In this paper, we consider the initial boundary value problem for a mixed pseudo-parabolic Kirchhoff equation. Due to the comparison principle being invalid, we use the potential well method to give a threshold result of global existence and non-existence for the sign-changing weak solutions with initial energy
Citation: Yang Cao, Qiuting Zhao. Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations[J]. Electronic Research Archive, 2021, 29(6): 3833-3851. doi: 10.3934/era.2021064
[1] | Yang Cao, Qiuting Zhao . Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29(6): 3833-3851. doi: 10.3934/era.2021064 |
[2] | Qianqian Zhu, Yaojun Ye, Shuting Chang . Blow-up upper and lower bounds for solutions of a class of higher order nonlinear pseudo-parabolic equations. Electronic Research Archive, 2024, 32(2): 945-961. doi: 10.3934/era.2024046 |
[3] | Jun Zhou . Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28(1): 67-90. doi: 10.3934/era.2020005 |
[4] | Hui Yang, Futao Ma, Wenjie Gao, Yuzhu Han . Blow-up properties of solutions to a class of $ p $-Kirchhoff evolution equations. Electronic Research Archive, 2022, 30(7): 2663-2680. doi: 10.3934/era.2022136 |
[5] | Yaning Li, Yuting Yang . The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. Electronic Research Archive, 2023, 31(5): 2555-2567. doi: 10.3934/era.2023129 |
[6] | Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li . Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28(1): 369-381. doi: 10.3934/era.2020021 |
[7] | Shuting Chang, Yaojun Ye . Upper and lower bounds for the blow-up time of a fourth-order parabolic equation with exponential nonlinearity. Electronic Research Archive, 2024, 32(11): 6225-6234. doi: 10.3934/era.2024289 |
[8] | Yitian Wang, Xiaoping Liu, Yuxuan Chen . Semilinear pseudo-parabolic equations on manifolds with conical singularities. Electronic Research Archive, 2021, 29(6): 3687-3720. doi: 10.3934/era.2021057 |
[9] | Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028 |
[10] | Xu Liu, Jun Zhou . Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28(2): 599-625. doi: 10.3934/era.2020032 |
In this paper, we consider the initial boundary value problem for a mixed pseudo-parabolic Kirchhoff equation. Due to the comparison principle being invalid, we use the potential well method to give a threshold result of global existence and non-existence for the sign-changing weak solutions with initial energy
In this paper, we consider the following initial boundary value problem
{ut−kΔut−M(‖∇u‖pp)Δpu=|u|q−1u−1|Ω|∫Ω|u|q−1udx,(x,t)∈Ω×(0,T),∂u∂ν=0,(x,t)∈∂Ω×(0,T),u(x,0)=u0(x),x∈Ω, | (1) |
where
Like the name in [27], we refer to (1) as the mixed pseudo-parabolic Kirchhoff equation, which with the combination of
ut−BM(‖∇u‖pp)Δpu=B(|u|q−1u−1|Ω|∫Ω|u|q−1udx), |
where
