The integration of Generative Artificial Intelligence (GAI) tools like ChatGPT, Google Bard, and Bing Chat in higher education shows excellent potential for transformation. However, this integration also raises issues in maintaining academic integrity and preventing plagiarism. In this study, we investigate and analyze practical approaches for efficiently harnessing the potential of GAI while simultaneously ensuring the preservation of assignment integrity. Despite the potential to expedite the learning process and improve accessibility, concerns regarding academic misconduct highlight the necessity for the implementation of novel GAI frameworks for higher education. To effectively tackle these challenges, we propose a conceptual framework, PAIGE (Promoting Assignment Integrity using Generative AI in Education). This framework emphasizes the ethical integration of GAI, promotes active student interaction, and cultivates opportunities for peer learning experiences. Higher education institutions can effectively utilize the PAIGE framework to leverage the promise of GAI while ensuring the preservation of assignment integrity. This approach paves the way for a responsible and thriving future in Generative AI-driven education.
Citation: Shakib Sadat Shanto, Zishan Ahmed, Akinul Islam Jony. PAIGE: A generative AI-based framework for promoting assignment integrity in higher education[J]. STEM Education, 2023, 3(4): 288-305. doi: 10.3934/steme.2023018
[1] | Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054 |
[2] | Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378 |
[3] | K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383 |
[4] | Maysaa Al-Qurashi, Mohammed Shehu Shagari, Saima Rashid, Y. S. Hamed, Mohamed S. Mohamed . Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions. AIMS Mathematics, 2022, 7(1): 315-333. doi: 10.3934/math.2022022 |
[5] | Lingxiao Lu, Jianrong Wu . Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478 |
[6] | Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan . Stability results of the functional equation deriving from quadratic function in random normed spaces. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145 |
[7] | Zhihua Wang . Approximate mixed type quadratic-cubic functional equation. AIMS Mathematics, 2021, 6(4): 3546-3561. doi: 10.3934/math.2021211 |
[8] | Nour Abed Alhaleem, Abd Ghafur Ahmad . Intuitionistic fuzzy normed prime and maximal ideals. AIMS Mathematics, 2021, 6(10): 10565-10580. doi: 10.3934/math.2021613 |
[9] | Sizhao Li, Xinyu Han, Dapeng Lang, Songsong Dai . On the stability of two functional equations for (S,N)-implications. AIMS Mathematics, 2021, 6(2): 1822-1832. doi: 10.3934/math.2021110 |
[10] | Zhihua Wang, Choonkil Park, Dong Yun Shin . Additive ρ-functional inequalities in non-Archimedean 2-normed spaces. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116 |
The integration of Generative Artificial Intelligence (GAI) tools like ChatGPT, Google Bard, and Bing Chat in higher education shows excellent potential for transformation. However, this integration also raises issues in maintaining academic integrity and preventing plagiarism. In this study, we investigate and analyze practical approaches for efficiently harnessing the potential of GAI while simultaneously ensuring the preservation of assignment integrity. Despite the potential to expedite the learning process and improve accessibility, concerns regarding academic misconduct highlight the necessity for the implementation of novel GAI frameworks for higher education. To effectively tackle these challenges, we propose a conceptual framework, PAIGE (Promoting Assignment Integrity using Generative AI in Education). This framework emphasizes the ethical integration of GAI, promotes active student interaction, and cultivates opportunities for peer learning experiences. Higher education institutions can effectively utilize the PAIGE framework to leverage the promise of GAI while ensuring the preservation of assignment integrity. This approach paves the way for a responsible and thriving future in Generative AI-driven education.
In 1940, Ulam [24] posed the stability problem concerning group homomorphisms. For Banach spaces, the problem was solved by Hyers [7] in the case of approximate additive mappings. And then Hyers' result was extended by Aoki [1] and Rassias [18] for additive mappings and linear mappings, respectively. In 1994, another further generalization, the so-called generalized Hyer-Ulam stability, was obtained by Gavruta [6]. Later, the stability of several functional equations has been extensively discussed by many mathematicians and there are many interesting results concerning this problem (see [2,8,9,10,19,20] and references therein); also, some stability results of different functional equations and inequalities were studied and generalized [5,11,12,15,16,17,26] in various matrix normed spaces like matrix fuzzy normed spaces, matrix paranormed spaces and matrix non-Archimedean random normed spaces.
In 2017, Wang and Xu [25] introduced the following functional equation
2k[f(x+ky)+f(kx+y)]=k(1−s+k+ks+2k2)f(x+y)+k(1−s−3k+ks+2k2)f(x−y)+2kf(kx)+2k(s+k−ks−2k2)f(x)+2(1−k−s)f(ky)+2ksf(y) | (1.1) |
where s is a parameter, k>1 and s≠1−2k. It is easy to verify that f(x)=ax+bx2(x∈R) satisfies the functional Eq (1.1), where a,b are arbitrary constants. They considered the general solution of the functional Eq (1.1), and then determined the generalized Hyers-Ulam stability of the functional Eq (1.1) in quasi-Banach spaces by applying the direct method.
The main purpose of this paper is to employ the direct and fixed point methods to establish the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces. The paper is organized as follows: In Sections 1 and 2, we present a brief introduction and introduce related basic definitions and preliminary results, respectively. In Section 3, we prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the direct method. In Section 4, we prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the fixed point method. Our results may be viewed as a continuation of the previous contribution of the authors in the setting of fuzzy stability (see [14,17]).
For the sake of completeness, in this section, we present some basic definitions and preliminary results, which will be useful to investigate the Hyers-Ulam stability results in matrix intuitionistic fuzzy normed spaces. The notions of continuous t-norm and continuous t-conorm can be found in [14,22]. Using these, an intuitionistic fuzzy normed space (for short, IFNS) is defined as follows:
Definition 2.1. ([14,21]) The five-tuple (X,μ,ν,∗,⋄) is said to be an IFNS if X is a vector space, ∗ is a continuous t-norm, ⋄ is a continuous t-conorm, and μ,ν are fuzzy sets on X×(0,∞) satisfy the following conditions. For every x,y∈X and s,t>0,
(i) μ(x,t)+ν(x,t)≤1;
(ii) μ(x,t)>0, (iii) μ(x,t)=1 if and only if x=0;
(iii) μ(αx,t)=μ(x,t|α|) for each α≠0, (v) μ(x,t)∗μ(y,s)≤μ(x+y,t+s);
(iv) μ(x,⋅):(0,∞)→[0,1] is continuous;
(v) limt→∞μ(x,t)=1 and limt→0μ(x,t)=0;
(vi) ν(x,t)<1, (ix) ν(x,t)=0 if and only if x=0;
(vii) ν(αx,t)=ν(x,t|α|) for each α≠0, (xi) ν(x,t)⋄ν(y,s)≥ν(x+y,t+s);
(xiii) ν(x,⋅):(0,∞)→[0,1] is continuous;
(ix) limt→∞ν(x,t)=0 and limt→0ν(x,t)=1.
In this case, (μ,ν) is called an intuitionistic fuzzy norm.
The following concepts of convergence and Cauchy sequences are considered in [14,21]:
Let (X,μ,ν,∗,⋄) be an IFNS. Then, a sequence {xk} is said to be intuitionistic fuzzy convergent to x∈X if for every ε>0 and t>0, there exists k0∈N such that
μ(xk−x,t)>1−ε |
and
ν(xk−x,t)<ε |
for all k≥k0. In this case we write
(μ,ν)−limxk=x. |
The sequence {xk} is said to be an intuitionistic fuzzy Cauchy sequence if for every ε>0 and t>0, there exists k0∈N such that
μ(xk−xℓ,t)>1−ε |
and
ν(xk−xℓ,t)<ε |
for all k,ℓ≥k0. (X,μ,ν,∗,⋄) is said to be complete if every intuitionistic fuzzy Cauchy sequence in (X,μ,ν,∗,⋄) is intuitionistic fuzzy convergent in (X,μ,ν,∗,⋄).
Following [11,12], we will also use the following notations: The set of all m×n-matrices in X will be denoted by Mm,n(X). When m=n, the matrix Mm,n(X) will be written as Mn(X). The symbols ej∈M1,n(C) will denote the row vector whose jth component is 1 and the other components are 0. Similarly, Eij∈Mn(C) will denote the n×n matrix whose (i,j)-component is 1 and the other components are 0. The n×n matrix whose (i,j)-component is x and the other components are 0 will be denoted by Eij⊗x∈Mn(X).
