The global well-posedness theory and viscosity vanishing limit of the initial-boundary value problem on two/three-dimensional (2D/3D) incompressible Navier-Stokes (NS) equations and/or Boussinesq equations with nonlinear boundary conditions are studied. The global existence of weak solution to the initial boundary value problem for 2D/3D incompressible NS equation with one kind of boundary of pressure-velocity's relation and the global existence and uniqueness of the smooth solution to the corresponding problem in 2D case for large smooth initial data are proven. The viscosity vanishing limit of the corresponding initial-boundary value problem for 2D/3D incompressible NS equations in the bounded domain is also established. And the corresponding results are extended to the 2D/3D incompressible Boussinesq equations.
Citation: Shu Wang. Global well-posedness and viscosity vanishing limit of a new initial-boundary value problem on two/three-dimensional incompressible Navier-Stokes equations and/or Boussinesq equations[J]. Communications in Analysis and Mechanics, 2025, 17(2): 582-605. doi: 10.3934/cam.2025023
The global well-posedness theory and viscosity vanishing limit of the initial-boundary value problem on two/three-dimensional (2D/3D) incompressible Navier-Stokes (NS) equations and/or Boussinesq equations with nonlinear boundary conditions are studied. The global existence of weak solution to the initial boundary value problem for 2D/3D incompressible NS equation with one kind of boundary of pressure-velocity's relation and the global existence and uniqueness of the smooth solution to the corresponding problem in 2D case for large smooth initial data are proven. The viscosity vanishing limit of the corresponding initial-boundary value problem for 2D/3D incompressible NS equations in the bounded domain is also established. And the corresponding results are extended to the 2D/3D incompressible Boussinesq equations.
| [1] | E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213–231. |
| [2] |
O. A. Ladyzhenskaya, Sixth problem of the millennium: Navier-Stokes equations, existence and smoothness, Russian Math. Surveys, 58 (2003), 251–286. https://doi.org/10.1070/RM2003v058n02ABEH000610 doi: 10.1070/RM2003v058n02ABEH000610
|
| [3] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193–248. https://doi.org/10.1007/BF02547354 doi: 10.1007/BF02547354
|
| [4] | J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Paris, 1969. |
| [5] |
L. Cafferalli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771–831. https://doi.org/10.1002/cpa.3160350604 doi: 10.1002/cpa.3160350604
|
| [6] | O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow. Translated from Russian by R.A. Silverman and J. Chu. Gordon and Breach Science Publishers, New York, 1963. |
| [7] |
F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241–257. https://doi.org/10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
|
| [8] | A. Majda, A. Bertozzi, Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. https://doi.org/10.1115/1.1483363 |
| [9] |
G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173–182. https://doi.org/10.1007/BF02410664 doi: 10.1007/BF02410664
|
| [10] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rat. Mech. Anal., 9 (1962), 187–195. https://doi.org/10.1007/BF00253344 doi: 10.1007/BF00253344
|
| [11] | R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 2nd Ed., North-Holland, Amsterdam, 1979. |
| [12] |
M. R. Ukhovskii, V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52–61. https://doi.org/10.1016/0021-8928(68)90147-0 doi: 10.1016/0021-8928(68)90147-0
|
| [13] |
A. Mahalov, E. S. Titi, S. Leibovich, Invariant helical subspaces for the Navier-Stokes equations, Arch. Ration. Mech. Anal., 112 (1990), 193–222. https://doi.org/10.1007/BF00381234 doi: 10.1007/BF00381234
|
| [14] | C. G. Diego, Absence of simple hyperbolic blow-up for the quasi-geostrophic and Euler equations, Thesis (Ph.D.)-Princeton University, 61 pp, 1998. ISBN: 978-0591-86238-6. |
| [15] | S. Wang, Global well-posedness of the 3D incompressible Navier-Stokes and Euler equations in orthogonal curvilinear coordinate systems, Preprint, 2021. |
| [16] |