The aim of this work is to reveal how the initial energy have an impact on the properties of sign changing solutions to (1). It is worth mentioning that several significant works have focused on such problems for nonlinear parabolic equations, where local well-posedness, global existence and non-existence, asymptotic behaviors of solutions are investigated. In details, we refer to Zhou et. al [10,37] for the
In this paper, we consider the weak solutions as follows:
Definition 1.1. A function
(ut,φ)+k(∇ut,∇φ)+M(‖∇u‖pp)(|∇u|p−2∇u,∇φ)=(|u|q−1u−1|Ω|∫Ω|u|q−1udx,φ), |
for any
We use the expressions
J(u)=ap‖∇u‖pp+b2p‖∇u‖2pp−1q+1‖u‖q+1q+1 | (2) |
and the Nehari functional:
I(u)=a‖∇u‖pp+b‖∇u‖2pp−‖u‖q+1q+1=−12ddt(‖u‖22+k‖∇u‖22). | (3) |
(2) and (3) imply that
J(u)=1q+1I(u)+(ap−aq+1)‖∇u‖pp+(b2p−bq+1)‖∇u‖2pp, | (4) |
ddtJ(u)=−‖ut‖22−k‖∇ut‖22. | (5) |
For any
Iδ(u)=δ(a‖∇u‖pp+b‖∇u‖2pp)−‖u‖q+1q+1. | (6) |
Then we can define the Nehari manifold and the potential wells
N={u∈W1,pN(Ω):I(u)=0,‖∇u‖p≠0},W={u∈W1,pN(Ω):J(u)<d,I(u)>0}⋃{0},V={u∈W1,pN(Ω):J(u)<d,I(u)<0},Nδ={u∈W1,pN(Ω):Iδ(u)=0,‖∇u‖p≠0},Wδ={u∈W1,pN(Ω):J(u)<d(δ),Iδ(u)>0}⋃{0},Vδ={u∈W1,pN(Ω):J(u)<d(δ),Iδ(u)<0}, |
where
d=d(1)=inf{J(u):u∈N},d(δ)=inf{J(u):u∈Nδ}. | (7) |
It is worth pointing out that the nonlinear terms in (1) make the local existence of solutions non-trivial. It is delightful that there are some important works on the local well-posedness of parabolic Kirchhoff type problems involving fractional Laplacian or
Theorem 1.2. Let
Theorem 1.3. Let
limt→T−∫t0(‖u‖22+k‖∇u‖22)dτ=+∞. |
Theorem 1.4. Let
Theorem 1.5. Let
limt→T−∫t0(‖u‖22+k‖∇u‖22)dτ=+∞. |
Theorem 1.6. (Life span) Let
(ⅰ) If
(ⅱ) If
T≤4‖u0‖22+4k‖∇u0‖22(q−1)2(a(q+1−p)p(q−1)‖∇u(t0)‖pp+b(q+1−2p)2p(q−1)‖∇u(t0)‖2pp−J(u0))+t0, |
where
When
N+={u∈W1,pN(Ω):I(u)>0},N−={u∈W1,pN(Ω):I(u)<0},Js={u∈W1,pN(Ω):J(u)<s},for anys>d,Ns=N∩Js={u∈N:a(q+1−p)p(q+1)‖∇u‖pp+b(q+1−2p)2p(q+1)‖∇u‖2pp<s},λs=inf{‖u‖22+k‖∇u‖22:u∈Ns},Λs=sup{‖u‖22+k‖∇u‖22:u∈Ns},B={u0∈W1,pN(Ω):the solution of(1)blows up in finite time},G={u0∈W1,pN(Ω):the solution of(1)is global in time},G0={u0∈W1,pN(Ω):u(t)→0inW1,pN(Ω),t→+∞}. |
Theorem 1.7. Assume
(ⅰ) If
(ⅱ) If
Theorem 1.8.
Λs≤(1+k)|Ω|p−2p˜κ2, |
where
f(y)=b(q+1−2p)2p(q+1)y2p+a(q+1−p)p(q+1)yp,y∈R. | (8) |
The paper is arranged as follows. In section 2, we give some important lemmas. We prove Theorem 1.2, 1.3, 1.4 and 1.5 in Section 3. Section 4 is devoted to Theorem 1.6. At last, we investigate the supercritical initial energy case, namely Theorem 1.7 and 1.8 in Section 5.
In this section, we state some lemmas that are essential for proving the major theorems.
Lemma 2.1. For any
(i)
(ii) There exists a unique
Proof. (ⅰ) For any
J(λu)=λpap‖∇u‖pp+λ2pb2p‖∇u‖2pp−λq+1q+1‖u‖q+1q+1. | (9) |
Since
(ⅱ) Derivative
ddλJ(λu)=aλp−1‖∇u‖pp+bλ2p−1‖∇u‖2pp−λq‖u‖q+1q+1=λq(aλq+1−p‖∇u‖pp+bλq+1−2p‖∇u‖2pp−‖u‖q+1q+1). |
Set
limλ→0g(λ)=+∞,limλ→+∞g(λ)<0,g′(λ)=−a(q+1−p)λq+2−p‖∇u‖pp−b(q+1−2p)λq+2−2p‖∇u‖2pp<0. |
Therefore there exists a unique
Lemma 2.2. For any
(i) If
(ii) If
(iii) If
Proof. (ⅰ) The Sobolev embedding inequality and
‖u‖q+1q+1≤Sq+1‖∇u‖q+1p≤Sq+1rq+1−p(δ)‖∇u‖pp=δa‖∇u‖pp<δa‖∇u‖pp+δb‖∇u‖2pp, |
which means
(ⅱ) can be directly derived from (ⅰ).