Let (X,‖⋅‖) be a normed space. Note that (X,{‖⋅‖n}) is a matrix normed space if and only if (Mn(X),‖⋅‖n) is a normed space for each positive integer n and
‖AxB‖k≤‖A‖‖B‖‖x‖n |
holds for A∈Mk,n, x=[xij]∈Mn(X) and B∈Mn,k, and that (X,{‖⋅‖n}) is a matrix Banach space if and only if X is a Banach space and (X,{‖⋅‖n}) is a matrix normed space.
Following [23], we introduce the concept of a matrix intuitionistic fuzzy normed space as follows:
Definition 2.2. ([23]) Let (X,μ,ν,∗,⋄) be an intuitionistic fuzzy normed space, and the symbol θ for a rectangular matrix of zero elements over X. Then:
(1) (X,{μn},{νn},∗,⋄) is called a matrix intuitionistic fuzzy normed space (briefly, MIFNS) if for each positive integer n, (Mn(X),μn,νn,∗,⋄) is an intuitionistic fuzzy normed space, μn and νn satisfy the following conditions:
(i) μn+m(θ+x,t)=μn(x,t),νn+m(θ+x,t)=νn(x,t) for all t>0, x=[xij]∈Mn(X), θ∈Mn(X);
(ii) μk(AxB,t)≥μn(x,t‖A‖⋅‖B‖), νk(AxB,t)≤νn(x,t‖A‖⋅‖B‖) for all t>0, A∈Mk,n(R), x=[xij]∈Mn(X) and B∈Mn,k(R) with ‖A‖⋅‖B‖≠0.
(2) (X,{μn},{νn},∗,⋄) is called a matrix intuitionistic fuzzy Banach space if (X,μ,ν,∗,⋄) is an intuitionistic fuzzy Banach space and (X,{μn},{νn},∗,⋄) is a matrix intuitionistic fuzzy normed space.
The following Lemma 2.3 was found in [23].
Lemma 2.3. ([23]) Let (X,{μn},{νn},∗,⋄) be a matrix intuitionistic fuzzy normed space. Then,
(1) μn(Ekl⊗x,t)=μ(x,t), νn(Ekl⊗x,t)=ν(x,t) for all t>0 and x∈X.
(2) For all [xij]∈Mn(X) and t=n∑i,j=1tij>0,
μ(xkl,t)≥μn([xij],t)≥min{μ(xij,tij):i,j=1,2,…,n},μ(xkl,t)≥μn([xij],t)≥min{μ(xij,tn2):i,j=1,2,…,n}, |
and
ν(xkl,t)≤νn([xij],t)≤max{ν(xij,tij):i,j=1,2,…,n},ν(xkl,t)≤νn([xij],t)≤max{ν(xij,tn2):i,j=1,2,…,n}. |
(3) limm→∞xm=x if and only if limm→∞xijm=xij for xm=[xijm],x=[xij]∈Mn(X).
For explicit later use, we also recall the following Lemma 2.4 is due to Diaz and Margolis [4], which will play an important role in proving our stability results in this paper.
Lemma 2.4. (The fixed point alternative theorem [4]) Let (E,d) be a complete generalized metric space and J: E→E be a strictly contractive mapping with Lipschitz constant L<1. Then for each fixed element x∈E, either
d(Jnx,Jn+1x)=∞,∀n≥0, |
or
d(Jnx,Jn+1x)<∞,∀n≥n0, |
for some natural number n0. Moreover, if the second alternative holds then:
(i) The sequence {Jnx} is convergent to a fixed point y∗ of J.
(ii)y∗ is the unique fixed point of J in the set E∗:={y∈E∣d(Jn0x,y)<+∞} and d(y,y∗)≤11−Ld(y,Jy),∀x,y∈E∗.
From now on, let (X,{μn},{νn},∗,⋄) be a matrix intuitionistic fuzzy normed space and (Y,{μn},{νn},∗,⋄) be a matrix intuitionistic fuzzy Banach space. In this section, we will prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by using the direct method. For the sake of convenience, given mapping f: X→Y, we define the difference operators Df: X2→Y and Dfn: Mn(X2)→Mn(Y) of the functional Eq (1.1) by
Df(a,b):=2k[f(a+kb)+f(ka+b)]−k(1−s+k+ks+2k2)f(a+b)−k(1−s−3k+ks+2k2)f(a−b)−2kf(ka)−2k(s+k−ks−2k2)f(a)−2(1−k−s)f(kb)−2ksf(b),Dfn([xij],[yij]):=2k[fn([xij]+k[yij])+fn(k[xij]+[yij])]−k(1−s+k+ks+2k2)fn([xij]+[yij])−k(1−s−3k+ks+2k2)fn([xij]−[yij])−2kfn(k[xij])−2k(s+k−ks−2k2)fn([xij])−2(1−k−s)fn(k[yij])−2ksfn([yij]) |
for all a,b∈X and all x=[xij],y=[yij]∈Mn(X).
We start with the following lemmas which will be used in this paper.
Lemma 3.1. ([25]) Let V and W be real vector spaces. If an odd mapping f: V→W satisfies the functional Eq (1.1), then f is additive.
Lemma 3.2. ([25]) Let V and W be real vector spaces. If an even mapping f: V→W satisfies the functional Eq (1.1), then f is quadratic.
Theorem 3.3. Let φo: X2→[0,∞) be a function such that for some real number α with 0<α<k,
φo(ka,kb)=αφo(a,b) | (3.1) |
for all a,b∈X. Suppose that an odd mapping f: X→Y satisfies the inequality
{μn(Dfn([xij],[yij]),t)≥tt+∑ni,j=1φo(xij,yij),νn(Dfn([xij],[yij]),t)≤∑ni,j=1φo(xij,yij)t+∑ni,j=1φo(xij,yij) | (3.2) |
for all x=[xij],y=[yij]∈Mn(X) and all t>0. Then there exists a unique additive mapping A: X→Y such that
{μn(fn([xij])−An([xij]),t)≥(k−α)(2k+s−1)t(k−α)(2k+s−1)t+n2∑ni,j=1φo(0,xij),νn(fn([xij])−An([xij]),t)≤n2∑ni,j=1φo(0,xij)(k−α)(2k+s−1)t+n2∑ni,j=1φo(0,xij) | (3.3) |
for all x=[xij]∈Mn(X) and all t>0.
