Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Assessing inequalities in access to the city’s green and blue spaces through the experiences of its residents

  • Received: 17 April 2024 Revised: 12 August 2024 Accepted: 03 September 2024 Published: 14 September 2024
  • We report on the findings of a qualitative research study exploring the benefits to mental, physical, and social well-being of regular interaction with the city’s green and blue spaces using a walking interview method to gauge the views of fifty frequent visitors to the city’s parks. This was followed by a second phase of research consisting of four focus groups exploring the experiences of those whose access to the city’s green and blue spaces is restricted, noting the effects of these limitations on their general well-being. Despite government-backed urban sustainable redesign initiatives to promote greater access to the city’s biodiversity, its elderly, disabled, and poorer socio-economic communities continue to encounter restrictions regarding their access to its green and blue spaces. By highlighting these issues, our aim is to show how a partial membership of the city’s sustainable development plan is enacted (i.e., a simultaneous inclusion of all community members rhetorically and an exclusion of the needs of many in practice) and reinforced in ways that reproduce socially embedded patterns of inequality. It calls for a more sociologically grounded analysis of the persistence of such inequalities as an important appendage to current discourse on the restorative benefits of the ‘15-minute city’ and as a corrective to current public participation measures that fail to incorporate lived experiences of unequal access to the city’s nature. It proposes a framework that addresses more effectively the distributive, recognition, and procedural dimensions of inclusive, sustainable city living.

    Citation: Tracey Skillington, Johanna Marie Kirsch. Assessing inequalities in access to the city’s green and blue spaces through the experiences of its residents[J]. Urban Resilience and Sustainability, 2024, 2(3): 272-288. doi: 10.3934/urs.2024014

    Related Papers:

    [1] Shuyue Ma, Jiawei Sun, Huimin Yu . Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a source term. Communications in Analysis and Mechanics, 2023, 15(2): 245-266. doi: 10.3934/cam.2023013
    [2] Shu Wang . Global well-posedness and viscosity vanishing limit of a new initial-boundary value problem on two/three-dimensional incompressible Navier-Stokes equations and/or Boussinesq equations. Communications in Analysis and Mechanics, 2025, 17(2): 582-605. doi: 10.3934/cam.2025023
    [3] Zhigang Wang . Serrin-type blowup Criterion for the degenerate compressible Navier-Stokes equations. Communications in Analysis and Mechanics, 2025, 17(1): 145-158. doi: 10.3934/cam.2025007
    [4] Reinhard Racke . Blow-up for hyperbolized compressible Navier-Stokes equations. Communications in Analysis and Mechanics, 2025, 17(2): 550-581. doi: 10.3934/cam.2025022
    [5] Hongxia Lin, Sabana, Qing Sun, Ruiqi You, Xiaochuan Guo . The stability and decay of 2D incompressible Boussinesq equation with partial vertical dissipation. Communications in Analysis and Mechanics, 2025, 17(1): 100-127. doi: 10.3934/cam.2025005
    [6] Yang Liu, Xiao Long, Li Zhang . Long-time dynamics for a coupled system modeling the oscillations of suspension bridges. Communications in Analysis and Mechanics, 2025, 17(1): 15-40. doi: 10.3934/cam.2025002
    [7] Fangyuan Dong . Multiple positive solutions for the logarithmic Schrödinger equation with a Coulomb potential. Communications in Analysis and Mechanics, 2024, 16(3): 487-508. doi: 10.3934/cam.2024023
    [8] Zhen Wang, Luhan Sun . The Allen-Cahn equation with a time Caputo-Hadamard derivative: Mathematical and Numerical Analysis. Communications in Analysis and Mechanics, 2023, 15(4): 611-637. doi: 10.3934/cam.2023031
    [9] Rui Sun, Weihua Deng . A generalized time fractional Schrödinger equation with signed potential. Communications in Analysis and Mechanics, 2024, 16(2): 262-277. doi: 10.3934/cam.2024012
    [10] Chunyou Sun, Junyan Tan . Attractors for a Navier–Stokes–Allen–Cahn system with unmatched densities. Communications in Analysis and Mechanics, 2025, 17(1): 237-262. doi: 10.3934/cam.2025010
  • We report on the findings of a qualitative research study exploring the benefits to mental, physical, and social well-being of regular interaction with the city’s green and blue spaces using a walking interview method to gauge the views of fifty frequent visitors to the city’s parks. This was followed by a second phase of research consisting of four focus groups exploring the experiences of those whose access to the city’s green and blue spaces is restricted, noting the effects of these limitations on their general well-being. Despite government-backed urban sustainable redesign initiatives to promote greater access to the city’s biodiversity, its elderly, disabled, and poorer socio-economic communities continue to encounter restrictions regarding their access to its green and blue spaces. By highlighting these issues, our aim is to show how a partial membership of the city’s sustainable development plan is enacted (i.e., a simultaneous inclusion of all community members rhetorically and an exclusion of the needs of many in practice) and reinforced in ways that reproduce socially embedded patterns of inequality. It calls for a more sociologically grounded analysis of the persistence of such inequalities as an important appendage to current discourse on the restorative benefits of the ‘15-minute city’ and as a corrective to current public participation measures that fail to incorporate lived experiences of unequal access to the city’s nature. It proposes a framework that addresses more effectively the distributive, recognition, and procedural dimensions of inclusive, sustainable city living.



    In this paper, we study the 2D steady compressible Prandtl equations in {x>0,y>0}:

    {uxu+vyu1ρ2yu=xP(ρ)ρ,x(ρu)+y(ρv)=0,u|x=0=u0(y),limyu=U(x),u|y=0=v|y=0=0, (1.1)

    where (u,v) is velocity field, ρ(x) and U(x) are the traces at the boundary {y=0} of the density and the tangential velocity of the outer Euler flow. The states ρ,U satisfy the Bernoulli law

    UxU+xP(ρ)ρ=0. (1.2)

    The pressure P(ρ) is a strictly increasing function of ρ with 0<ρ0ρρ1 for some positive constants ρ0 and ρ1.

    In this paper, we assume that the pressure satisfies the favorable pressure gradient xP0, which implies that

    xρ0.

    The boundary layer is a very important branch in fluid mechanics. Ludwig Prandtl [14] first proposed the related theory of the boundary layer in 1904. Since then, many scholars have devoted themselves to studying the mathematical theory of the boundary layer [1,7,8,9,11,12,17,18,19,21,22,23,24,26,27]. For more complex fluids, such as compressible fluids, one can refer to [19,20,28] and the references therein for more details. Here, for our purposes, we only list some relevant works.