(ⅲ) If
Lemma 2.3.
(i)
(ii)
Proof. (ⅰ) For any
δa‖∇u‖pp+λpδb‖∇u‖2pp=λq+1−p‖u‖q+1q+1, |
which indicates
δ=λq+1−p‖u‖q+1q+1a‖∇u‖pp+bλp‖∇u‖2pp. | (10) |
A directly computation on (10) show that
0≤limδ→0+d(δ)≤limδ→0+J(λu)=limλ→0+J(λu)=0,limδ→+∞d(δ)≤limδ→+∞J(λu)=limλ→+∞J(λu)=−∞. |
Therefore
(ⅱ) Assume
h′(λ)=λp−1a(1−δ)‖∇u‖pp+λ2p−1b(1−δ)‖∇u‖2pp. |
For any
J(u)−J(v)=h(1)−h(λ(δ′))=∫1λ(δ′)h′(λ)dλ=∫1λ(δ′)[λp−1a(1−δ)‖∇u‖pp+λ2p−1b(1−δ)‖∇u‖2pp]dλ>0. |
Therefore for any
Lemma 2.4. For any
Proof. If the sign of
Lemma 2.5. Assume that
(i) If
(ii) If
Proof. (ⅰ) We first prove
Iδ0(u(t0))=0,‖∇u‖p≠0 or J(u(t0))=d(δ0). |
Due to
(ⅱ) The proof is similar to (ⅰ).
Lemma 2.6. If
Proof. Let
J(u(t0))=J(u0)−∫t00‖uτ‖22+k‖∇uτ‖22dτ<d. |
It is known from
In this section, we deal with the global existence and blowing-up of the weak solution to (1) under the condition
Proof of Theorem 1.2. From Lemma 2.1, for any
Step1. Global existence.
Let
um(x,t)=m∑j=1αmj(t)ϕj(x),αmj(t)=(um,ϕj),m=1,2,... |
which satisfy
(umt,ϕj)+k(∇umt,∇ϕj)+M(‖∇um‖pp)(|∇um|p−2∇um,∇ϕj)=(|um|q−1um−1|Ω|∫Ω|um|q−1umdx,ϕj), | (11) |
um(x,0)=m∑j=1αmj(0)ϕj(x)→u0(x)inW1,pN(Ω). | (12) |
Multiplying (11) by
J(um(x,0))=J(um(x,t))+∫t0(‖umτ‖22+k‖∇umτ‖22)dτ,∀t>0. |
By
J(um(x,t))+∫t0(‖umτ‖22+k‖∇umτ‖22)dτ=J(um(x,0))<d,∀t>0. |
From
∫t0(‖umτ‖22+k‖∇umτ‖22)dτ+a(q+1−p)p(q+1)‖∇um‖pp+b(q+1−2p)2p(q+1)‖∇um‖2pp<d, |
for all
∫t0(‖umτ‖22+k‖∇umτ‖22)dτ<d,‖∇um‖pp<dp(q+1)a(q+1−p),‖|um|q−1⋅um‖q+1q=‖um‖qq+1≤Sq‖∇um‖qp<Sq(dp(q+1)a(q+1−p))qp. |
Then there exists a positive constant
umt⇀utinL2(0,∞;L2(Ω)),um∗⇀uinL∞(0,∞;W1,pN(Ω)),um→ustronglyinL2(Ω×(0,T)),a.e.inΩ×(0,T),|um|q−1⋅um∗⇀|u|q−1⋅uinL∞(0,∞;Lq+1q(Ω)),M(‖∇um‖pp)|∇um|p−2⋅∇um∗⇀ξinL∞(0,∞;Lpp−1(Ω)). |
Similar to the process of [17], we can prove
(ut,ϕj)+k(∇ut,∇ϕj)+M(‖∇u‖pp)(|∇u|p−2∇u,∇ϕj)=(|u|q−1u−1|Ω|∫Ω|u|q−1udx,ϕj). |
Then from Definition 1.1
Step2. Uniqueness.