Proof. When n=1, (3.2) is equivalent to
μ(Df(a,b),t)≥tt+φo(a,b)andν(Df(a,b),t)≤φo(a,b)t+φo(a,b) | (3.4) |
for all a,b∈X and all t>0. Putting a=0 in (3.4), we have
{μ(2(2k+s−1)f(kb)−2(2k+s−1)kf(b),t)≥tt+φo(0,b),ν(2(2k+s−1)f(kb)−2(2k+s−1)kf(b),t)≤φo(0,b)t+φo(0,b) | (3.5) |
for all b∈X and all t>0. Replacing a by kpa in (3.5) and using (3.1), we get
{μ(f(kp+1a)kp+1−f(kpa)kp,t2k(2k+s−1)kp)≥tt+αpφo(0,a),ν(f(kp+1a)kp+1−f(kpa)kp,t2k(2k+s−1)kp)≤αpφo(0,a)t+αpφo(0,a) | (3.6) |
for all a∈X and all t>0. It follows from (3.6) that
{μ(f(kp+1a)kp+1−f(kpa)kp,αpt2k(2k+s−1)kp)≥tt+φo(0,a),ν(f(kp+1a)kp+1−f(kpa)kp,αpt2k(2k+s−1)kp)≤φo(0,a)t+φo(0,a) | (3.7) |
for all a∈X and all t>0. It follows from
f(kpa)kp−f(a)=p−1∑ℓ=0(f(kℓ+1a)kℓ+1−f(kℓa)kℓ) |
and (3.7) that
{μ(f(kpa)kp−f(a),∑p−1ℓ=0αℓt2k(2k+s−1)kℓ)≥∏p−1ℓ=0μ(f(kℓ+1a)kℓ+1−f(kℓa)kℓ,αℓt2k(2k+s−1)kℓ)≥tt+φo(0,a),ν(f(kpa)kp−f(a),∑p−1ℓ=0αℓt2k(2k+s−1)kℓ)≤∐p−1ℓ=0ν(f(kℓ+1a)kℓ+1−f(kℓa)kℓ,αℓt2k(2k+s−1)kℓ)≤φo(0,a)t+φo(0,a) | (3.8) |
for all a∈X and all t>0, where
p∏j=0aj=a1∗a2∗⋯∗ap, p∐j=0aj=a1⋄a2⋄⋯⋄ap. |
By replacing a with kqa in (3.8), we have
{μ(f(kp+qa)kp+q−f(kqa)kq,∑p−1ℓ=0αℓt2k(2k+s−1)kℓ+q)≥tt+αqφo(0,a),ν(f(kp+qa)kp+q−f(kqa)kq,∑p−1ℓ=0αℓt2k(2k+s−1)kℓ+q)≤αqφo(0,a)t+αqφo(0,a) | (3.9) |
for all a∈X, t>0, p>0 and q>0. Thus
{μ(f(kp+qa)kp+q−f(kqa)kq,∑p+q−1ℓ=qαℓt2k(2k+s−1)kℓ)≥tt+φo(0,a),ν(f(kp+qa)kp+q−f(kqa)kq,∑p+q−1ℓ=qαℓt2k(2k+s−1)kℓ)≤φo(0,a)t+φo(0,a) | (3.10) |
for all a∈X, t>0, p>0 and q>0. Hence
{μ(f(kp+qa)kp+q−f(kqa)kq,t)≥tt+∑p+q−1ℓ=qαℓ2k(2k+s−1)kℓφo(0,a),ν(f(kp+qa)kp+q−f(kqa)kq,t)≤∑p+q−1ℓ=qαℓ2k(2k+s−1)kℓφo(0,a)t+∑p+q−1ℓ=qαℓ2k(2k+s−1)kℓφo(0,a) | (3.11) |
for all a∈X, t>0, p>0 and q>0. Since 0<α<k and
∞∑ℓ=0αℓ2k(2k+s−1)kℓ<∞, |
the Cauchy criterion for convergence in IFNS shows that {f(kpa)kp} is a Cauchy sequence in (Y,μ,ν,∗,⋄). Since (Y,μ,ν,∗,⋄) is an intuitionistic fuzzy Banach space, this sequence converges to some point A(a)∈Y. So one can define the mapping A: X→Y such that
A(a):=(μ,ν)−limp→∞f(kpa)kp. |
Moreover, if we put q=0 in (3.11), we get
{μ(f(kpa)kp−f(a),t)≥tt+∑p−1ℓ=0αℓ2k(2k+s−1)kℓφo(0,a),ν(f(kpa)kp−f(a),t)≤∑p−1ℓ=0αℓ2k(2k+s−1)kℓφo(0,a)t+∑p−1ℓ=0αℓ2k(2k+s−1)kℓφo(0,a) | (3.12) |
for all a∈X, t>0 and p>0. Thus, we obtain
{μ(f(a)−A(a),t)≥μ(f(a)−f(kpa)kp,t2)∗μ(f(kpa)kp−A(a),t2)≥tt+∑p−1ℓ=0αℓk(2k+s−1)kℓφo(0,a),ν(f(a)−A(a),t)≤ν(f(a)−f(kpa)kp,t2)∗ν(f(kpa)kp−A(a),t2)≤∑p−1ℓ=0αℓk(2k+s−1)kℓφo(0,a)t+∑p−1ℓ=0αℓk(2k+s−1)kℓφo(0,a) | (3.13) |
for every a∈X, t>0 and large p. Taking the limit as p→∞ and using the definition of IFNS, we get
{μ(f(a)−A(a),t)≥(k−α)(2k+s−1)t(k−α)(2k+s−1)t+φo(0,a),ν(f(a)−A(a),t)≤φo(0,a)(k−α)(2k+s−1)t+φo(0,a). | (3.14) |
Replacing a and b by kpa and kpb in (3.4), respectively, and using (3.1), we obtain
μ(1kpDf(kpa,kpb),t)≥tt+(αk)pφo(a,b)andν(1kpDf(kpa,kpb),t)≤(αk)pφo(a,b)t+(αk)pφo(a,b) | (3.15) |
for all a,b∈X and all t>0. Letting p→∞ in (3.15), we obtain
μ(DA(a,b),t)=1andν(DA(a,b),t)=0 | (3.16) |
for all a,b∈X and all t>0. This means that A satisfies the functional Eq (1.1). Since f: X→Y is an odd mapping, and using the definition A, we have A(−a)=−A(a) for all a∈X. Thus by Lemma 3.1, the mapping A: X→Y is additive. To prove the uniqueness of A, let A′: X→Y be another additive mapping satisfying (3.14). Let n=1. Then we have
{μ(A(a)−A′(a),t)=μ(A(kpa)kp−A′(kpa)kp,t)≥μ(A(kpa)kp−f(kpa)kp,t2)∗μ(f(kpa)kp−A′(kpa)kp,t2)≥(k−α)(2k+s−1)t(k−α)(2k+s−1)t+2(αk)pφo(0,a),ν(A(a)−A′(a),t)=ν(A(kpa)kp−A′(kpa)kp,t)≤ν(A(kpa)kp−f(kpa)kp,t2)⋄ν(f(kpa)kp−A′(kpa)kp,t2)≤2(αk)pφo(0,a)(k−α)(2k+s−1)t+2(αk)pφo(0,a) | (3.17) |
for all a∈X, t>0 and p>0. Letting p→∞ in (3.17), we get
μ(A(a)−A′(a),t)=1andν(A(a)−A′(a),t)=0 |
for all a∈X and t>0. Hence we get A(a)=A′(a) for all a∈X. Thus the mapping A: X→Y is a unique additive mapping.
By Lemma 2.3 and (3.14), we get
{μn(fn([xij])−An([xij]),t)≥min{μ(f(xij)−A(xij),tn2):i,j=1,…,n} ≥(k−α)(2k+s−1)t(k−α)(2k+s−1)t+n2∑ni,j=1φo(0,xij),νn(fn([xij])−An([xij]),t)≤max{ν(f(xij)−A(xij),tn2):i,j=1,…,n} ≤n2∑ni,j=1φo(0,xij)(k−α)(2k+s−1)t+n2∑ni,j=1φo(0,xij) |
for all x=[xij]∈Mn(X) and all t>0. Thus A: X→Y is a unique additive mapping satisfying (3.3), as desired. This completes the proof of the theorem.
Theorem 3.4. Let φe: X2→[0,∞) be a function such that for some real number α with 0<α<k2,
φe(ka,kb)=αφe(a,b) | (3.18) |
for all a,b∈X. Suppose that an even mapping f: X→Y with f(0)=0 satisfies the inequality
{μn(Dfn([xij],[yij]),t)≥tt+∑ni,j=1φe(xij,yij),νn(Dfn([xij],[yij]),t)≤∑ni,j=1φe(xij,yij)t+∑ni,j=1φe(xij,yij) | (3.19) |
for all x=[xij], y=[yij]∈Mn(X) and all t>0. Then there exists a unique quadratic mapping Q: X→Y such that
{μn(fn([xij])−Qn([xij]),t)≥(k2−α)(2k+s−1)t(k2−α)(2k+s−1)t+n2∑ni,j=1φe(0,xij),νn(fn([xij])−Qn([xij]),t)≤n2∑ni,j=1φe(0,xij)(k2−α)(2k+s−1)t+n2∑ni,j=1φe(0,xij) | (3.20) |
for all x=[xij]∈Mn(X) and all t>0.