    There are three very natural problems about the steady boundary layer: (ⅰ) Boundary layer separation, (ⅱ) whether Oleinik's solutions are smooth up to the boundary for any x>0 and (ⅲ) vanishing viscosity limit of the steady Navier-Stokes system. Next, we will introduce the relevant research progress in these three aspects. The separation of the boundary layer is one of the very important research contents in the boundary layer theory. [17]. The earliest mathematical theory in this regard was proposed by Caffarelli and E in an unpublished paper [25]. Their results show that the existence time x of the solutions to the steady Prandtl equations in the sense of Oleinik is finite under the adverse pressure gradient. Moreover, the family uμ(x,y)=μ12u(xμx,μ14y) is compact in C0(R2+). Later, Dalibard and Masmoudi [4] proved the solution behaves near the separation as yu(x,0)(xx)12 for x<x. Shen, Wang and Zhang [18] found that the solution near the separation point behaves like yu(x,y)(xx)14 for x<x. The above work further illustrates that the boundary layer separation is a very complex phenomenon. Recently, there were also some results about the steady compressible boundary layer separation [28]. The authors found that if the heat transfer in the boundary layer disappeared, then the singularity would be the same as that in the incompressible case. There is still relatively little mathematical theory on the separation of unsteady boundary layers. This is because back-flow and separation no longer occur simultaneously. When the boundary layer back-flow occurs, the characteristics of the boundary layer will continue to maintain for a period of time. Therefore, it is very important to study the back-flow point for further research on separation. Recently, Wang and Zhu [21] studied the back-flow problem of the two-dimensional unsteady boundary layer, which is a important work. It is very interesting to further establish the mathematical theory of the unsteady boundary layer separation.

    Due to degenerate near the boundary, the high regularity of the solution of the boundary layer equation is a very difficult and meaningful work. In a local time 0<x<x1, Guo and Iyer [6] studied the high regularity of of the Prandtl equations. Oleinik and Samokhin [13] studied the existence of solutions of steady Prandtl equations and Wang and Zhang [23] proved that Oleinik's solutions are smooth up to the boundary y=0 for any x>0. The goal of this paper is to prove the global C regularity of the two-dimensional steady compressible Prandtl equations. Recently, Wang and Zhang [24] found the explicit decay for general initial data with exponential decay by using the maximum principle.

    In addition, in order to better understand the relevant background knowledge, we will introduce some other related work. As the viscosity goes to zero, the solutions of the three-dimensional evolutionary Navier-Stokes equations to the solutions of the Euler equations are an interesting problem. Beirão da Veiga and Crispo [2] proved that in the presence of flat boundaries convergence holds uniformly in time with respect to the initial data's norm. For the non-stationary Navier-Stokes equations in the 2D power cusp domain, the formal asymptotic expansion of the solution near the singular point is constructed and the constructed asymptotic decomposition is justified in [15,16] by Pileckas and Raciene.

    Before introducing the main theorem, we introduce some preliminary knowledge. To use the von Mises transformation, we set

    ˜u(x,y)=ρ(x)u(x,y),˜v(x,y)=ρ(x)v(x,y),˜u0(y)=ρ(0)u0(y),

    then we find that (˜u,˜v) satisfies:

    {˜ux˜u+˜vy˜u2y˜uxρρ˜u2=ρxP(ρ),x˜u+y˜v=0,˜u|x=0=˜u0(y),limy˜u=ρ(x)U(x),˜u|y=0=˜v|y=0=0. (1.3)

    By the von Mises transformation

    x=x,ψ(x,y)=y0˜u(x,z)dz,w=˜u2, (1.4)
    x˜u=xω2ω+ψωxψ2ω,y˜u=ψω2,2y˜u=ω2ψω2, (1.5)

    and (1.3)–(1.5), we know that w(x,ψ) satisfies:

    xww2ψw2xρρw=2ρxP(ρ), (1.6)

    with

    w(x,0)=0,w(0,ψ)=w0(ψ),limψ+w=(ρ(x)U(x))2. (1.7)

    In addition, we have

    2y˜u=ψw,22y˜u=w2ψw. (1.8)

    In [5], Gong, Guo and Wang studied the existence of the solutions of system (1.1) by using the von Mises transformation and the maximal principle proposed by Oleinik and Samokhin in [13]. Specifically, they proved that:

    Theorem 1.1. If the initial data u0 satisfies the following conditions:

    uC2,αb([0,+))(α>0),u(0)=0,yu(0)>0,yu(y)0fory[0,+),limy+u(y)=U(0)>0,ρ1(0)2yu(y)ρ1(0)xP(0)=O(y2) (1.9)

    and ρC2([0,X0]), then there exists 0<XX0 such that system (1.1) admits a solution uC1([0,X)×R+). The solution has the following properties:

    (i) u is continuous and bounded in [0,X]×R+; yu,2yu are continuous and bounded in [0,X)×R+; v,yv,xu are locally bounded in [0,X)×R+.

    (ii) u(x,y)>0 in [0,X)×R+ and for any ˉx<X, there exists y0,m>0 such that for all (x,y)[0,ˉx]×[0,y0],

    yu(x,y)m>0.

    (iii) if xP0(xρ0), then

    X=+.

    Remarks 1.2. uC2,αb([0,+))(α>0) means that u is Hölder continuity and bounded.

    This theorem shows that under the favorable pressure gradient, the solution is global-in-x. However, if the pressure is an adverse pressure gradient, then boundary layer separation will occur. Xin and Zhang [26] studied the global existence of weak solutions of unsteady Prandtl equations under the favorable pressure gradient. For the unsteady compressible Prandtl equation, similar results are obtained in [3]. Recently, Xin, Zhang and Zhao [27] proposed a direct proof of the existence of global weak solutions of the Prandtl equation. The key content of this paper is that they have studied the uniqueness and regularity of weak solutions. This method can be applied to the compressible Prandtl equation.

    Our main results are as follows:

    Theorem 1.3. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and xP are smooth. Then, there exists a constant C>0 depending only on ε,X,u0,P(ρ),k,m such that for any (x,y)[ε,X]×[0,+),

    |kxmyu(x,y)|C,

    where X,ε are positive constants with ε<X and m,k are any positive integers.

    Remarks 1.4. Our methods may be used to other related models. There are similar results for the magnetohydrodynamics boundary layer and the thermal boundary layer. This work will be more difficult due to the influence of temperature and the magnetic field.

    Due to the degeneracy near the boundary ψ=0, the proof of the main result is divided into two parts, Theorem 1.5 and Theorem 1.6. This is similar to the result of the incompressible boundary layer, despite the fluid being compressible and the degeneracy near the boundary. Different from the incompressible case [23], we have no divergence-free conditions, which will bring new terms. It is one of the difficulties in this paper to deal with these terms. Now, we will briefly introduce our proof framework. First, we prove the following theorem in the domain [ε,X]×[0,Y1] for a small Y1. The key ingredients of proof is that we employ interior priori estimates and the maximum principle developed by Krylov [10].