Assume (1) has two global bounded weak solution
12ddt∫Ωw2dx+k2ddt∫Ω|∇w|2dx+M(‖∇u‖pp)‖∇u‖pp+M(‖∇v‖pp)‖∇v‖pp=M(‖∇u‖pp)∫Ω|∇u|p−2∇u∇vdx+M(‖∇v‖pp)∫Ω|∇v|p−2∇v∇udx+∫Ωq|θu+(1−θ)v|q−1w2dx |
with
12ddt∫Ωw2dx+k2ddt∫Ω|∇w|2dx+M(‖∇u‖pp)‖∇u‖pp+M(‖∇v‖pp)‖∇v‖pp≤M(‖∇u‖pp)p−1p‖∇u‖pp+M(‖∇u‖pp)1p‖∇v‖pp+M(‖∇v‖pp)p−1p‖∇v‖pp+M(‖∇v‖pp)1p‖∇u‖pp+∫Ωq|θu+(1−θ)v|q−1w2dx, |
which with the form of
12ddt∫Ωw2dx+k2ddt∫Ω|∇w|2dx+bp(‖∇u‖pp−‖∇v‖pp)2≤∫Ωq|θu+(1−θ)v|q−1w2dx. |
Thus we have
12ddt∫Ωw2dx≤∫Ωq|θu+(1−θ)v|q−1w2dx≤C∫Ωw2dx, |
where
Step3. Progressive estimation.
According to
12ddt(‖u‖22+k‖∇u‖22)=−Iδ1(u)+a(δ1−1)‖∇u‖pp+b(δ1−1)‖∇u‖2pp≤b(δ1−1)‖∇u‖2pp≤b(δ1−1)C∗2p‖∇u‖2p2≤(δ1−1)γ(‖u‖2p2+kp‖∇u‖2p2) |
with
12ddt(‖u‖22+k‖∇u‖22)≤(δ1−1)γKp(‖u‖22+k‖∇u‖22)p, | (13) |
which implies
Proof of Theorem 1.3. Assume
H(t)=∫t0(‖u‖22+k‖∇u‖22)dτ+(T∗−t)(‖u0‖22+k‖∇u0‖22),t∈[0,T∗], |
where
H′(t)=‖u‖22+k‖∇u‖22−‖u0‖22−k‖∇u0‖22, | (14) |
H″(t)=2(ut,u)+2k(∇ut,∇u)=−2I(u), | (15) |
and
(H′(t))2=4[∫t0((uτ,u)+k(∇uτ,∇u))dτ]2≤4[∫t0(‖uτ‖22+k‖∇uτ‖22)dτ][∫t0(‖u‖22+k‖∇u‖22)dτ]≤4H(t)[∫t0(‖uτ‖22+k‖∇uτ‖22)dτ]. |
Therefore we can deduce that
H″(t)H(t)−q+12(H′(t))2≥H(t)[−2I(u)−2(q+1)∫t0‖uτ‖22+k‖∇uτ‖22dτ]. | (16) |
Set
ξ(t)=−2I(u)−2(q+1)∫t0(‖uτ‖22+k‖∇uτ‖22)dτ, |
which with the definition of
ξ(t)=−2(q+1)J(u0)+2a(q+1−p)p‖∇u‖pp+b(q+1−2p)p‖∇u‖2pp. |
When
ξ(t)>σ1>0withσ1=2a(q+1−p)prp(1). | (17) |
When
H″(t)=2a(δ2−1)‖∇u‖pp+2b(δ2−1)‖∇u‖2pp−2Iδ2(u)≥2a(δ2−1)rp(δ2), |
which with (14) guarantees
‖u‖22+k‖∇u‖22≥H′(t)≥2a(δ2−1)rp(δ2)t. |
Thus there exists a
Substituting (17) into (16), we can deduce that
H″(t)H(t)−q+12(H′(t))2>σ1H(t). |
Then
[H1−q2(t)]″≤σ1(1−q)2[H1−q2(t)]q+1q−1,t∈[T∗,T∗]. |
Let
y″(t)≤σ1(1−q)2[y(t)]q+1q−1,t∈[T∗,T∗]. |
Then there is
Proof of Theorem 1.4. Since
{ut−kΔut−M(‖∇u‖pp)Δpu=|u|q−1u−1|Ω|∫Ω|u|q−1udx,(x,t)∈Ω×(0,T),∂u∂ν=0,(x,t)∈∂Ω×(0,T),u(x,0)=λsu0(x),x∈Ω. |
According to
∫t0(‖usτ‖22+k‖∇usτ‖22)dτ+J(us)=J(λsu0)<d,0≤t<+∞. |
Since
∫t0(‖usτ‖22+k‖∇usτ‖22)dτ+a(q+1−p)p(q+1)‖∇us‖pp+b(q+1−2p)2p(q+1)‖∇us‖2pp<d. |
Therefore
∫t0(‖usτ‖22+k‖∇usτ‖22)dτ<d,‖∇us‖pp<dp(q+1)a(q+1−p),‖|us|q−1us‖q+1q=‖us‖qq+1≤Sq‖∇us‖qp<Sq(dp(q+1)a(q+1−p))qp. |
Similar to the proof of Theorem 1.2, (1) has a unique global weak solution
If
0<J(u(t0))=J(u0)−∫t00(‖uτ‖22+k‖∇uτ‖22)dτ=d1<d. |
Taking
12ddt(‖u‖22+k‖∇u‖22)≤(δ1−1)γKp(‖u‖22+k‖∇u‖22)p |
with