Proof. When n=1, (3.19) is equivalent to
μ(Df(a,b),t)≥tt+φe(a,b)andν(Df(a,b),t)≤φe(a,b)t+φe(a,b) | (3.21) |
for all a,b∈X and all t>0. Letting a=0 in (3.21), we obtain
{μ(2(2k+s−1)f(kb)−2(2k+s−1)k2f(b),t)≥tt+φe(0,b),ν(2(2k+s−1)f(kb)−2(2k+s−1)k2f(b),t)≤φe(0,b)t+φe(0,b) | (3.22) |
for all b∈X and all t>0. Replacing a by kpa in (3.22) and using (3.18), we get
{μ(f(kp+1a)k2(p+1)−f(kpa)k2p,t2k2(2k+s−1)k2p)≥tt+αpφe(0,a),ν(f(kp+1a)k2(p+1)−f(kpa)k2p,t2k2(2k+s−1)k2p)≤αpφe(0,a)t+αpφe(0,a) | (3.23) |
for all a∈X and all t>0. It follows from (3.23) that
{μ(f(kp+1a)k2(p+1)−f(kpa)k2p,αpt2k2(2k+s−1)k2p)≥tt+φe(0,a),ν(f(kp+1a)k2(p+1)−f(kpa)k2p,αpt2k2(2k+s−1)k2p)≤φe(0,a)t+φe(0,a) | (3.24) |
for all a∈X and all t>0. It follows from
f(kpa)k2p−f(a)=p−1∑ℓ=0(f(kℓ+1a)k2(ℓ+1)−f(kℓa)k2ℓ) |
and (3.24) that
{μ(f(kpa)k2p−f(a),∑p−1ℓ=0αℓt2k2(2k+s−1)k2ℓ)≥∏p−1ℓ=0μ(f(kℓ+1a)k2(ℓ+1)−f(kℓa)k2ℓ,αℓt2k2(2k+s−1)k2ℓ)≥tt+φe(0,a),ν(f(kpa)k2p−f(a),∑p−1ℓ=0αℓt2k2(2k+s−1)k2ℓ)≤∐p−1ℓ=0ν(f(kℓ+1a)k2(ℓ+1)−f(kℓa)k2ℓ,αℓt2k2(2k+s−1)k2ℓ)≤φe(0,a)t+φe(0,a) | (3.25) |
for all a∈X and all t>0, where
p∏j=0aj=a1∗a2∗⋯∗ap, p∐j=0aj=a1⋄a2⋄⋯⋄ap. |
By replacing a with kqa in (3.25), we have
{μ(f(kp+qa)k2(p+q)−f(kqa)k2q,∑p−1ℓ=0αℓt2k2(2k+s−1)k2(ℓ+q))≥tt+αqφe(0,a),ν(f(kp+qa)k2(p+q)−f(kqa)k2q,∑p−1ℓ=0αℓt2k2(2k+s−1)k2(ℓ+q))≤αqφe(0,a)t+αqφe(0,a) | (3.26) |
for all a∈X, t>0, p>0 and q>0. Thus
{μ(f(kp+qa)k2(p+q)−f(kqa)k2q,∑p+q−1ℓ=qαℓt2k2(2k+s−1)k2ℓ)≥tt+φe(0,a),ν(f(kp+qa)k2(p+q)−f(kqa)k2q,∑p+q−1ℓ=qαℓt2k2(2k+s−1)k2ℓ)≤φe(0,a)t+φe(0,a) | (3.27) |
for all a∈X, t>0, p>0 and q>0. Hence
{μ(f(kp+qa)k2(p+q)−f(kqa)k2q,t)≥tt+∑p+q−1ℓ=qαℓ2k2(2k+s−1)k2ℓφe(0,a),ν(f(kp+qa)k2(p+q)−f(kqa)k2q,t)≤∑p+q−1ℓ=qαℓ2k2(2k+s−1)k2ℓφe(0,a)t+∑p+q−1ℓ=qαℓ2k2(2k+s−1)k2ℓφe(0,a) | (3.28) |
for all a∈X, t>0, p>0 and q>0. Since 0<α<k2 and
∞∑ℓ=0αℓ2k2(2k+s−1)k2ℓ<∞, |
the Cauchy criterion for convergence in IFNS shows that {f(kpa)k2p} is a Cauchy sequence in (Y,μ,ν,∗,⋄). Since (Y,μ,ν,∗,⋄) is an intuitionistic fuzzy Banach space, this sequence converges to some point Q(a)∈Y. So one can define the mapping Q: X→Y such that
Q(a):=(μ,ν)−limp→∞f(kpa)k2p. |
Moreover, if we put q=0 in (3.28), we get
{μ(f(kpa)k2p−f(a),t)≥tt+∑p−1ℓ=0αℓ2k2(2k+s−1)k2ℓφe(0,a),ν(f(kpa)k2p−f(a),t)≤∑p−1ℓ=0αℓ2k2(2k+s−1)k2ℓφe(0,a)t+∑p−1ℓ=0αℓ2k2(2k+s−1)k2ℓφe(0,a) | (3.29) |
for all a∈X, t>0 and p>0. Thus, we obtain
{μ(f(a)−Q(a),t)≥μ(f(a)−f(kpa)k2p,t2)∗μ(f(kpa)k2p−Q(a),t2)≥tt+∑p−1ℓ=0αℓk2(2k+s−1)k2ℓφe(0,a),ν(f(a)−Q(a),t)≤ν(f(a)−f(kpa)k2p,t2)∗ν(f(kpa)k2p−Q(a),t2)≤∑p−1ℓ=0αℓk2(2k+s−1)k2ℓφe(0,a)t+∑p−1ℓ=0αℓk2(2k+s−1)k2ℓφe(0,a) | (3.30) |
for every a∈X, t>0 and large p. Taking the limit as p→∞ and using the definition of IFNS, we get
{μ(f(a)−Q(a),t)≥(k2−α)(2k+s−1)t(k2−α)(2k+s−1)t+φe(0,a),ν(f(a)−Q(a),t)≤φe(0,a)(k2−α)(2k+s−1)t+φe(0,a). | (3.31) |
Replacing a and b by kpa and kpb in (3.21), respectively, and using (3.18), we obtain
μ(1k2pDf(kpa,kpb),t)≥tt+(αk2)pφe(a,b),ν(1k2pDf(kpa,kpb),t)≤(αk2)pφe(a,b)t+(αk2)pφe(a,b) | (3.32) |
for all a,b∈X and all t>0. Letting p→∞ in (3.32), we obtain
μ(DQ(a,b),t)=1andν(DQ(a,b),t)=0 | (3.33) |
for all a,b∈X and all t>0. This means that Q satisfies the functional Eq (1.1). Since f: X→Y is an even mapping, and using the definition Q, we have Q(−a)=−Q(a) for all a∈X. Thus by Lemma 3.2, the mapping Q: X→Y is quadratic. To prove the uniqueness of Q, let Q′: X→Y be another quadratic mapping satisfying (3.31). Let n=1. Then we have
{μ(Q(a)−Q′(a),t)=μ(Q(kpa)k2p−Q′(kpa)k2p,t) ≥μ(Q(kpa)k2p−f(kpa)k2p,t2)∗μ(f(kpa)k2p−Q′(kpa)k2p,t2) ≥(k2−α)(2k+s−1)t(k2−α)(2k+s−1)t+2(αk2)pφe(0,a),ν(Q(a)−Q′(a),t)=ν(Q(kpa)k2p−Q′(kpa)k2p,t) ≤ν(Q(kpa)k2p−f(kpa)k2p,t2)⋄ν(f(kpa)kp−Q′(kpa)k2p,t2) ≤2(αk2)pφe(0,a)(k2−α)(2k+s−1)t+2(αk2)pφe(0,a) | (3.34) |
for all a∈X, t>0 and p>0. Letting p→∞ in (3.34), we get
μ(Q(a)−Q′(a),t)=1andν(Q(a)−Q′(a),t)=0 |
for all a∈X and t>0. Hence we get Q(a)=Q′(a) for all a∈X. Thus the mapping Q: X→Y is a unique quadratic mapping.
By Lemma 2.3 and (3.31), we get
{μn(fn([xij])−Qn([xij]),t)≥min{μ(f(xij)−Q(xij),tn2):i,j=1,…,n}≥(k2−α)(2k+s−1)t(k2−α)(2k+s−1)t+n2∑ni,j=1φe(0,xij),νn(fn([xij])−Qn([xij]),t)≤max{ν(f(xij)−Q(xij),tn2):i,j=1,…,n}≤n2∑ni,j=1φe(0,xij)(k2−α)(2k+s−1)t+n2∑ni,j=1φe(0,xij) |
for all x=[xij]∈Mn(X) and all t>0. Thus Q: X→Y is a unique quadratic mapping satisfying (3.20), as desired. This completes the proof of the theorem.