    Theorem 1.5. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and xP are smooth. Then, there exists a small constant Y1>0 and a large constant C>0 depending only on ε,X,Y1,u0,P(ρ),k,m such that for any (x,y)[ε,X]×[0,Y1],

    |kxmyu(x,y)|C,

    where X,ε are positive constants with ε<X and m,k are any positive integers.

    Next, we prove the following theorem in the domain [ε,X]×[Y2,+) for a small positive constant Y2. The key of proof is that we prove (1.6) is a uniform parabolic equation in the domain [ε,X]×[Y2,+) in Section 4. Once we have (1.6) is a uniform parabolic equation, the global C regularity of the solution is a direct result of interior Schauder estimates and classical parabolic regularity theory. The proof can be given similarly to the steady incompressible boundary layer. For the sake of simplicity of the paper, more details can be found in [23] and we omit it here.

    Theorem 1.6. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and xP are smooth. Then, there exists a constant Y0>0 such that for any constant Y2(0,Y0), there exists a constant C>0 depending only on ε,X,Y2,u0,P(ρ),k,m such that for any (x,y)[ε,X]×[Y2,+),

    |kxmyu(x,y)|C,

    where X,ε are positive constants with ε<X and m,k are any positive integers.

    Therefore, Theorem 1.3 can be directly proven by combining Theorem 1.5 with Theorem 1.6.

    The organization of this paper is as follows. In Section 2, we study lower order and higher order regularity estimates. In Section 3, we prove Theorem 1.5 in the domain near y=0 by transforming back to the original coordinates (x,y). In Section 4, we prove (1.6) is a uniform parabolic equation by using the maximum principle and we also prove the Theorem 1.3.

    In this subsection, we study the lower order regularity estimates using the standard interior a priori estimates developed by Krylov [10].

    Lemma 2.1. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9)and the known function ρ and xP are smooth. Assume 0<ε<X, then there exists some positive constants δ1>0 and C independent of ψ such that for any (x,ψ)[ε,X]×[0,δ1],

    |xw(x,ψ)|Cψ.

    Proof. Due to Lemma 2.1 in [5] (or Theorem 2.1.14 in [13]), there exists δ1>0 for any (x,ψ)[0,X]×[0,δ1], such that for some α(0,12) and positive constants m,M (we assume δ1<1),

    |xw|Cψ12+α,0<m<ψw<M,mψ<w<Mψ. (2.1)

    By (1.6), we obtain

    xxww2ψxw=(xw)22w+2ρxPxw2w+xρρxw+2x(xρρ)w2x[ρxP].

    Take a smooth cutoff function 0ϕ(x)1 in [0,X] such that

    ϕ(x)=1,x[ε,X],ϕ(x)=0,x[0,ε2],

    then

    x[xwϕ(x)]w2ψ[xwϕ(x)]=(xw)22wϕ(x)+2ρxPxw2wϕ(x)+xρρxwϕ(x)+2x(xρρ)wϕ(x)2x(ρxP)ϕ(x)+xwxϕ(x):=W.

    Combining with (2.1), we know

    |W|Cψ2α+Cψα12+Cψα+12+Cψ+CCψα12. (2.2)

    We take φ(ψ)=μ1ψμ2ψ1+β with constants μ1,μ2, then by (2.1) and (2.2), we get

    x[xwϕ(x)φ]w2ψ[xwϕ(x)φ]|W|μ2wβ(1+β)ψβ1Cψα12μ2mβ(1+β)ψβ12.

    By taking μ2 sufficiently large and α=β, for (x,ψ)(0,X]×(0,δ1), we have

    x[xwϕ(x)φ]w2ψ[xwϕ(x)φ]<0.

    For any ψ[0,δ1], let μ1μ2, and we have

    (xwϕφ)(0,ψ)0,

    and take μ1 large enough depending on M,δ1,μ2 such that

    (xwϕφ)(x,δ1)Mδ12+α1μ1δ1+μ2δ1+β10.

    Since w(x,0)=0, we know that for any x[0,X],

    (xwϕφ)(x,0)=0.

    By the maximum principle, it holds in [0,X]×[0,δ1] that

    (xwϕφ)(x,ψ)0.

    Let δ1 be chosen suitably small, for (x,ψ)[ε,X]×[0,δ1], and we obtain

    xw(x,ψ)μ1ψμ2ψ1+βμ12ψ.

    Considering xwϕφ, the result xwμ12ψ in [ε,X]×[0,δ1] can be proved similarly. This completes the proof of the lemma.

    Lemma 2.2. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and xP are smooth. Assume 0<ε<X, then there exists some positive constants δ2>0 and C independent of ψ such that for any (x,ψ)[ε,X]×[0,δ2],

    |ψxw(x,ψ)|C,|2xw(x,ψ)|Cψ12,|2ψxw(x,ψ)|Cψ1.

    Proof. From Lemma 2.1, there exists δ1>0 such that for any (x,ψ)[ε2,X]×[0,δ1],

    |xw(x,ψ)|Cψ.

    Let Ψ0=min{23δ1,ε2}, for any (x0,ψ0)[ε,X]×(0,Ψ0], and we denote

    Ω={(x,ψ)|x0ψ320xx0,12ψ0ψ32ψ0}.

    By the definition of Ψ0, we know Ω[ε2,X]×[0,δ1], then it holds in Ω that

    |xw|Cψ. (2.3)

    The following transformation f is defined:

    Ω˜Ω:=[1,0]˜x×[12,12]˜ψ,(x,ψ)(˜x,˜ψ),

    where xx0=ψ320˜x,ψψ0=ψ0˜ψ.

    Since ˜x=ψ320x,˜ψ=ψ0ψ, it holds in Ω that

    ˜x(ψ10w)ψ120w2˜ψ(ψ10w)2˜xρρ(ψ10w)=2ρ˜xPψ10.

    Combining with (2.1), we get 0<cψ120wC,|ψ10w|C, and for any ˜z1,˜z2˜Ω,

    |ψ120w(˜z1)ψ120w(˜z2)|=ψ120|w(˜z1)w(˜z2)|w(˜z1)+w(˜z2)Cψ0|˜z1˜z2|ψ0=C|˜z1˜z2|.

    This means that for any α(0,1), we have

    |ψ120w|Cα(˜Ω)C.

    Since P and ρ are smooth, we have

    |ρ1˜xρ|C0,1([1,0]˜x)+|ρ˜xPψ10|C0,1([1,0]˜x)C.

    By standard interior priori estimates (see Theorem 8.11.1 in [10] or Proposition 2.3 in [23]), we have

    |wψ10|Cα([12,0]˜x×[14,14]˜ψ)+|2˜ψwψ10|Cα([12,0]˜x×[14,14]˜ψ)C. (2.4)

    Let f:=xwψ10, which satisfies

    ˜xfwψ1202˜ψf2˜ψw2wψ120f2˜xρρf=2x[ρ˜xP]ψ10+2x(˜xρρ)(ψ10w).