‖u‖22+k‖∇u‖22≤[(‖u(t0)‖22+k‖∇u(t0)‖22)1−p+2(1−δ1)(p−1)γKp(t−t0)]−1p−1. |
If there exists
∫t∗0(‖uτ‖22+k‖∇uτ‖22)dτ>0,J(u(t∗))=d−∫t∗0(‖uτ‖22+k‖∇uτ‖22)dτ<d. |
By the definition of
Proof of Theorem 1.5. Similar to Theorem 1.3, we get
H″(t)H(t)−q+12(H′(t))2≥[2a(q+1−p)p‖∇u‖pp+b(q+1−2p)p‖∇u‖2pp−2(q+1)J(u0)]H(t). |
From
For the solutions that have been discussed in Section 3, we here further establish life span estimation of finite time blow-up solution without additional restriction on the initial data in Theorem 1.3.
Proof Theorem 1.6. Let
(ⅰ) If
θ′(t)=−I(u)=−(q+1)J(u)+a(q+1−p)p‖∇u‖pp+b(q+1−2p)2p‖∇u‖2pp>(q+1)η(t)>0,θ(t)η′(t)=12(‖u‖22+k‖∇u‖22)⋅(‖ut‖22+k‖∇ut‖22)≥12((ut,u)+k(∇ut,∇u))2=12(θ′(t))2>q+12θ′(t)η(t), | (18) |
which implies
[η(t)⋅θ−q−12(t)]′=θ−1−q+12(t)[θ(t)η′(t)−q+12η(t)θ′(t)]>0. | (19) |
Thus (18) and (19) lead to
0<η(0)θ−q−12(0)≤η(t)θ−q−12(t)≤1q+1θ′(t)θ−q−12(t)=21−q2[θ1−q2(t)]′, |
which further indicates that
0≤θ1−q2(t)≤1−q22θ−q−12(0)η(0)t+θ1−q2(0). |
Thus we can deduce that
(ⅱ) For
mint∈[t0,T)(2a(q+1−p)p‖∇u(t)‖pp+b(q+1−2p)p‖∇u(t)‖2pp)−2(q+1)J(u0)>0. | (20) |
Let
F(t)=∫tt0(‖u‖22+k‖∇u‖22)dτ+(T−t)(‖u0‖22+k‖∇u0‖22)+β((t−t0)+σ)2 |
with
F′(t)=∫tt0ddτ(‖u‖22+k‖∇u‖22)dτ+2β((t−t0)+σ),F″(t)=ddt(‖u‖22+k‖∇u‖22)+2β=−2(q+1)J(u(t0))+2(q+1)∫tt0(‖uτ‖22+k‖∇uτ‖22)dτ+2a(q+1−p)p‖∇u‖pp+b(q+1−2p)p‖∇u‖2pp+2β. |
Then
F″(t)F(t)−ρ(F′(t))2=F″(t)F(t)+4ρ[(∫tt0(‖u‖22+k‖∇u‖22)dτ+β((t−t0)+σ)2)⋅(∫tt0(‖uτ‖22+k‖∇uτ‖22)dτ+β)−(∫tt0[(uτ,u)+k(∇uτ,∇u)]dτ+β((t−t0)+σ))2−(F(t)−(T−t)(‖u0‖22+k‖∇u0‖22))(∫tt0(‖uτ‖22+k‖∇uτ‖22)dτ+β)]=F″(t)F(t)+4ρ(T−t)(‖u0‖22+k‖∇u0‖22)(∫tt0(‖uτ‖22+k‖∇uτ‖22)dτ+β)+4ρζ(t)−4ρF(t)(∫tt0(‖uτ‖22+k‖∇uτ‖22)dτ+β), |
where
ζ(t)=(∫tt0(‖u‖22+k‖∇u‖22)dτ+β((t−t0)+σ)2)⋅(∫tt0(‖uτ‖22+k‖∇uτ‖22)dτ+β) |
−(∫tt0[(uτ,u)+k(∇uτ,∇u)]dτ+β((t−t0)+σ))2≥0,t∈[t0,T). |
Thus
F″(t)F(t)−ρ(F′(t))2≥F(t)[F″(t)−4ρβ−4ρ∫tt0(‖uτ‖22+k‖∇uτ‖22)dτ]=F(t)[−2(q+1)J(u(t0))+2(q+1−2ρ)∫tt0(‖uτ‖22+k‖∇uτ‖22)dτ+2a(q+1−p)p‖∇u‖pp+b(q+1−2p)p‖∇u‖2pp+2β−4ρβ]. |
Take
F″(t)F(t)−q+12(F′(t))2≥F(t)[2a(q+1−p)p‖∇u‖pp+b(q+1−2p)p‖∇u‖2pp−2(q+1)J(u(t0))−2(q+1)β]. |
Since (20), we can get
F″(t)F(t)−q+12(F′(t))2≥0witht0<t<T, |
provided that
β∈(0,a(q+1−p)p(q−1)‖∇u(t0)‖pp+b(q+1−2p)2p(q−1)‖∇u(t0)‖2pp−J(u0)]. | (21) |
Set
G′(t)=(1−q+12)F−q+12(t)F′(t)≤0,G″(t)=(1−q+12)⋅F−1−q+12(t)[−q+12(F′(t))2+F″(t)F(t)]≤0,G(t)≤G(t0)+G′(t0)(t−t0). |
Because of