Theorem 3.5. Let φ: X2→[0,∞) be a function such that for some real number α with 0<α<k,
φ(ka,kb)=αφ(a,b) | (3.35) |
for all a,b∈X. Suppose that a mapping f: X→Y with f(0)=0 satisfies the inequality
{μn(Dfn([xij],[yij]),t)≥tt+∑ni,j=1φ(xij,yij),νn(Dfn([xij],[yij]),t)≤∑ni,j=1φ(xij,yij)t+∑ni,j=1φ(xij,yij) | (3.36) |
for all x=[xij],y=[yij]∈Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: X→Y and a unique additive mapping A: X→Y such that
{μn(fn([xij])−Qn([xij])−An([xij]),t)≥(k−α)(2k+s−1)t(k−α)(2k+s−1)t+2n2∑ni,j=1˜φ(0,xij),νn(fn([xij])−Qn([xij])−An([xij]),t)≤2n2∑ni,j=1˜φ(0,xij)(k−α)(2k+s−1)t+2n2∑ni,j=1˜φ(0,xij) | (3.37) |
for all x=[xij]∈Mn(X) and all t>0, ˜φ(a,b)=φ(a,b)+φ(−a,−b) for all a,b∈X.
Proof. When n=1, (3.36) is equivalent to
μ(Df(a,b),t)≥tt+φ(a,b)andν(Df(a,b),t)≤φ(a,b)t+φ(a,b) | (3.38) |
for all a,b∈X and all t>0. Let
fe(a)=f(a)+f(−a)2 |
for all all a∈X. Then fe(0)=0,fe(−a)=fe(a). And we have
{μ(Dfe(a,b),t)=μ(12Df(a,b)+12Df(−a,−b),t)=μ(Df(a,b)+Df(−a,−b),2t)≥μ(Df(a,b),t)∗μ(Df(−a,−b),t)≥min{μ(Df(a,b),t),μ(Df(−a,−b),t)}≥tt+˜φ(a,b),ν(Dfe(a,b),t)=ν(12Df(a,b)+12Df(−a,−b),t)=ν(Df(a,b)+Df(−a,−b),2t)≤ν(Df(a,b),t)⋄ν(Df(−a,−b),t)≤max{ν(Df(a,b),t),ν(Df(−a,−b),t)}≤˜φ(a,b)t+˜φ(a,b) | (3.39) |
for all a∈X and all t>0. Let
fo(a)=f(a)−f(−a)2 |
for all all a∈X. Then f0(0)=0,fo(−a)=−fo(a). And we obtain
{μ(Dfo(a,b),t)=μ(12Df(a,b)−12Df(−a,−b),t)=μ(Df(a,b)−Df(−a,−b),2t)≥μ(Df(a,b),t)∗μ(Df(−a,−b),t)=min{μ(Df(a,b),t),μ(Df(−a,−b),t)}≥tt+˜φ(a,b),ν(Dfo(a,b),t)=ν(12Df(a,b)−12Df(−a,−b),t)=ν(Df(a,b)−Df(−a,−b),2t)≤ν(Df(a,b),t)⋄ν(Df(−a,−b),t)=max{ν(Df(a,b),t),ν(Df(−a,−b),t)}≤˜φ(a,b)t+˜φ(a,b) | (3.40) |
for all a∈X and all t>0. It follows that the definition of ˜φ that ˜φ(ka,kb)=α˜φ(a,b) for all a,b∈X. It is easy to check that the condition of Theorems 3.3 and 3.4 are satisfying. Then applying the proofs of Theorems 3.3 and 3.4, we know that there exists a unique quadratic mapping Q: X→Y and a unique additive mapping A: X→Y satisfying
{μ(fe(a)−Q(a),t)≥(k2−α)(2k+s−1)t(k2−α)(2k+s−1)t+˜φ(0,a),ν(fe(a)−Q(a),t)≤˜φ(0,a)(k2−α)(2k+s−1)t+˜φ(0,a) | (3.41) |
and
{μ(fo(a)−A(a),t)≥(k−α)(2k+s−1)t(k−α)(2k+s−1)t+˜φ(0,a),ν(fo(a)−A(a),t)≤˜φ(0,a)(k−α)(2k+s−1)t+˜φ(0,a) | (3.42) |
for all a∈X and all t>0. Therefore
{μ(f(a)−Q(a)−A(a),t)=μ(fe(a)−Q(a)+fo(a)−A(a),t)≥μ(fe(a)−Q(a),t2)∗μ(fo(a)−A(a),t2)=min{μ(fe(a)−Q(a),t2),μ(fo(a)−A(a),t2)}≥min{(k2−α)(2k+s−1)t(k2−α)(2k+s−1)t+2˜φ(0,a),(k−α)(2k+s−1)t(k−α)(2k+s−1)t+2˜φ(0,a)}=(k−α)(2k+s−1)t(k−α)(2k+s−1)t+2˜φ(0,a),ν(f(a)−Q(a)−A(a),t)=ν(fe(a)−Q(a)+fo(a)−A(a),t)≤ν(fe(a)−Q(a),t2)⋄ν(fo(a)−A(a),t2)=max{ν(fe(a)−Q(a),t2),ν(fo(a)−A(a),t2)}≤max{2˜φ(0,a)(k2−α)(2k+s−1)t+2˜φ(0,a),2˜φ(0,a)(k−α)(2k+s−1)t+2˜φ(0,a)}=2˜φ(0,a)(k−α)(2k+s−1)t+2˜φ(0,a). | (3.43) |
By Lemma 2.3 and (3.43), we have
{μn(fn([xij])−Qn([xij])−An([xij]),t)≥min{μ(f(xij)−Q(xij)−A(xij),tn2):i,j=1,…,n}≥(k−α)(2k+s−1)t(k−α)(2k+s−1)t+2n2∑ni,j=1˜φ(0,xij),νn(fn([xij])−Qn([xij])−An([xij]),t)≤max{ν(f(xij)−Q(xij)−A(xij),tn2):i,j=1,…,n}≤2n2∑ni,j=1˜φ(0,xij)(k−α)(2k+s−1)t+2n2∑ni,j=1˜φ(0,xij) |
for all x=[xij]∈Mn(X) and all t>0. Thus Q: X→Y is a unique quadratic mapping and a unique additive mapping A: X→Y satisfying (3.37), as desired. This completes the proof of the theorem.
Corollary 3.6. Let r,θ be positive real numbers with r<1. Suppose that a mapping f: X→Y with f(0)=0 satisfies the inequality
{μn(Dfn([xij],[yij]),t)≥tt+∑ni,j=1θ(‖xij‖r+‖yij‖r),νn(Dfn([xij],[yij]),t)≤∑ni,j=1θ(‖xij‖r+‖yij‖r)t+∑ni,j=1θ(‖xij‖r+‖yij‖r) | (3.44) |
for all x=[xij],y=[yij]∈Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: X→Y and a unique additive mapping A: X→Y such that
{μn(fn([xij])−Qn([xij])−An([xij]),t)≥(k−kr)(2k+s−1)t(k−kr)(2k+s−1)t+4n2∑ni,j=1θ‖xij‖r,νn(fn([xij])−Qn([xij])−An([xij]),t)≤4n2∑ni,j=1θ‖xij‖r(k−kr)(2k+s−1)t+4n2∑ni,j=1θ‖xij‖r | (3.45) |
for all x=[xij]∈Mn(X) and all t>0.
Proof. The proof follows from Theorem 3.5 by taking φ(a,b)=θ(‖a‖r+‖b‖r) for all a,b∈X, we obtain the desired result.
In this section, we will prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the fixed point method.
Theorem 4.1. Let φo: X2→[0,∞) be a function such that for some real number ρ with 0<ρ<1 and
φo(a,b)=ρkφo(ka,kb) | (4.1) |
for all a,b∈X. Suppose that an odd mapping f: X→Y satisfies the inequality
{μn(Dfn([xij],[yij]),t)≥tt+∑ni,j=1φo(xij,yij),νn(Dfn([xij],[yij]),t)≤∑ni,j=1φo(xij,yij)t+∑ni,j=1φo(xij,yij) | (4.2) |
for all x=[xij],y=[yij]∈Mn(X) and all t>0. Then there exists a unique additive mapping A: X→Y such that
{μn(fn([xij])−An([xij]),t)≥2k(2k+s−1)(1−ρ)t2k(2k+s−1)(1−ρ)t+ρn2∑ni,j=1φo(0,xij),νn(fn([xij])−An([xij]),t)≤ρn2∑ni,j=1φo(0,xij)2k(2k+s−1)(1−ρ)t+ρn2∑ni,j=1φo(0,xij) | (4.3) |
for all x=[xij]∈Mn(X) and all t>0.
