η +

∥∥∥E1/2
⋆ ψ

∥∥∥2
)

≤ CE(t).

Thus, we obtain the estimate:

(N −C) E(t) ≤ L(t) ≤ (N +C) E(t).

Next, we return to the estimation (4.21) and choose N large enough such that N
2 −C′ > 0 and N−C > 0.

Therefore, this means that L(t) ∼ E(t). Since g ◦ Bθ/2
⋆ η < 0, Eq (4.21) yields:

L′(t) ≤ −K1E(t) + K2g ◦ Bθ/2
⋆ η + K3g̃ ◦ B1/2

⋆ η.

Multiplying the above inequality by m(t) and using Corollary (4.2), we obtain:

m(t)L′(t) ≤ −K1m(t)E(t) +C[−E′(t)]1/(2p−1) +Ch(t).

Next, multiplying the above inequality by (mE)α(t), where α = 2p−2, and applying Young’s inequality,
we get for any ϵ > 0:

mα+1(t)L′(t)Eα(t) ≤ − (K1 − 2ϵ) mα+1(t)Eα+1(t) −CϵE′(t) +Cϵhα+1(t).

Now, we choose ϵ small enough such that

K2 = K1 − 2ϵ > 0,
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and set
F(t) = mα+1(t)L(t)Eα(t) +CϵE(t).

Since both E and m are decreasing functions, we have:

F′(t) ≤ mα+1(t)L′(t)Eα(t) +CϵE′(t)
≤ −K2mα+1(t)Eα+1(t) +Cϵhα+1(t).

On the other hand, it is easy to remark that F(t) ∼ E(t), from where we deduce:

F′(t) ≤ −K2mα+1Fα+1(t) +Cϵhα+1(t).

Thanks to Lemma 2.1, this implies:

F(t) ≤ C(1 + t)
−1

2p−2 m−
2p−1
2p−2

[
1 +

∫ t

0
(s + 1)

1
2p−2 m

2p−1
2p−2 h2p−1(s) ds

]
,

and hence, we conclude that the estimate (4.19) is satisfied. Therefore, the proof of this theorem
is complete.

To illustrate the energy decay rates obtained by Theorem 4.7, we give the following example.

Example 1. Let g(t) = β1

(1+
√

t+1)β2
, where β1 and β2 are two positive constants, which we will choose

later. Indeed,
g′(t) = −m(t)gp(t),

where m(t) = β2

2β1/β2
1

√
t+1

and p = β2+1
β2

.

We first choose β2 > 2 so that p ∈ [1, 3
2 ) and

∫ +∞
0

g(s) ds are bounded. Then, we choose β1 such that∫ +∞

0
g(s) ds <

(
π

L

)2(1−θ)
.

Therefore, all conditions of Theorem 4.7 are fulfilled, and we can apply the estimate of the energy
decay (4.19). Indeed, we start by

(1 + t)
−1

2p−2 m−
2p−1
2p−2 ≤ (1 + t)−

3−2p
2(2p−2) .

Note that − 3−2p
2(2p−2) < 0 because p ∈ (1, 3

2 ).
We have

h2p−1 =

(
Cm(t)

∫ ∞

t
g(s) ds

)2p−1

≤ C(1 + t)(1−β2)( 2p−1
2 ).

Thus, we deduce that

I =
∫ t

0
(s + 1)

1
2p−2 m

2p−1
2p−2 h2p−1(s) ds ≤ C

∫ t

0
(s + 1)−1+ 2p−1

2

( 2p−1
2p−2−β2

)
ds. (4.22)

Putting β3 = −1 + 2p−1
2

(
2p−1
2p−2 − β2

)
, the relation in (4.22) yieldsI ≤ C

(
(t + 1)β3+1 − 1

β3 + 1

)
if β3 , −1,

I ≤ C ln(1 + t) if β3 = −1.
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From where it follows that 

I ≤ C(t + 1)β3+1 if 2 < β2 <
2p − 1
2p − 2

,

I ≤ C ln(1 + t) if β2 =
2p − 1
2p − 2

,

I ≤ C if β2 >
2p − 1
2p − 2

.

We see that 2p−1
2p−2 > 2 because p ∈ (1, 3

2 ). So, finally, we arrive at

E(t) ≤ C(t + 1)1+(1−β2)
( 2p−1

2

)
if 2 < β2 <

2p − 1
2p − 2

,

E(t) ≤ C(t + 1)−
3−2p

2(2p−2) ln(1 + t) if β2 =
2p − 1
2p − 2

,

E(t) ≤ C(t + 1)−
3−2p

2(2p−2) if β2 >
2p − 1
2p − 2

.

It is easy to remark that in the case when 2 < β2 <
2p−1
2p−2 , the functional E(t) exhibits polynomial decay

if we choose β2 ∈
(

1+2p
2p−1 ,

2p−1
2p−2

)
.

5. Conclusions

In this paper, we have studied the stability properties of a porous-elastic system with fractional
damping in the memory term. By carefully analyzing the interplay between the wave propagation
speeds and the memory effect, we established a polynomial decay rate for the energy, highlighting the
crucial role of the memory kernel in dictating the system’s asymptotic behavior. Our findings provide
a deeper understanding of the dissipative mechanisms governing porous-elastic materials and extend
previous results by refining the decay estimates under minimal assumptions on the kernel.

Future research directions include investigating the impact of nonhomogeneous boundary
conditions, exploring the extension of the model to fractional-order time evolution equations, and
conducting numerical simulations to further validate the theoretical results. Additionally, it would be
of interest to analyze the system under more general geometric configurations or in the presence of
external forcing terms, which could offer new insights into real-world applications.
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