P. Contantin, C. R. Doering, Infinite Prandtl number convection, J. Stat. Phys., 94 (1999), 159–172. https://doi.org/10.1023/A:1004511312885 doi: 10.1023/A:1004511312885
|
| [17] | A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, in: Courant Lecture Notes in Mathematics, vol. 9, New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, Providence, RI, 2003. |
| [18] | J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. https://doi.org/10.1007/978-1-4612-4650-3 |
| [19] |
H. Abidi, T. Hmidi, On the global well-posedness for Boussinesq system, J. Diff. Eqns., 233 (2007), 199–220. https://doi.org/10.1016/j.jde.2006.10.008 doi: 10.1016/j.jde.2006.10.008
|
| [20] |
D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497–513. https://doi.org/10.1016/j.aim.2005.05.001 doi: 10.1016/j.aim.2005.05.001
|
| [21] | T. Y. Hou, C. M. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1–12. |
| [22] |
M. J. Lai, R. H. Pan, K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., 199 (2011), 739–760. https://doi.org/10.1007/s00205-010-0357-z doi: 10.1007/s00205-010-0357-z
|
| [23] |
T. Hmidi, S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indinana Univ. Math. J., 58 (2009), 1591–1618. https://doi.org/10.1512/iumj.2009.58.3590 doi: 10.1512/iumj.2009.58.3590
|
| [24] |
T. Hmidi, F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. I.H. Poincare-AN, 27 (2010), 1227–1246. https://doi.org/10.1016/j.anihpc.2010.06.001 doi: 10.1016/j.anihpc.2010.06.001
|
| [25] |
T. Hmidi, F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data, J. Funct. Anal., 260 (2011), 745–796. https://doi.org/10.1016/j.jfa.2010.10.012 doi: 10.1016/j.jfa.2010.10.012
|
| [26] |
D. Coutand, S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007), 829–930. https://doi.org/10.1090/S0894-0347-07-00556-5 doi: 10.1090/S0894-0347-07-00556-5
|
| [27] |
P. Germain, N. Masmoudi, J. Shatah, Global solutions for the gravity water waves equation in dimension 3, Ann. Math., 175 (2012), 691–754. https://doi.org/10.4007/annals.2012.175.2.6 doi: 10.4007/annals.2012.175.2.6
|
| [28] | S. J. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., 130 (1997), 39–72. |
| [29] |
S. J. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12 (1999), 445–495. https://doi.org/10.1090/S0894-0347-99-00290-8 doi: 10.1090/S0894-0347-99-00290-8
|
| [30] |
Y. J. Wang, Z. P. Xin, Global well-posedness of free interface problems for the incompressible inviscid resistive MHD, Comm. Math. Phys., 388 (2021), 1323–1401. https://doi.org/10.1007/s00220-021-04235-3 doi: 10.1007/s00220-021-04235-3
|
| [31] |
P. Zhang, Z. F. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations, Commun. Pure Appl. Math., 61 (2008), 877–940. https://doi.org/10.1002/cpa.20226 doi: 10.1002/cpa.20226
|
| [32] |
D. Coutand, S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal., 176 (2005), 25–102. https://doi.org/10.1007/s00205-004-0340-7 doi: 10.1007/s00205-004-0340-7
|
| [33] | B. Kaltenbacher, I. Kukavica, I. Lasiecka, A. Tuffaha, J. T. Webster, Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions. Oberwolfach Seminars, Vol. 48, Birkhauser, Springer International Publishing AG, Part of Springer Nature, 2018. |
| [34] |
L. Shen, S. Wang, R. Yang, Existence of local strong solutions for the incompressible viscous and non-resistive MHD-structure interaction model. J. Differ. Equations, 272 (2021), 473–543. https://doi.org/10.1016/j.jde.2020.09.039 doi: 10.1016/j.jde.2020.09.039
|
| [35] | R. A. Adams, J. F. Fournier, Sobolev Spaces, Second Edition, Academic Press, Heidelberg, New York, 2003. |
| [36] | J. L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications I, Springer-Verlag, Heidelberg, 1972. |
| [37] | J. Peetre, Espaces d'interpolation et theoreme de Soboleff(French), Ann. Inst. Fourier(Grenoble), 16 (1966), 279–317. |
| [38] | L. Cattabriga, Su un problema a1 contorno relativo a1 sistemo di equarioni di Stokes (Italian), Rend. Sem. Mat. Univ. Padova, 31 (1961), 308–340. |
| [39] | P. Contantin, C. Foias, Navier-Stokes equations, The university of Chicago Press, Chicago and London, 1989. |
| [40] | K. Yosida, Functional Analysis, Springer-Verlag, New York, 1965. |
| [41] | L. Nirenberg, On elliptic partial differential equations, IL Principio Di Minimoe Sue Applicazioni Alle Equazioni Funzionali, 13 (1959), 1–48. |