Proof. When n=1, similar to the proof of Theorem 3.3, we have
{μ(2(2k+s−1)f(ka)−2(2k+s−1)kf(a),t)≥tt+φo(0,a),ν(2(2k+s−1)f(ka)−2(2k+s−1)kf(a),t)≤φo(0,a)t+φo(0,a) | (4.4) |
for all a∈X and all t>0.
Let S1={g1:X→Y}, and introduce a generalized metric d1 on S1 as follows:
d1(g1,h1):=inf{λ∈R+|{μ(g1(a)−h1(a),λt)≥tt+φo(0,a),ν(g1(a)−h1(a),λt)≤φo(0,a)t+φo(0,a),∀a∈X,∀t>0}. |
It is easy to prove that (S1,d1) is a complete generalized metric space ([3,13]). Now, we define the mapping J1: S1→S1 by
J1g1(a):=kg1(ak),for allg1∈S1anda∈X. | (4.5) |
Let g1,h1∈S1 and let λ∈R+ be an arbitrary constant with d1(g1,h1)≤λ. From the definition of d1, we get
{μ(g1(a)−h1(a),λt)≥tt+φo(0,a),ν(g1(a)−h1(a),λt)≤φo(0,a)t+φo(0,a) |
for all a∈X and t>0. Therefore, using (4.1), we get
{μ(J1g1(a)−J1h1(a),λρt)=μ(kg1(ak)−kh1(ak),λρt)=μ(g1(ak)−h1(ak),λρtk)≥ρktρkt+ρkφo(0,a)=tt+φo(0,a),ν(J1g1(a)−J1h1(a),λρt)=ν(kg1(ak)−kh1(ak),λρt)=ν(g1(ak)−h1(ak),λρtk)≤ρkφo(0,a)ρkt+ρkφo(0,a)=φo(0,a)t+φo(0,a) | (4.6) |
for some ρ<1, all a∈X and all t>0. Hence, it holds that d1(J1g1,J1h1)≤λρ, that is, d1(J1g1,J1h1)≤ρd1(g1,h1) for all g1,h1∈S1.
Furthermore, by (4.1) and (4.4), we obtain the inequality
d(f,J1f)≤ρ2k(2k+s−1). |
It follows from Lemma 2.4 that the sequence Jp1f converges to a fixed point A of J1, that is, for all a∈X and all t>0,
A:X→Y,A(a):=(μ,ν)−limp→∞kpf(akp) | (4.7) |
and
A(ka)=kA(a). | (4.8) |
Meanwhile, A is the unique fixed point of J1 in the set
S∗1={g1∈S1:d1(f,g1)<∞}. |
Thus, there exists a λ∈R+ such that
{μ(f(a)−A(a),λt)≥tt+φo(0,a),ν(f(a)−A(a),λt)≤φo(0,a)t+φo(0,a) |
for all a∈X and all t>0. Also,
d1(f,A)≤11−ρd(f,J1f)≤ρ2k(1−ρ)(2k+s−1). |
This means that the following inequality
{μ(f(a)−A(a),t)≥2k(2k+s−1)(1−ρ)t2k(2k+s−1)(1−ρ)t+ρφo(0,a),ν(f(a)−A(a),t)≤ρφo(0,a)2k(2k+s−1)(1−ρ)t+ρφo(0,a) | (4.9) |
holds for all a∈X and all t>0. It follows from (3.4) and (4.1) that
μ(kpDf(akp,bkp),t)≥tt+ρpφo(a,b),ν(kpDf(akp,bkp),t)≤ρpφo(a,b)t+ρpφo(a,b) | (4.10) |
for all a,b∈X and all t>0. Letting p→∞ in (4.10), we obtain
μ(DA(a,b),t)=1andν(DA(a,b),t)=0 | (4.11) |
for all a,b∈X and all t>0. This means that A satisfies the functional Eq (1.1). Since f: X→Y is an odd mapping, and using the definition A, we have A(−a)=−A(a) for all a∈X. Thus by Lemma 3.1, the mapping A: X→Y is additive.
By Lemma 2.3 and (4.9), we get
{μn(fn([xij])−An([xij]),t)≥min{μ(f(xij)−A(xij),tn2):i,j=1,⋯,n}≥2k(2k+s−1)(1−ρ)t2k(2k+s−1)(1−ρ)t+ρn2∑ni,j=1φo(0,xij),νn(fn([xij])−An([xij]),t)≤max{ν(f(xij)−A(xij),tn2):i,j=1,…,n}≤ρn2∑ni,j=1φo(0,xij)2k(2k+s−1)(1−ρ)t+ρn2∑ni,j=1φo(0,xij) |
for all x=[xij]∈Mn(X) and all t>0. Thus A: X→Y is a unique additive mapping satisfying (4.3), as desired. This completes the proof of the theorem.
Theorem 4.2. Let φe: X2→[0,∞) be a function such that for some real number ρ with 0<ρ<1 and
φe(a,b)=ρk2φe(ka,kb) | (4.12) |
for all a,b∈X. Suppose that an even mapping f: X→Y satisfies the inequality
{μn(Dfn([xij],[yij]),t)≥tt+∑ni,j=1φe(xij,yij),νn(Dfn([xij],[yij]),t)≤∑ni,j=1φe(xij,yij)t+∑ni,j=1φe(xij,yij) | (4.13) |
for all x=[xij],y=[yij]∈Mn(X) and all t>0. Then there exists a unique quadratic mapping Q: X→Y such that
{μn(fn([xij])−Qn([xij]),t)≥2k2(2k+s−1)(1−ρ)t2k2(2k+s−1)(1−ρ)t+ρn2∑ni,j=1φe(0,xij),νn(fn([xij])−Qn([xij]),t)≤ρn2∑ni,j=1φe(0,xij)2k2(2k+s−1)(1−ρ)t+ρn2∑ni,j=1φe(0,xij) | (4.14) |
for all x=[xij]∈Mn(X) and all t>0.
Proof. When n=1, similar to the proof of Theorem 3.4, we obtain
{μ(2(2k+s−1)f(ka)−2(2k+s−1)k2f(a),t)≥tt+φe(0,a),ν(2(2k+s−1)f(ka)−2(2k+s−1)k2f(a),t)≤φe(0,a)t+φe(0,a) | (4.15) |
for all a∈X and all t>0.
Let S2:={g2:X→Y}, and introduce a generalized metric d2 on S2 as follows:
d2(g2,h2):=inf{λ∈R+|{μ(g2(a)−h2(a),λt)≥tt+φe(0,a),ν(g2(a)−h2(a),λt)≤φe(0,a)t+φe(0,a),∀a∈X,∀t>0}. |
It is easy to prove that (S2,d2) is a complete generalized metric space ([3,13]). Now, we define the mapping J2: S2→S2 by
J2g2(a):=k2g2(ak),for allg2∈S2anda∈X. | (4.16) |
Let g2,h2∈S2 and let λ∈R+ be an arbitrary constant with d2(g2,h2)≤λ. From the definition of d2, we get
{μ(g2(a)−h2(a),λt)≥tt+φe(0,a),ν(g2(a)−h2(a),λt)≤φe(0,a)t+φe(0,a) |
for all a∈X and t>0. Therefore, using (4.12), we get
{μ(J2g2(a)−J2h2(a),λρt)=μ(k2g2(ak)−k2h2(ak),λρt)=μ(g2(ak)−h2(ak),λρtk2)≥ρk2tρk2t+ρk2φe(0,a)=tt+φe(0,a),ν(J2g2(a)−J2h2(a),λρt)=ν(k2g2(ak)−k2h2(ak),λρt)=ν(g2(ak)−h2(ak),λρtk2)≤ρk2φe(0,a)ρk2t+ρk2φe(0,a)=φe(0,a)t+φe(0,a) | (4.17) |
for some ρ<1, all a∈X and all t>0. Hence, it holds that d2(J2g2,J2h2)≤λρ, that is, d2(J2g2,J2h2)≤ρd2(g2,h2) for all g2,h2∈S2.