    By (2.3), we have |f|C in ˜Ω. Due to

    |ψ120w12(˜z1)ψ120w12(˜z2)|=ψ120|w(˜z1)w(˜z2)w(˜z1)w(˜z2)|w12(˜z1)+w12(˜z2)C|˜z1˜z2|,

    we have

    |ψ120w12|Cα(˜Ω)C. (2.5)

    Since

    2˜ψw2wψ120=2˜ψwψ10ψ1202w,

    which along with (2.4) and (2.5) gives

    |2˜ψw2wψ120|Cα([12,0]˜x×[14,14]˜ψ)C.

    As before, by (2.4) and the density ρ and P are smooth, via the standard interior a priori estimates, it yield that

    |˜xf|L([14,0]˜x×[18,18]˜ψ)+|˜ψf|L([14,0]˜x×[18,18]˜ψ)+|2˜ψf|L([14,0]˜x×[18,18]˜ψ)C.

    Therefore, we obtain

    |2xw(x0,ψ0)|Cψ120,|ψxw(x0,ψ0)|C,|2ψxw(x0,ψ0)|Cψ10.

    This completes the proof of the lemma.

    In this subsection, we study the higher order regularity estimates using the maximum principle. The two main results of this subsection are Lemma 2.3 and Lemma 2.7.

    Lemma 2.3. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and xP are smooth. Assume 0<ε<X and k2, then there exists some positive constants δ>0 and C independent of ψ such that for any (x,ψ)[ε,X]×[0,δ],

    |kxw|Cψ,|ψkxw|C,|2ψkxw|Cψ1.

    Proof. By Lemma 2.1 and Lemma 2.2, we may inductively assume that for 0jk1, there holds that in [ε2,X]×[0,δ3] (assume δ31),

    |ψjxw|C,|2ψjxw|Cψ1,|jxw|Cψ,|jxw|Cψ12,|kxw|Cψ12. (2.6)

    We will prove that there exists δ4<δ3 so that in [ε,X]×[0,δ4],

    |ψkxw|C,|2ψkxw|Cψ1,|kxw|Cψ,|kxw|Cψ12,|k+1xw|Cψ12. (2.7)

    The above results are deduced from the following Lemma 2.4, Lemma 2.5 and Lemma 2.6.

    Lemma 2.4. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and xP are smooth. Assume that (2.6) holds, then there is a positive constant M1 for any (x,ψ)[7ε8,X]×[0,δ3] and 0<β1,

    |kxw|<M1ψ1β,|kxw|M1ψ12β.

    Proof. Take a smooth cutoff function 0ϕ(x)1 in [0,X] such that

    ϕ(x)=1,x[7ε8,X],ϕ(x)=0,x[0,5ε8].

    As in [23], fix any h<ε8. Set

    Ω={(x,ψ)|0<xX,0<ψ<δ3},

    and let

    (ⅰ) f=k1xw(xh,ψ)k1xw(x,ψ)hϕ+Mψlnψ, (x,ψ)[5ε8,X]×[0,+),

    (ⅱ) f=Mψlnψ, (x,ψ)[0,5ε8)×[ψ,+),

    so we get f(x,0)=0, f(0,ψ)0. We know

    f(x,δ3)C(δ3)12+Mδ3lnδ30,

    where M is large enough. Then, by choosing the appropriate M, we know that the positive maximum of f cannot be achieved in the interior. Finally, the lemma can be proven by the arbitrariness of h.

    Assume that there exists a point

    p0=(x0,ψ0)Ω,

    such that

    f(p0)=maxˉΩf>0.

    It is easy to know that

    x0>5ε8,k1xw(x0h,ψ0)<k1xw(x0,ψ0).

    By (2.1), denote ξ=m, we have

    w2ψ(Mψlnψ)=Mwψ1ξMψ12. (2.8)

    By (1.6), a direct calculation gives

    xk1xww2ψk1xw=2k1x(ρxP)+k2m=1Cmk1(k1mxw)2ψmxw+(k1xw)2ψw+2k1m=0Cmk1k1mx(xρρ)mxw=2k1x(ρxP)+k2m=1Cmk1(k1mxw)2ψmxw+k1xw2wxww+(k1xw2w)2ρxPw(k1xw2w)2xρρww+2k1m=0Cmk1k1mx(xρρ)mxw+k2m=0Cmk22ψwm+1xwk2mx12w:=4i=1Ii

    and

    I1=2k1x(ρxP)+k2m=1Cmk1(k1mxw)2ψmxw+k1xw2wxww,I2=ρxPwk1xw,I3=xρρk1xw+2k1m=0Cmk1k1mx(xρρ)mxw,I4=k2m=0Cmk22ψwm+1xwk2mx12w.

    For x5ε8, we consider the following equality

    xf1w(p1)2ψf1=w(p1)w(p)h2ψk1xw(p)+4i=11h(Ii(p1)Ii(p)), (2.9)

    where

    f1=1h(k1xw(p1)k1xw(p)),

    with p1=(xh,ψ),p=(x,ψ).

    For any x5ε8, by (2.6), it is easy to conclude that

    |1h(w(p1)w(p))2ψk1xw(p)|Cψ12,|1h(I1(p1)I1(p))|Cψ12,|4i=31h(Ii(p1)Ii(p))|Cψ12, (2.10)

    where C is dependent on the parameter h.

    Since

    1h(I2(p1)I2(p))=f1[ρxPw(p1)]+k1xw(p)1h[ρxPw(p1)ρxPw(p)],

    combining with (2.6), f1(p0)>0 and xP0, it holds at p=p0 that

    1h(I2(p1)I2(p0))C. (2.11)

    Summing up (2.10) and (2.11), we conclude that at p=p0,

    xf1w2ψf1C0ψ12.

    This along with (2.8) shows that for x5ε8, it holds at p=p0 that

    xfw2ψfCψ12ξMψ12. (2.12)

    By taking M large enough, we have xf(p0)w2ψf(p0)<0. By the definition of p0, we obtain

    xf(p0)w2ψf(p0)0,

    which leads to a contradiction. Therefore, for M chosen as above and independent of h, we have

    maxˉΩf0.

    We can similarly prove that minˉΩf0 by replacing Mψlnψ in f with Mψlnψ. By the arbitrariness of h, for any (x,ψ)(7ε8,X]×(0,δ3] we have

    |kxw|Mψlnψ.

    Due to

    2wkxw+k1m=1Cmk(mxwkmxw)=kx(ww)=kxw, (2.13)

    which along with (2.6) shows that in (78ε,X]×(0,δ3],

    |wkxw|Cψlnψ.

