We review the formulation of a Lorentz-covariant bispinorial wave function and wave equation for a single photon on a flat background. We show the existence of a 10-dimensional set of conservation laws for this equation, and prove that 8 of these can be used to obtain global, gauge-invariant, ADM-like quantities that together define a covariantly constant self-dual bispinor.
Citation: Michael K.-H. Kiessling, A. Shadi Tahvildar-Zadeh. Noetherian conservation laws for photons[J]. Communications in Analysis and Mechanics, 2025, 17(2): 606-629. doi: 10.3934/cam.2025024
We review the formulation of a Lorentz-covariant bispinorial wave function and wave equation for a single photon on a flat background. We show the existence of a 10-dimensional set of conservation laws for this equation, and prove that 8 of these can be used to obtain global, gauge-invariant, ADM-like quantities that together define a covariantly constant self-dual bispinor.
| [1] |
E. Noether, Invariant variation problems, Transport Theo. Stat. Phys., 1 (1971), 186–207 Translated from German (Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, (1918), 235–257). https://doi.org/10.1080/00411457108231446 doi: 10.1080/00411457108231446
|
| [2] | Y. Kosmann-Schwarzbach, The Noether Theorems: Invariace and Conservation Laws in the Twentieth Century, translated by B. E. Schwarzbach, Springer, 2018. |
| [3] | P. J. Olver, Applications of Lie Groups to Differential Equations, New York: Springer-Verlag, 1993. https://doi.org/10.1007/978-1-4612-4350-2 |
| [4] |
S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Commun. Pur. Appl. Math., 38 (1985), 321–332. https://doi.org/10.1002/cpa.3160380305 doi: 10.1002/cpa.3160380305
|
| [5] |
T. C. Sideris, Decay estimates for the three-dimensional inhomogeneous Klein-Gordon equation and applications, Commun. Part. Differ. Equ., 14 (1989), 1421–1455. https://doi.org/10.1080/03605308908820660 doi: 10.1080/03605308908820660
|
| [6] |
S. Klainerman, T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D, Commun. Pur. Appl. Math., 49 (1996), 307–321. https://doi.org/10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H
|
| [7] | T. C. Sideris, The null condition and global existence of nonlinear elastic waves, Invent. Math. 123 (1996), 323–342. https://doi.org/10.1007/BF01232380 |
| [8] |
T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math., 151 (2000), 849–874. https://doi.org/10.2307/121050 doi: 10.2307/121050
|
| [9] |
T. C. Sideris, S. Y. Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds, SIAM J. Math. Anal., 33 (2001), 477–488. https://doi.org/10.1137/S0036141000378966 doi: 10.1137/S0036141000378966
|
| [10] | D. Christodoulou, The Action Principle and Partial Differential Equations, Princeton: Princeton University Press, 2000. https://doi.org/10.1515/9781400882687 |
| [11] | A. Einstein, Hamiltonsches Prinzip und allgemeine Relativitätstheorie, Sitzungsber. preuss. Akad. Wiss., 2 (1916), 1111–1116. |
| [12] | H. Weyl, Raum-Zeit-Materie, 4th ed., Berlin: Springer-Verlag, 1921. https://doi.org/10.1007/978-3-662-02044-9 |
| [13] | L. Landau, E. Lifshitz, The Classical Theory of Fields, Cambridge: Addison-Wesley Press, 1951. |
| [14] | R. Arnowitt, S. Deser, C. W. Misner, Energy and the criteria for radiation in general relativity, Phys. Rev., 118 (1960), 1100–1104. https://doi.org/10.1103/PhysRev.118.1100 |
| [15] | D. Christodoulou, Mathematical Problems of General Relativity I, Zürich Lectures in Advanced Mathematics, Zürich: European Mathematical Society, 2008. https://doi.org/10.4171/005 |
| [16] | M. K.-H. Kiessling, A. S. Tahvildar-Zadeh, On the quantum-mechanics of a single photon, J. Math. Phys., 59 (2018), 112302. https://doi.org/10.1063/1.5021066 |
| [17] | D. Hestenes, Space-Time Algebra, 2nd ed., Birkhauser, 2015. https://doi.org/10.1007/978-3-319-18413-5 |
| [18] | B. Thaller, The Dirac Equation, Berlin: Springer-Verlag, 1992. https://doi.org/10.1007/978-3-662-02753-0 |
| [19] | M. Riesz, Sur certaines notions fondamentales en théorie quantique relativiste, In "Dixieme Congres Math. des Pays Scandinaves, " Copenhagen, 1946,123–148. |
| [20] |
O. Laporte, G. E. Uhlenbeck, Application of spinor analysis to the Maxwell and Dirac equations, Phys. Rev., 37 (1931), 1380. https://doi.org/10.1103/PhysRev.37.1380 doi: 10.1103/PhysRev.37.1380
|
| [21] |
J. R. Oppenheimer, Note on light quanta and the electromagnetic field, Phys. Rev., 38 (1931), 725–748. https://doi.org/10.1103/PhysRev.38.725 doi: 10.1103/PhysRev.38.725
|
| [22] | I. Białynicki-Birula, Photon wave function, Prog. Opt., 36 (1996), 245–294. https://doi.org/10.1016/S0079-6638(08)70316-0 |
| [23] |
R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relat. Gravit., 7 (1976), 31–52. https://doi.org/10.1007/BF00762011 doi: 10.1007/BF00762011
|
| [24] | C. Marchal, Solution générale des équations de Maxwell dans le vide. Décomposition compléte des ondes électromagnétiques à énergie finie, Onde électrique, 71 (1991), 61–73. |
| [25] |
N. Kemmer, The particle aspect of meson theory, Proc. R. Soc. London. A., 173 (1939), 91–116. https://doi.org/10.1098/rspa.1939.0131 doi: 10.1098/rspa.1939.0131
|
| [26] |
R. J. Duffin, On the characteristic matrices of covariant systems, Phys. Rev., 54 (1938), 1114. https://doi.org/10.1103/PhysRev.54.1114 doi: 10.1103/PhysRev.54.1114
|
| [27] |
Harish-Chandra, The correspondence between the particle and the wave aspects of the meson and the photon, Proc. R. Soc. London. A., 186 (1946), 502–525. https://doi.org/10.1098/rspa.1946.0061 doi: 10.1098/rspa.1946.0061
|
| [28] | L. Gårding, Mathematics and Mathematicians: Mathematics in Sweden before 1950, American Mathematical Society, 1994. |
| [29] | A. Borel, Some recollections of Harish-Chandra, Current Science, 99 (2010), 69–71. |
| [30] | M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics, Addison-Wesley, 1974. |
| [31] | S. Weinberg, The Quantum Theory of Fields, Vol. I, Cambridge University Press, 1995. https://doi.org/10.1017/CBO9781139644167 |