t−t0≤−G(t0)G′(t0)=(T−t0)(‖u0‖22+k‖∇u0‖22)+βσ2(q−1)βσ |
with
T−t0≤β0σ2(q−1)β0σ−(‖u0‖22+k‖∇u0‖22). |
Define
Tβ0(σ)β0σ2(q−1)β0σ−(‖u0‖22+k‖∇u0‖22) |
with
σ=2‖u0‖22+2k‖∇u0‖22(q−1)β0, |
which indicates that
T−t0≤infσ∈(‖u0‖22+k‖∇u0‖22(q−1)β0,+∞)Tβ0(σ)=4‖u0‖22+4k‖∇u0‖22(q−1)2β0. |
Combining the above inequality with (21), we can get
T−t0≤infβ0∈(0,a(q+1−p)p(q−1)‖∇u(t0)‖pp+b(q+1−2p)2p(q−1)‖∇u(t0)‖2pp−J(u0)]4‖u0‖22+4k‖∇u0‖22(q−1)2β0=4‖u0‖22+4k‖∇u0‖22(q−1)2(a(q+1−p)p(q−1)‖∇u(t0)‖pp+b(q+1−2p)2p(q−1)‖∇u(t0)‖2pp−J(u0)). |
This section is devoted to proving Theorem 1.7 and Theorem 1.8 to investigate the conditions that ensure the global existence or finite time blowing-up of solution to (1) when
Proof of Theorem 1.7. (ⅰ) If
‖u(t0)‖22+k‖∇u(t0)‖22≥λJ(u0). | (22) |
It can be seen from
I(u)=−12ddt(‖u‖22+k‖∇u‖22)>0,0<t<t0. |
Then we have
‖u(t0)‖22+k‖∇u(t0)‖22<‖u0‖22+k‖∇u0‖22≤λJ(u0), |
which contradicts (22). Hence
Using (4) and (5), there holds
J(u0)≥J(u)=1q+1I(u)+(ap−aq+1)‖∇u‖pp+(b2p−bq+1)‖∇u‖2pp>a(q+1−p)p(q+1)‖∇u‖pp, |
which means
‖ω‖22+k‖∇ω‖22<‖u0‖22+k‖∇u0‖22≤λJ(u0),J(ω)≤J(u0). |
So that
(ⅱ) If
‖ω‖22+k‖∇ω‖22>ΛJ(u0),J(ω)≤J(u0). |
Then
a‖∇u‖pp<a‖∇u‖pp+b‖∇u‖2pp<‖u‖q+1q+1≤Sq+1‖∇u‖q+1p, |
which means
Proof of Theorem 1.8. The definitions of
d=infu∈NJ(u)=infu∈N[a(q+1−p)p(q+1)‖∇u‖pp+b(q+1−2p)2p(q+1)‖∇u‖2pp]=infu∈Nf(‖∇u‖p), |
where
κ=(−a(q+1−p)+√a2(q+1−p)2+2db(q+1−2p)p(q+1)b(q+1−2p))1/p |
such that
‖∇u‖p≥κ>0. | (23) |
By the Gagliardo–Nirenberg inequality [2], we get
‖u‖q+1≤β‖u‖(1−θ)2‖∇u‖θp, |
where
a‖∇u‖pp≤‖u‖q+1q+1≤βq+1‖u‖(1−θ)(q+1)2‖∇u‖θ(q+1)p, |
which says
a‖∇u‖p−θ(q+1)p≤βq+1‖u‖(1−θ)(q+1)2. | (24) |
Moreover by the definition of
f(u)−s<0, |
which implies
‖∇u‖p≤˜κ=(−a(q+1−p)+√a2(q+1−p)2+2sb(q+1−2p)p(q+1)b(q+1−2p))1/p. | (25) |
For the lower bound of
Case 1.
λs=infu∈Ns{‖u‖22+k‖∇u‖22}≥infu∈N{‖u‖22+k‖∇u‖22}≥infu∈N[aβq+1‖∇u‖p−θ(q+1)p]2(1−θ)(q+1)≥[aβq+1κp−θ(q+1)]2(1−θ)(q+1). |
Case 2.
λs=infu∈Ns{‖u‖22+k‖∇u‖22}≥supu∈N[aβq+1‖∇u‖p−θ(q+1)p]2(1−θ)(q+1)≥[aβq+1˜κp−θ(q+1)p]2(1−θ)(q+1). |
For the upper bound of
Λs=supu∈Ns{‖u‖22+k‖∇u‖22}≤supu∈Ns(1+k)|Ω|p−2p‖∇u‖2p≤(1+k)|Ω|p−2p˜κ2. |
[1] |
Global nonexistence for nonlinear Kirchhoff systems. Arch. Ration. Mech. Anal. (2010) 196: 489-516. ![]() |
[2] | H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. |
[3] |