    Lemma 2.5. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and xP are smooth. Assume that (2.6) holds, then for any (x,ψ)[1516ε,X]×[0,δ3],

    |kxw|Cψ,|kxw|Cψ12.

    Proof. Take a smooth cutoff function ϕ(x) so that

    ϕ(x)=1,x[15ε16,X],ϕ(x)=0,x[0,7ε8].

    Set

    f=kxwϕμ1ψ+μ2ψ32β

    with constants μ1,μ2. Let β be small enough in Lemma 2.4. Then it holds in [7ε8,X]×[0,δ3] that

    |kxw|Cψ1β,|kxw|Cψ12β. (2.14)

    We denote

    Ω={(x,ψ)|0<xX,0<ψ<δ3}.

    As in [23], we have f(x,0)=0, f(0,ψ)0 and f(x,δ3)0 by taking μ1 large depending on μ2. We claim that the maximum of f cannot be achieved in the interior.

    By (1.6), we have

    xkxww2ψkxw=2kx(ρxP)+k1m=0Cmk(kmxw)2ψmxw+2km=0Cmkkmx(xρρ)mxw,

    and

    2ψmxw=mx2ψw=mx(xww+2ρxPw2xρρw).

    For any x7ε8, 0jk1 and 0mk1, from (2.6) and (2.14), we get

    |jxw|Cψ,|kxw|Cψ1β,|kmxw|Cψ12β.

    Then let β12, for 0mk1 and x7ε8, we obtain

    |2ψmxw|Cψ12β+Cψ12+Cψ12βCψ12.

    Therefore, we conclude that for x7ε8,

    xkxww2ψkxwC+Cψβ+Cψ1βCψβ.

    By the above inequality and (2.1), it holds at p=p0 that

    xfw2ψf=xkxww2ψkxw+kxwxϕw2ψ(μ1ψ+μ2ψ32β)C2ψβξμ2ψβ,

    where ξ=(32β)(12β)m>0. Then we have xfw2ψf<0 in Ω by taking μ2 large depending on C2. This means that the maximum of f cannot be achieved in the interior. Therefore, we have

    maxˉΩf0.

    In the same way, we can prove that

    maxˉΩkxwϕμ1ψ+μ2ψ32β0.

    So, for any (x,ψ)[1516ε,X]×[0,δ3], we have

    |kxw|μ1ψμ2ψ32βμ1ψ.

    Combining with (2.6) and (2.13), it holds in [1516ε,X]×[0,δ3] that

    |kxw|Cψ12.

    This completes the proof of the lemma.

    Lemma 2.6. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and xP are smooth. Assume that (2.6) holds, then for any (x,ψ)[ε,X]×[0,δ4],

    |ψkxw|C,|2ψkxw|Cψ1,|k+1xw|Cψ12.

    Proof. By Lemma 2.5 and (2.6), for any (x,ψ)[1516ε,X]×[0,δ3],

    |jxw|Cψ,|jxw|Cψ12,0jk. (2.15)

    Set Ψ0=min{23δ3,ε16}, for (x0,ψ0)[ε,X]×(0,Ψ0], we denote

    Ω={(x,ψ)|x0ψ320xx0,12ψ0ψ32ψ0}.

    A direct calculation gives

    xkxww2ψkxw=2kx(ρxP)+kxw2ψw+k2m=1Cmk(kmxw)2ψmxw+Ck1kxw2w2ψk1xw+2km=0Cmkkmx(xρρ)mxw.

    By (1.6), we obtain

    2ψmxw=mx2ψw=mx(xww+2ρxPw2xρρw)=m+1xww+ml=1Clmml+1xwlx1w+mx(2ρxPw)mx(2xρρw),

    and

    kxw=k1xxw2w=kxw2w+k1l=1Clk1k1l+1xwlx12w,

    then

    xkxww2ψkxw=2kx(ρxP)+k2m=1Cmk(kmxw)2ψmxw+kxw2w2ψw+k1l=1Clk1k1l+1xwlx(12w)2ψw+Ck1kxwkxw2w+2km=0Cmkkmx(xρρ)mxw+Ck1kxw2w[k1l=1Clk1klxwlx1w+k1x(2ρxPw)k1x(2xρρw)].

    The following transformation f is defined:

    Ω˜Ω:=[1,0]˜x×[12,12]˜ψ,(x,ψ)(˜x,˜ψ),

    where xx0=ψ320˜x,ψψ0=ψ0˜ψ.

    Let f=kxwψ10, we get

    ˜xfwψ1202˜ψf12w2ψwψ320fxw2wψ320f=2ψ120kx(ρxP)+ψ120k2m=1Cmk(kmxw)2ψmxw+ψ120k1l=1Clk1klxw(lx12w)2ψw+2ψ120km=0Cmkkmx(xρρ)mxw+ψ120xw2w[k1l=1Clk1klxwlx1w+k1x(2ρxPw)k1x(2xρρw)]:=F.

    From the proof of Lemma 2.2 and Lemma 2.6, we know that in ˜Ω for α(0,1),

    |f|C,0<cψ120wC,|ψ120w|Cα(˜Ω)C.

    By (2.6), (2.15) and the equality

    ψ(2ψmxw)=ψm+1xwwψwm+1xw2(w)3+ml=1Clmml+1xψwlx1w+ml=1Clmml+1xwlxψw2(w)3+mx(ρxPψw(w)3)mx(xρρψww),

    we can conclude that for jk1 and mk2,

    |˜x,˜ψjxw|Cψ120,|˜x,˜ψjx(1w)|Cψ120,|˜x,˜ψ2ψmxw|Cψ120.

    Combining (2.4) with (2.5), we can obtain

    |12w2ψwψ320+xw2wψ320|Cα(˜Ω)+|F|Cα(˜Ω)C.

    By the standard interior priori estimates, we obtain

    |˜xf|L([14,0]˜x×[18,18]˜ψ)+|˜ψf|L([14,0]˜x×[18,18]˜ψ)+|2˜ψf|L([14,0]˜x×[18,18]˜ψ)C.

    Therefore, this means that

    |k+1xw(x0,ψ0)|Cψ120,|ψkxw(x0,ψ0)|C,|2ψkxw(x0,ψ0)|Cψ10.

    Since (x0,ψ0) is arbitrary, this completes the proof of the lemma.

    Lemma 2.7. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and xP are smooth. Assume 0<ε<X and integer m,k0, then there exists a positive constant δ>0 such that for any (x,ψ)[ε,X]×[0,δ],

    |mψkxw|Cψ1m. (2.16)

    Proof. From Lemma 2.1, (2.1), Lemma 2.2 and Lemma 2.3, a direct calculation can prove that

    |kx1w|Cψ12,|kxψ1w|Cψ32,|kx2ψ1w|Cψ52,

    and (2.16) holds for m=0,1,2. Then for 0mj with j1, we inductively assume that

    |mψkxw|Cψ1m,|kxmψ1w|Cψ12m. (2.17)

    In the next part, we will prove that (2.17) still holds for m=j+1.