Furthermore, by (4.12) and (4.15), we obtain the inequality
d(f,J2f)≤ρ2k2(2k+s−1). |
It follows from Lemma 2.4 that the sequence Jp2f converges to a fixed point Q of J2, that is, for all a∈X and all t>0,
Q:X→Y,Q(a):=(μ,ν)−limp→∞k2pf(akp) | (4.18) |
and
Q(ka)=k2Q(a). | (4.19) |
Meanwhile, Q is the unique fixed point of J2 in the set
S∗2={g2∈S2:d2(f,g2)<∞}. |
Thus there exists a λ∈R+ such that
{μ(f(a)−Q(a),λt)≥tt+φe(0,a),ν(f(a)−Q(a),λt)≤φe(0,a)t+φe(0,a) |
for all a∈X and all t>0. Also,
d2(f,Q)≤11−ρd(f,J2f)≤ρ2k2(1−ρ)(2k+s−1). |
This means that the following inequality
{μ(f(a)−Q(a),t)≥2k2(2k+s−1)(1−ρ)t2k2(2k+s−1)(1−ρ)t+ρφe(0,a),ν(f(a)−Q(a),t)≤ρφe(0,a)2k2(2k+s−1)(1−ρ)t+ρφe(0,a) | (4.20) |
holds for all a∈X and all t>0. The rest of the proof is similar to the proof of Theorem 4.1. This completes the proof of the theorem.
Theorem 4.3. Let φ: X2→[0,∞) be a function such that for some real number ρ with 0<ρ<k,
φ(a,b)=ρk2φ(ka,kb) | (4.21) |
for all a,b∈X. Suppose that a mapping f: X→Y with f(0)=0 satisfies the inequality
{μn(Dfn([xij],[yij]),t)≥tt+∑ni,j=1φ(xij,yij),νn(Dfn([xij],[yij]),t)≤∑ni,j=1φ(xij,yij)t+∑ni,j=1φ(xij,yij) | (4.22) |
for all x=[xij],y=[yij]∈Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: X→Y and a unique additive mapping A: X→Y such that
{μn(fn([xij])−Qn([xij])−An([xij]),t)≥k(2k+s−1)(1−ρ)tk(2k+s−1)(1−ρ)t+ρn2∑ni,j=1˜φ(0,xij),νn(fn([xij])−Qn([xij])−An([xij]),t)≤ρn2∑ni,j=1˜φ(0,xij)k(2k+s−1)(1−ρ)t+ρn2∑ni,j=1˜φ(0,xij) | (4.23) |
for all x=[xij]∈Mn(X) and all t>0, ˜φ(a,b)=φ(a,b)+φ(−a,−b) for all a,b∈X.
Proof. The proof follows from Theorems 4.1 and 4.2, and a method similar to Theorem 3.5. This completes the proof of the theorem.
Corollary 4.4. Let r,θ be positive real numbers with r>2. Suppose that a mapping f: X→Y with f(0)=0 satisfies the inequality
{μn(Dfn([xij],[yij]),t)≥tt+∑ni,j=1θ(‖xij‖r+‖yij‖r),νn(Dfn([xij],[yij]),t)≤∑ni,j=1θ(‖xij‖r+‖yij‖r)t+∑ni,j=1θ(‖xij‖r+‖yij‖r) | (4.24) |
for all x=[xij],y=[yij]∈Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: X→Y and a unique additive mapping A: X→Y such that
{μn(fn([xij])−Qn([xij])−An([xij]),t)≥(2k+s−1)(kr−k2)t(2k+s−1)(kr−k2)t+2kn2∑ni,j=1θ‖xij‖r,νn(fn([xij])−Qn([xij])−An([xij]),t)≤2kn2∑ni,j=1θ‖xij‖r(2k+s−1)(kr−k2)t+2kn2∑ni,j=1θ‖xij‖r | (4.25) |
for all x=[xij]∈Mn(X) and all t>0.
Proof. Taking φ(a,b)=θ(‖a‖r+‖b‖r) for all a,b∈X and ρ=k2−r in Theorem 4.3, we get the desired result.
We use the direct and fixed point methods to investigate the Hyers-Ulam stability of the functional Eq (1.1) in the framework of matrix intuitionistic fuzzy normed spaces. We therefore provide a link two various discipline: matrix intuitionistic fuzzy normed spaces and functional equations. We generalized the Hyers-Ulam stability results of the functional Eq (1.1) from quasi-Banach spaces to matrix intuitionistic fuzzy normed spaces. These circumstances can be applied to other significant functional equations.
The author declare he has not used Artificial Intelligence (AI) tools in the creation of this article.
The author is grateful to the referees for their helpful comments and suggestions that help to improve the quality of the manuscript.
The author declares no conflict of interest in this paper.
[1] |
Rahaman, M.S., Ahsan, M.M., Anjum, N., Rahman, M.M. and Rahman, M.N., The AI Race Is On! Google's Bard and Openai's Chatgpt Head to Head: An Opinion Article. SSRN Electronic Journal, 2023. https://doi.org/10.2139/ssrn.4351785 doi: 10.2139/ssrn.4351785
![]() |
[2] |
Teubner, T., Flath, C.M., Weinhardt, C., van der Aalst, W. and Hinz, O., Welcome to the Era of ChatGPT et al. the prospects of large language models. Business & Information Systems Engineering, 2023, 65(2): 95–101. https://doi.org/10.1007/s12599-023-00795-x doi: 10.1007/s12599-023-00795-x
![]() |
[3] |
Gilson, A., Safranek, C.W., Huang, T., Socrates, V., Chi, L., Taylor, R.A., et al., How Does ChatGPT Perform on the United States Medical Licensing Examination? The Implications of Large Language Models for Medical Education and Knowledge Assessment. JMIR Medical Education, 2023, 9(1): e45312. https://doi.org/10.2196/45312 doi: 10.2196/45312
![]() |
[4] | Chan, C.K.Y. and Tsi, L.H.Y., The AI Revolution in Education: Will AI Replace or Assist Teachers in Higher Education? arXiv preprint arXiv: 2305.01185, 2023. |
[5] |
Dergaa, I., Chamari, K., Zmijewski, P. and Saad, H.B., From Human Writing to Artificial Intelligence Generated Text: Examining the Prospects and Potential Threats of ChatGPT in Academic Writing. Biology of Sport, 2013, 40(2): 615–622. https://doi.org/10.5114/biolsport.2023.125623 doi: 10.5114/biolsport.2023.125623
![]() |
[6] |
Haleem, A., Javaid, M. and Singh, R.P., An Era of ChatGPT as a Significant Futuristic Support Tool: A Study on Features, Abilities, and Challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2023, 2(4): 100089. https://doi.org/10.1016/j.tbench.2023.100089 doi: 10.1016/j.tbench.2023.100089
![]() |
[7] | Chan, C.K.Y., Is AI Changing the Rules of Academic Misconduct? An In-Depth Look at Students' Perceptions of 'AI-Giarism.' arXiv preprint arXiv: 2306.03358, 2023. |
[8] |
Frosio, G., The Artificial Creatives: The Rise of Combinatorial Creativity from Dall-E to GPT-3. Handbook of Artificial Intelligence at Work: Interconnections and Policy Implications (Edward Elgar, Forthcoming), 2023. https://doi.org/10.2139/ssrn.4350802 doi: 10.2139/ssrn.4350802
![]() |
[9] |
Meskó, B. and Topol, E.J., The Imperative for Regulatory Oversight of Large Language Models (or Generative AI) in Healthcare. Npj Digital Medicine, 2023, 6(1): 1–6. https://doi.org/10.1038/s41746-023-00873-0 doi: 10.1038/s41746-023-00873-0
![]() |
[10] |
Ahmad, N., Murugesan, S. and Kshetri, N., Generative Artificial Intelligence and the Education Sector. Computer, 2023, 56(6): 72–76. https://doi.org/10.1109/mc.2023.3263576 doi: 10.1109/mc.2023.3263576
![]() |
[11] |
Murugesan, S. and Cherukuri, A.K., The Rise of Generative Artificial Intelligence and Its Impact on Education: The Promises and Perils. Computer, 2023, 56(5): 116–121. https://doi.org/10.1109/mc.2023.3253292 doi: 10.1109/mc.2023.3253292
![]() |
[12] |
Baidoo-Anu, D. and Ansah, L.O., Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Journal of AI, 2023, 7(1): 52–62. https://doi.org/10.61969/jai.1337500 doi: 10.61969/jai.1337500
![]() |
[13] |
Lodge, J.M., Thompson, K. and Corrin, L., Mapping out a Research Agenda for Generative Artificial Intelligence in Tertiary Education. Australasian Journal of Educational Technology, 2023, 39(1): 1–8. https://doi.org/10.14742/ajet.8695 doi: 10.14742/ajet.8695
![]() |
[14] |
Lim, W.M., Gunasekara, A., Pallant, J.L., Pallant, J.I. and Pechenkina, E., Generative AI and the Future of Education: Ragnarök or Reformation? A Paradoxical Perspective from Management Educators. The International Journal of Management Education, 2023, 21(2): 100790. https://doi.org/10.1016/j.ijme.2023.100790 doi: 10.1016/j.ijme.2023.100790