Blow-up in a partial differential equation with conserved first integral. SIAM J. Appl. Math. (1993) 53: 718-742. ![]() |
[4] |
Y. Cao and Q. Zhao, Asymptotic behavior of global solutions to a class of mixed pseudo-parabolic Kirchhoff equations, Appl. Math. Lett., 118 (2021), 107119, 6 pp. doi: 10.1016/j.aml.2021.107119
![]() |
[5] |
Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness. Nonlinear Dynam. (2016) 84: 35-50. ![]() |
[6] |
Digital removal of random media image degradations by solving the diffusion equation backwards in time. SIAM J. Numer. Anal. (1978) 15: 344-367. ![]() |
[7] |
Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete Contin. Dyn. Syst. (2019) 39: 1185-1203. ![]() |
[8] |
Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Adv. Nonlinear Anal. (2020) 9: 148-176. ![]() |
[9] |
Variable exponent linear growth functionals in image restoration. SIMA. J. Appl. Math. (2006) 66: 1383-1406. ![]() |
[10] |
Global existence and blow-up for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity. J. Math. Anal. Appl. (2019) 478: 393-420. ![]() |
[11] |
Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent. Appl. Anal. (2016) 95: 524-544. ![]() |
[12] |
Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy. Comput. Math. with Appl. (2018) 76: 2477-2483. ![]() |
[13] |
Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy. Comput. Math. Appl. (2018) 75: 3283-3297. ![]() |
[14] |
Existence, multiplicity and nonexistence results for Kirchhoff type equations. Adv. Nonlinear Anal. (2021) 10: 616-635. ![]() |
[15] |
Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire (2008) 25: 215-218. ![]() |
[16] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[17] |
Global existence and finite time blow-up of solutions to a nonlocal p-Laplace equation. Math. Model. Anal. (2019) 24: 195-217. ![]() |
[18] |
Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. J. Differential Equations (2020) 269: 4914-4959. ![]() |
[19] |
On potential wells and vacuum isolating of solutions for semilinear wave equations. J. Differential Equations (2003) 192: 155-169. ![]() |
[20] |
On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal. (2006) 64: 2665-2687. ![]() |
[21] |
Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations. Commun. in Partial Differential Equations (1998) 23: 457-486. ![]() |