    By (1.6), we obtain

    j+1ψkxw=j1ψkx2ψw=kxj1ψ(xww+2ρxPw2xρρww)=kx(j1i=0Cij1j1iψxwiψ1w+2ρxPj1ψ1w2xρρj1i=0Cij1j1iψwiψ1w).

    Combining with (2.17), we get

    |j+1ψkxw|Cψ32j+Cψ12j+Cψ32jCψ12j. (2.18)

    By straight calculations, we get

    0=kxj+1ψ(1w1ww)=kx[2wj+1ψ1w+ji=1j+1il=0Cij+1Clj+1i(iψ1w)(lψ1w)j+1liψw+jl=0Clj+11w(lψ1w)j+1lψw].

    Combining the above equality with (2.17), we can conclude that

    |kxj+1ψ1w|Cψ32j.

    This completes the proof of the lemma.

    In this section, we will prove the regularity of the solution u in the domain

    {(x,ψ)|εxX,0yY1}.

    Proof of Theorem 1.5:

    Proof. For the convenience of proof, we denote

    (˜x,ψ)=(x,y0˜udy).

    A direct calculation gives (see P13 in [23])

    y=wψ,x=˜x+xψ(x,y)ψ,xψ=12wψ0w32˜xwdψ.

    By (2.1) and Lemma 2.3, we have |xψ|Cψ. Due to y=wψ, we obtain

    kx2y˜u=(˜x+xψψ)kψw,kx22y˜u=(˜x+xψψ)k(˜xw+2ρxP2xρρw)=(˜x+xψψ)k(˜xw)+2k˜x(ρxP)2(xρρ)(˜x+xψψ)kw2k˜x(xρρ)w.

    By |xψ|Cψ and Lemma 2.7, we obtain that Theorem 1.5 holds for m=0,1,2,

    |kxy˜u|+|kx2y˜u|C. (3.1)

    We inductively assume that for any integer k and m1,

    |kxjy˜u|C,jm. (3.2)

    A direct calculation gives

    kxm+1y˜u=kxm1y2y˜u=kxm1y(˜ux˜uy˜uy0x˜udyxρρ˜u2)=kx(m1i=0Cim1m1iy˜uiyx˜um2i=0Ci+1m1m1iy˜uiyx˜umy˜uy0x˜udyxρρm1y˜u2),

    and we can deduce from (3.1) and (3.2) that

    |kxjy˜u|C,jm+1.|kxjyu|C,jm+1.

    This completes the proof of the theorem.

    In this section, we prove our main theorem. The key point is to prove that (1.6) is a uniform parabolic equation. The proof is based on the classical parabolic maximum principle. The specific proof details are as follows.

    Proof. By (1.2) and xP0, we obtain

    CU2(x)=U2(0)2x0xP(ρ)ρdxU2(0).

    By (1.7) and w increasing in ψ (see below), we know that there exists some positive constants Ψ and C0 such that for any (x,ψ)[0,X]×[Ψ,+),

    wC0U2(0). (4.1)

    From Theorem 1.1, we know that there exists positive constants y0,M,m such that for any (x,ψ)[0,X]×[0,y0] (we can take y0 to be small enough),

    My˜u(x,y)m. (4.2)

    The fact that ψy2 is near the boundary y=0 (see Remark 4.1 in [23]), for some small positive constant 0<κ<1, we get

    κ2y20ψκy20σy0yy02, (4.3)

    for some constant σ>0 depends on κ,m,M.

    We denote

    Ω={(x,ψ)|0xX,κ2y20ψ+}.

    By (4.2) and (4.3), we get ˜u(x,σy0)mσy0, then for any x[0,X], we have

    w(x,κ2y20)m2σ2y20. (4.4)

    Since the initial data u0 satisfies the condition (1.9) and w=˜u2, we know w(0,ψ)>0 for ψ>0 and there exists a positive constant ζ, such that for ψ[κ2y20,Ψ],

    w(0,ψ)>ζ. (4.5)

    Then, we only consider

    Ω1={(x,ψ)|0xX,κ2y20ψΨ}.

    We denote H(x,ψ):=eλxψw(x,ψ), which satisfies the following system in the region Ω0={(x,ψ)|0x<X,0<ψ<+}:

    {xHψw2wψHw2ψH+(λ2xρρ)H=0,H|x=0=ψw0(ψ),H|ψ=0=2eλxy˜u|y=0,H|ψ=+=0. (4.6)

    Then, we choose λ properly large such that λ2xρρ0. Due to

    H|x=0=ψw0(ψ)0,H|ψ=0=2eλxy˜u|y=0>0,H|ψ=+=0,

    it follows that

    H(x,ψ)=eλxF(x,ψ)=eλxψw0,(x,ψ)[0,X)×R+,

    which means ψw0 in [0,X)×R+. Hence, w is increasing in ψ. Therefore, we know that there exists a positive constant λm2σ2y20 such that for any x[0,X],

    w(x,Ψ)λ. (4.7)

    By (1.6), for any ε>0, we know W:=w+εx satisfies the following system in Ω1:

    {xWw2ψW2xρρW=F,W|x=0=W0>ζ,W|ψ=κ2y20=W1m2σ2y20,W|ψ=Ψ=W2λ,

    where

    F=2ρxP+ε2εxxρρ.

    Since xP0, we know the diffusive term F>0. Therefore, the minimum cannot be reached inside Ω1. Set

    η0=min{W0,W1,W2},

    then by the maximum principle, we obtain W=w+εxη0. Let ε0, we have wη0 in Ω1. Then we denote

    η=min{η0,C0U2(0)}>0,

    combining with (4.1), we have wη in Ω. Therefore, there exists some positive constant c such that cw in Ω. From Theorem 1.1, we have wC in Ω. In sum, there exists positive constants c,C such that cwC in Ω. This further means that

    0<cwC, (4.8)

    where C depends on X. Therefore, we prove (1.6) is a uniform parabolic equation. Furthermore, by Theorem 1.1, we know y˜u,2y˜u are continuous and bounded in [0,X)×R+. Combining ρ, xP are smooth, (4.8) with

    2y˜u=ψw,22y˜u=w2ψw=xw2xρρw+2ρxP(ρ),

    we obtain

    wCα(Ω)C.

    Once we have the above conclusion, the proof of Theorem 1.6 can be given in a similar fashion to [23]. Here, we provide a brief explanation for the reader's convenience. More details can be found in [23].