![]() |
[15] |
Eysenbach, G., The Role of ChatGPT, Generative Language Models and Artificial Intelligence in Medical Education: A Conversation with ChatGPT - and a Call for Papers (Preprint). JMIR Medical Education, 2023, 9(1): e46885. https://doi.org/10.2196/46885 doi: 10.2196/46885
![]() |
[16] |
Su, J. and Yang, W., Unlocking the Power of ChatGPT: A Framework for Applying Generative AI in Education. ECNU Review of Education, 2023, 6(3): 209653112311684. https://doi.org/10.1177/20965311231168423 doi: 10.1177/20965311231168423
![]() |
[17] |
Cooper, G., Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial Intelligence. Journal of Science Education and Technology, 2023, 32(3): 444–452. https://doi.org/10.1007/s10956-023-10039-y doi: 10.1007/s10956-023-10039-y
![]() |
[18] | Chan, C.K.Y. and Lee, K.K.W., The AI Generation Gap: Are Gen Z Students More Interested in Adopting Generative AI such as ChatGPT in Teaching and Learning than Their Gen X and Millennial Generation Teachers? arXiv Preprint arXiv: 2305.02878, 2023. |
[19] |
Gupte, T., Watts, F.M., Schmidt-McCormack, J.A., Zaimi, I., Gere, A.R. and Shultz, G.V., Students' Meaningful Learning Experiences from Participating in Organic Chemistry Writing-To-Learn Activities. Chemistry Education Research and Practice, 2021, 22(2): 396–414. https://doi.org/10.1039/D0RP00266F doi: 10.1039/D0RP00266F
![]() |
[20] |
Lim, J. and Polio, C., Multimodal Assignments in Higher Education: Implications for Multimodal Writing Tasks for L2 Writers. Journal of Second Language Writing, 2020, 47: 100713. https://doi.org/10.1016/j.jslw.2020.100713 doi: 10.1016/j.jslw.2020.100713
![]() |
[21] |
Tavares, D., Lopes, A.I., Castro, C., Maia, G., Leite, L. and Quintas, M., The Intersection of Artificial Intelligence, Telemedicine, and Neurophysiology. Handbook of Research on Instructional Technologies in Health Education and Allied Disciplines, 2023,130–152. https://doi.org/10.4018/978-1-6684-7164-7.ch006 doi: 10.4018/978-1-6684-7164-7.ch006
![]() |
[22] | Dao, X.Q., Performance Comparison of Large Language Models on VNHSGE English Dataset: OpenAI ChatGPT, Microsoft Bing Chat, and Google Bard. arXiv Preprint arXiv: 2307.02288, 2023. |
[23] |
Rahaman, M.S., Ahsan, M.M.T., Anjum, N., Terano, H.J.R. and Rahman, M.M., From ChatGPT-3 to GPT-4: A Significant Advancement in AI-Driven NLP Tools. Journal of Engineering and Emerging Technologies, 2023, 2(1): 1–11. https://doi.org/10.52631/jeet.v1i1.188 doi: 10.52631/jeet.v1i1.188
![]() |
[24] |
Ray, P.P., Web3: A Comprehensive Review on Background, Technologies, Applications, Zero-Trust Architectures, Challenges and Future Directions. Internet of Things and Cyber-Physical Systems, 2023. https://doi.org/10.1016/j.iotcps.2023.05.003 doi: 10.1016/j.iotcps.2023.05.003
![]() |
[25] |
Mondal, S., Das, S. and Vrana, V.G., How to Bell the Cat? A Theoretical Review of Generative Artificial Intelligence towards Digital Disruption in All Walks of Life. Technologies, 2023, 11(2): 44. https://doi.org/10.3390/technologies11020044 doi: 10.3390/technologies11020044
![]() |
[26] |
Chen, L., Chen, P. and Lin, Z., Artificial Intelligence in Education: A Review. IEEE Access, 2020, 8: 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510 doi: 10.1109/ACCESS.2020.2988510
![]() |
[27] |
Kumar, P., Chauhan, S. and Awasthi, L.K., Artificial Intelligence in Healthcare: Review, Ethics, Trust Challenges & Future Research Directions. Engineering Applications of Artificial Intelligence, 2023,120: 105894. https://doi.org/10.1016/j.engappai.2023.105894 doi: 10.1016/j.engappai.2023.105894
![]() |
[28] | Zastudil, C., Rogalska, M., Kapp, C., Vaughn, J. and MacNeil, S., Generative AI in Computing Education: Perspectives of Students and Instructors. arXiv preprint arXiv: 2308.04309, 2023. |
[29] |
Jony, A.I., Rahman, M.S. and Islam, Y.M., ICT in Higher Education: Wiki-Based Reflection to Promote Deeper Thinking Levels. International Journal of Modern Education and Computer Science, 2017, 9(4): 43–49. https://doi.org/10.5815/ijmecs.2017.04.05 doi: 10.5815/ijmecs.2017.04.05
![]() |
[30] |
Alasadi, E.A. and Baiz, C.A., Generative AI in Education and Research: Opportunities, Concerns, and Solutions. Journal of Chemical Education, 2023,100(8): 2965–2971. https://doi.org/10.1021/acs.jchemed.3c00323 doi: 10.1021/acs.jchemed.3c00323
![]() |
[31] |
Macfarlane, B., Zhang, J. and Pun, A., Academic Integrity: A Review of the Literature. Studies in Higher Education, 2012, 39(2): 339–358. https://doi.org/10.1080/03075079.2012.709495 doi: 10.1080/03075079.2012.709495
![]() |
[32] |
Dalalah, D. and Dalalah, O.M.A., The False Positives and False Negatives of Generative AI Detection Tools in Education and Academic Research: The Case of ChatGPT. The International Journal of Management Education, 2023, 21(2): 100822. https://doi.org/10.1016/j.ijme.2023.100822 doi: 10.1016/j.ijme.2023.100822
![]() |
[33] |
Chaudhry, I.S., Sarwary, S.A.M., EI Refae, G.A. and Chabchoub, H., Time to Revisit Existing Student's Performance Evaluation Approach in Higher Education Sector in a New Era of ChatGPT — A Case Study. Cogent Education, 2023, 10(1): 2210461. https://doi.org/10.1080/2331186x.2023.2210461 doi: 10.1080/2331186x.2023.2210461
![]() |
[34] |
Humphry T. and Fuller, A.L., Potential ChatGPT Use in Undergraduate Chemistry Laboratories. Journal of Chemical Education, 2023,100: 1434–1436. https://doi.org/10.1021/acs.jchemed.3c00006 doi: 10.1021/acs.jchemed.3c00006
![]() |
[35] |
Konecki, M., Konecki, M. and Biškupić, I., Using Artificial Intelligence in Higher Education. Proceedings of the 15th International Conference on Computer Supported Education, 2023. https://doi.org/10.5220/0012039700003470 doi: 10.5220/0012039700003470
![]() |
[36] | Dai, Y., Liu, A. and Lim, C.P., Reconceptualizing ChatGPT and generative AI as a student-driven innovation in higher education. 2023. |
[37] |
Dwivedi, Y.K., Kshetri, N., Hughes, L., Slade, E.L., Jeyaraj, A., Kar, A.K., et al., "So What If ChatGPT Wrote It?" Multidisciplinary Perspectives on Opportunities, Challenges and Implications of Generative Conversational AI for Research, Practice and Policy. International Journal of Information Management, 2023, 71: 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642 doi: 10.1016/j.ijinfomgt.2023.102642
![]() |
[38] |
Wach, K., Doanh, D.C., Ejdys, J., Kazlauskaitė, R., Korzynski, P., Mazurek, G., et al., The Dark Side of Generative Artificial Intelligence: A Critical Analysis of Controversies and Risks of ChatGPT. Entrepreneurial Business and Economics Review, 2023, 11(2): 7–30. https://doi.org/10.15678/eber.2023.110201 doi: 10.15678/eber.2023.110201
![]() |
[39] | Ferrara, E., Should ChatGPT Be Biased? Challenges and Risks of Bias in Large Language Models. arXiv preprint arXiv: 2304.03738, 2023. |