[22] |
Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. (1975) 22: 273-303. ![]() |
[23] |
C. Qu and W. Zhou, Asymptotic analysis for a pseudo-parabolic equation with nonstandard growth conditions, Appl. Anal., (2021). doi: 10.1080/00036811.2020.1869941
![]() |
[24] |
Blow-up and extinction for a thin-film equation with initial-boundary value conditions. J. Math. Anal. Appl. (2016) 436: 796-809. ![]() |
[25] |
Mathematical modeling of electrorheological materials. Continu. Mech. Thermodyn. (2001) 13: 59-78. ![]() |
[26] |
On global solution of nonlinear hyperbolic equations. Arch. Ration. Mech. Anal. (1968) 30: 148-172. ![]() |
[27] |
Nonlinear degenerate evolution equations and partial differential equations of mixed type. SIAM J. Math. Anal. (1975) 6: 25-42. ![]() |
[28] |
On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete Contin. Dyn. Syst. Ser. B (2021) 26: 5465-5494. ![]() |
[29] |
Kirchhoff-type system with linear weak damping and logarithmic nonlinearities. Nonlinear Anal. (2019) 188: 475-499. ![]() |
[30] |
Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation. Adv. Nonlinear Anal. (2021) 10: 261-288. ![]() |
[31] |
Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions. Nonlinearity (2018) 31: 3228-3250. ![]() |
[32] |
Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. (2013) 264: 2732-2763. ![]() |
[33] |
Second critical exponent and life span for pseudo-parabolic equation. J. Differential Equations (2012) 253: 3286-3303. ![]() |
[34] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675–710,877. |
[35] | On Lavrentiev's phenomenon. Russ. J. Math. Phys. (1995) 3: 249-269. |
[36] |
Solvability of the three-dimensional thermistor problem. Proc. Stekolov Inst. Math. (2008) 261: 98-111. ![]() |
[37] |
Global asymptotical behavior of solutions to a class of fourth order parabolic equation modeling epitaxial growth. Nonlinear Anal. Real World Appl. (2019) 48: 54-70. ![]() |
1. | Qiuting Zhao, Yang Cao, Initial boundary value problem of pseudo‐parabolic Kirchhoff equations with logarithmic nonlinearity, 2023, 0170-4214, 10.1002/mma.9684 | |
2. | Fengjie Li, Ping Li, A Note on a Mixed Pseudo-Parabolic Kirchhoff Equation with Logarithmic Damping, 2024, 1079-2724, 10.1007/s10883-024-09679-z |