    Step 1: For any (x1,ψ1)[ε,X]×[κy20,+), we denote

    Ωx1,ψ1={(x,ψ)|x1ε2xx1,ψ1κ2y20ψψ1+κ2y20}.

    Step 2: Note that the known function ρ, xP is smooth, we can repeat interior Schauder estimates in Ωx1,ψ1 to achieve uniform estimates independent of choice of (x1,ψ1) for any order derivatives of w. Since the width and the length of Ωx1,ψ1 are constants and the estimates employed are independent of (x1,ψ1), restricting the estimates to the point (x1,ψ1), we can get for any m<+,|mw(x1,ψ)|CX,m,y0,ε.

    Step 3: Since (x1,ψ1) is arbitrary, we have for any m<+,|mw(x1,ψ)|CX,m,y0,ε in [ε,X]×[κy20,+). Then, as in Section 3, we can prove Theorem 1.6.

    Finally, Theorem 1.3 is proven by combining Theorem 1.5 and Theorem 1.6.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The research of Zou was supported by the Fundamental Research Funds for the Central Universities (Grant No. 202261101).

    The authors declare there is no conflict of interest.



    [1] World Population Review. Available from: worldpopulationreview.com/world-cities/cork-population.
    [2] European Commission (2024) Nature Restoration Law. Available from: https://environment.ec.europa.eu/topics/nature-and-biodiversity/nature-restoration-law_en.
    [3] The National Biodiversity Data Centre, 2023. Available from: https://biodiversityireland.ie/ipbes-irelands-biodiversity-crisis/.
    [4] Colding J, Gren A, Barthel S (2020) The incremental demise of urban green spaces. Land 9: 162. https://doi.org/10.3390/land9050162 doi: 10.3390/land9050162
    [5] Ryan JC (2017) Where have all the Boronia Gone? A posthumanist model of environmental mourning, In: Mourning Nature: Hope at the Heart of Ecological Loss and Grief, Montreal: McGill Queen’s University Press, 117–143. https://doi.org/10.1515/9780773549357-009
    [6] Hoover KC (2018) Sensory disruption in modern living and the emergence of sensory inequities. Yale J Biol Med 91: 53–62. PMC5872642.
    [7] Moreno C (2016) La ville du quart d’heure: Pour un nouveau chrono-urbanisme. Available from: https://www.latribune.fr/regions/smart-cities/la-tribune-de-carlos-moreno/la-ville-du-quart-d-heure-pour-un-nouveau-chrono-urbanisme-604358.html.
    [8] Moreno C, Allam Z, Chabaud D, et al. (2021) Introducing the “15-Minute City”: Sustainability, resilience and place identity in future post-pandemic cities. Smart Cities 4: 93–111. https://doi.org/10.3390/smartcities4010006 doi: 10.3390/smartcities4010006
    [9] Akrami M, Sliwa MW, Rynning MK (2024) Walk further and access more! Exploring the 15-minute city concept in Oslo, Norway. J Urban Mobility 5: 100077. https://doi.org/10.1016/j.urbmob.2024.100077 doi: 10.1016/j.urbmob.2024.100077
    [10] Weng M, Ding N, Li J, et al. (2019) The 15-minute walkable neighbourhoods: Measurement, social inequalities and implications for building healthy communities in urban China. J Transp Health 13: 259–273. https://doi.org/10.1016/j.jth.2019.05.005 doi: 10.1016/j.jth.2019.05.005
    [11] Khavarian-Garmsir AR, Sharifi A, Hajian Hossein Abadi M, et al. (2023) From garden city to 15-minute city: A historical perspective and critical assessment. Land 12: 512. https://doi.org/10.3390/land12020512 doi: 10.3390/land12020512
    [12] Willberg E, Fink C, Toivonen T (2023) The 15-minute city for all?—Measuring individual and temporal variations in walking accessibility. J Transp Geogr 106: 103521. https://doi.org/10.1016/j.jtrangeo.2022.103521 doi: 10.1016/j.jtrangeo.2022.103521
    [13] O'Mahony P, Skillington T (1996) Sustainable development as an organizing principle for discursive democracy. Sustain Dev 4: 42–51. https://doi.org/10.1002/(SICI)1099-1719(199603)4:1%3C42::AID-SD35%3E3.0.CO;2-E doi: 10.1002/(SICI)1099-1719(199603)4:1%3C42::AID-SD35%3E3.0.CO;2-E
    [14] Gaston KJ, Soga M (2020) Extinction of experience: The need to be more specific. People Nat: 2: 575–581. https://doi.org/10.1002/pan3.10118 doi: 10.1002/pan3.10118
    [15] Soga M, Gaston KJ (2018) Shifting baseline syndrome: Causes, consequences and implications. Front Ecol Environ 16: 222–230. https://doi.org/10.1002/fee.1794 doi: 10.1002/fee.1794
    [16] Pyle RM (1993) The Thunder Tree: Lessons from an Urban Wildland, Boston, MA: Houghton Mifflin.
    [17] Marty-Dugas J, Ralph BCW, Oakman JM, et al. (2018) The relation between smartphone use and everyday inattention. Psychol Conscious 5: 46–62. https://doi.org/10.1037/cns0000131 doi: 10.1037/cns0000131
    [18] Melkevik O, Torsheim T, Iannotti RJ, et al. (2010) Is spending time in screen-based sedentary behaviors associated with less physical activity: A cross national investigation. Int J Behav Nutr Phys Act 7: 46. https://doi.org/10.1186/1479-5868-7-46 doi: 10.1186/1479-5868-7-46
    [19] Schutte AR, Torquati JC, Beattie HL (2017) Impact of urban nature on executive functioning in early and middle childhood. Environ Behav 49: 3–30. https://doi.org/10.1177/0013916515603095 doi: 10.1177/0013916515603095
    [20] Twenge JM, Spitzberg BH, Campbell WK (2019) Less in-person social interaction with peers among US adolescents in the 21st century and links to loneliness. J Soc Pers Relat 36: 1892–1913. https://doi.org/10.1177/0265407519836170 doi: 10.1177/0265407519836170
    [21] Smalley A (2022) Forest 404: Using a BBC drama series to explore the impact of nature’s changing soundscapes on human wellbeing and behavior. Glob Environ Change 74: 102497. https://doi.org/10.1016/j.gloenvcha.2022.102497 doi: 10.1016/j.gloenvcha.2022.102497
    [22] Gaston KJ, Soga M (2020) Extinction of experience: The need to be more specific. People Nat 2: 575–581. https://doi.org/10.1002/pan3.10118 doi: 10.1002/pan3.10118
    [23] Rosa H (2013) Social acceleration: A New Theory of Modernity, New York: Columbia University Press. https://doi.org/10.7312/rosa14834-018
    [24] Dyar OJ, Haglund BJA, Melder C, et al. (2022) Rainbows over the world’s public health: determinants of health models in the past, present and future. Scand J Public Health 50: 1047–1058. https://doi.org/10.1177/14034948221113147 doi: 10.1177/14034948221113147
    [25] Bromley RDF, Matthews DL, Thomas CJ (2007) City centre accessibility for wheelchair users: The consumer perspective and the planning implications. Cities 24: 229–241. https://doi.org/10.1016/j.cities.2007.01.009 doi: 10.1016/j.cities.2007.01.009
    [26] Shanahan DF, Lin BB, Gaston KJ, et al. (2014) Socio-economic inequalities in access to nature on public and private lands: A case study from Brisbane, Australia. Landsc Urban Plan 130: 14–23. https://doi.org/10.1016/j.landurbplan.2014.06.005 doi: 10.1016/j.landurbplan.2014.06.005
    [27] Hoffman JS, Shandas V, Pendleton N (2020) The effects of historical housing policies on resident exposure to intra-urban heat: A study of 108 US urban areas. Climate 8: 12. https://doi.org/10.3390/cli8010012 doi: 10.3390/cli8010012
    [28] Colley K, Irvine KN, Currie M (2022) Who benefits from nature? A quantitative intersectional perspective on inequalities in contact with nature and the gender gap outdoors. Landsc Urban Plan 223: 104420. https://doi.org/10.1016/j.landurbplan.2022.104420 doi: 10.1016/j.landurbplan.2022.104420
    [29] Skillington T (2017) Climate Justice and Human Rights, New York: Palgrave. https://doi.org/10.1057/978-1-137-02281-3
    [30] HelpAge International (2016) Making urban spaces work for older people. Available from: https://www.helpage.org/silo/files/ageing-and-the-city-making-urban-spaces-work-for-older-people.pdf.
    [31] World Bank Group (2023) Disability inclusion. Available from: https://www.worldbank.org/en/topic/disability.
    [32] Nissen S, Prendergast K, Aoyagi M, et al. (2020) Young people and environmental affordances in urban sustainable development: Insights into transport and green and public space in seven cities. Sustain Earth 3: 1–12. https://doi.org/10.1186/s42055-020-00039-w doi: 10.1186/s42055-020-00039-w
    [33] Hoerning KH (1971) Power and social stratification. Sociol Q 12: 3–14. https://doi.org/10.1111/j.1533-8525.1971.tb02085.x doi: 10.1111/j.1533-8525.1971.tb02085.x
    [34] Nussbaum MC (2003) Capabilities as fundamental entitlements: Sen and social justice. Fem Econ 9: 33–59. https://doi.org/10.1080/1354570022000077926 doi: 10.1080/1354570022000077926
    [35] May V (2011) Self, belonging and social change. Sociology 45: 363–378. https://doi.org/10.1177/0038038511399624 doi: 10.1177/0038038511399624
    [36] Cuttell J (2015) Arguing for an immersive method: Reflexive meaning making, the visible researcher and moral responses to gameplay. J Comp Res Anthropol Sociol 6: 55–75. Available from: https://www.ceeol.com/search/article-detail?id=289530.
    [37] Herzog H (2005) On home turf: Interview location and its social meaning. Qual Sociol 28: 25–47. https://doi.org/10.1007/s11133-005-2629-8 doi: 10.1007/s11133-005-2629-8
    [38] Rubin HJ, Rubin IS (2011) Qualitative Interviewing: The Art of Hearing Data, Sage Publications.
    [39] Cork City Council (2024) Services. Available from: https://www.corkcity.ie/en/council-services/services/.
    [40] Back L (2012) Live sociology: Social research and its futures. Sociol Rev 60: 18–39. https://doi.org/10.1111/j.1467-954X.2012.02115.x doi: 10.1111/j.1467-954X.2012.02115.x
    [41] Law J, Urry J (2004) Enacting the social. Econ Soc 33: 390–410. https://doi.org/10.1080/0308514042000225716 doi: 10.1080/0308514042000225716
    [42] Gagnon M, Jacob JD, McCabe J (2015) Locating the qualitative interview: Reflecting on space and place in nursing research. J Res Nurs 20: 203–215. https://doi.org/10.1177/1744987114536571 doi: 10.1177/1744987114536571
    [43] Albanesi C (2014) Focus groups, In: Encyclopaedia of Quality of Life and Well-Being Research, Dordrecht: Springer, 2310–2313. https://doi.org/10.1007/978-94-007-0753-5_1066
    [44] Hartig T, Mitchell R, De Vries S, et al. (2014) Nature and health. Annu Rev Public Health 35: 207–228. https://doi.org/10.1146/annurev-publhealth-032013-182443 doi: 10.1146/annurev-publhealth-032013-182443
    [45] Kaplan S (1995) The restorative benefits of nature: Toward an integrative framework. J Environ Psychol 15: 169–182. https://doi.org/10.1016/0272-4944(95)90001-2 doi: 10.1016/0272-4944(95)90001-2
    [46] Barboza EP, Cirach M, Khomenko S, et al. (2021) Green space and mortality in European cities: A health impact assessment study. Lancet Planet Health 5: e718–e730. https://doi.org/10.1016/S2542-5196(21)00229-1 doi: 10.1016/S2542-5196(21)00229-1
    [47] Addas A (2023) The importance of urban green spaces in the development of smart cities. Front Environ Sci 11: 1206372. https://doi.org/10.3389/fenvs.2023.1206372 doi: 10.3389/fenvs.2023.1206372
    [48] Hassell and the Irish Institutional Property Group (2021) Close to home—exploring 15-minute urban living in Ireland (and beyond). Available from: htps://www.hassellstudio.com/research/close-to-home-exploring-the-15-minute-urban-living-in-ireland-and-beyond.
    [49] European Commission (2023) EU Mission: Climate-neutral and smart cities. Available from: https://www.google.com/search?q=EC+cimate+smart+100+cities&oq=EC+cimate+smart+100+cities&aqs=chrome..69i57j69i64.6457j0j15&sourceid=chrome&ie=UTF-8.
    [50] UN Environment Programme (2021) Equitable future cities hold answers to pollution, climate and nature breakdown. Available from: https://www.unep.org/news-and-stories/press-release/equitable-future-cities-hold-answers-pollution-climate-and-nature.
    [51] Nilsson A, Vanhuyse F, Arra V, et al. (2021) Citizen participation for sustainable cities. Available from: https://www.sei.org/wp-content/uploads/2021/05/factsheet-citizen-participation-for-sustainable-cities.pdf.
  • This article has been cited by:

    1. Yakui Wu, Qiong Wu, Yue Zhang, Time decay estimates of solutions to a two-phase flow model in the whole space, 2024, 13, 2191-950X, 10.1515/anona-2024-0037
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1154) PDF downloads(42) Cited by(0)

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog