Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Commentary

Does growing up at high altitude pose a risk factor for type 2 diabetes?

  • Citation: Martin Burtscher, Hannes Gatterer, Johannes Burtscher. Does growing up at high altitude pose a risk factor for type 2 diabetes?[J]. AIMS Public Health, 2019, 6(1): 96-98. doi: 10.3934/publichealth.2019.1.96

    Related Papers:

    [1] Gaozhong Sun, Tongwei Zhao . Lung adenocarcinoma pathology stages related gene identification. Mathematical Biosciences and Engineering, 2020, 17(1): 737-746. doi: 10.3934/mbe.2020038
    [2] Shuyi Cen, Kaiyou Fu, Yue Shi, Hanliang Jiang, Jiawei Shou, Liangkun You, Weidong Han, Hongming Pan, Zhen Liu . A microRNA disease signature associated with lymph node metastasis of lung adenocarcinoma. Mathematical Biosciences and Engineering, 2020, 17(3): 2557-2568. doi: 10.3934/mbe.2020140
    [3] Yuan Yang, Lingshan Zhou, Xi Gou, Guozhi Wu, Ya Zheng, Min Liu, Zhaofeng Chen, Yuping Wang, Rui Ji, Qinghong Guo, Yongning Zhou . Comprehensive analysis to identify DNA damage response-related lncRNA pairs as a prognostic and therapeutic biomarker in gastric cancer. Mathematical Biosciences and Engineering, 2022, 19(1): 595-611. doi: 10.3934/mbe.2022026
    [4] Bin Ma, Lianqun Cao, Yongmin Li . A novel 10-gene immune-related lncRNA signature model for the prognosis of colorectal cancer. Mathematical Biosciences and Engineering, 2021, 18(6): 9743-9760. doi: 10.3934/mbe.2021477
    [5] Ji-Ming Wu, Wang-Ren Qiu, Zi Liu, Zhao-Chun Xu, Shou-Hua Zhang . Integrative approach for classifying male tumors based on DNA methylation 450K data. Mathematical Biosciences and Engineering, 2023, 20(11): 19133-19151. doi: 10.3934/mbe.2023845
    [6] Jinqi He, Wenjing Zhang, Faxiang Li, Yan Yu . Development of metastasis-associated seven gene signature for predicting lung adenocarcinoma prognosis using single-cell RNA sequencing data. Mathematical Biosciences and Engineering, 2021, 18(5): 5959-5977. doi: 10.3934/mbe.2021298
    [7] Mengyang Han, Xiaoli Wang, Yaqi Li, Jianjun Tan, Chunhua Li, Wang Sheng . Identification of coagulation-associated subtypes of lung adenocarcinoma and establishment of prognostic models. Mathematical Biosciences and Engineering, 2023, 20(6): 10626-10658. doi: 10.3934/mbe.2023470
    [8] Yanping Xie, Zhaohui Dong, Junhua Du, Xiaoliang Zang, Huihui Guo, Min Liu, Shengwen Shao . The relationship between mouse lung adenocarcinoma at different stages and the expression level of exosomes in serum. Mathematical Biosciences and Engineering, 2020, 17(2): 1548-1557. doi: 10.3934/mbe.2020080
    [9] Ziyu Wu, Sugui Wang, Qiang Li, Qingsong Zhao, Mingming Shao . Identification of 10 differently expressed lncRNAs as prognostic biomarkers for prostate adenocarcinoma. Mathematical Biosciences and Engineering, 2020, 17(3): 2037-2047. doi: 10.3934/mbe.2020108
    [10] Siqi Hu, Fang Wang, Junjun Yang, Xingxiang Xu . Elevated ADAR expression is significantly linked to shorter overall survival and immune infiltration in patients with lung adenocarcinoma. Mathematical Biosciences and Engineering, 2023, 20(10): 18063-18082. doi: 10.3934/mbe.2023802


  • Baló's concentric sclerosis (BCS) was first described by Marburg [1] in 1906, but became more widely known until 1928 when the Hungarian neuropathologist Josef Baló published a report of a 23-year-old student with right hemiparesis, aphasia, and papilledema, who at autopsy had several lesions of the cerebral white matter, with an unusual concentric pattern of demyelination [2]. Traditionally, BCS is often regarded as a rare variant of multiple sclerosis (MS). Clinically, BCS is most often characterized by an acute onset with steady progression to major disability and death with months, thus resembling Marburg's acute MS [3,4]. Its pathological hallmarks are oligodendrocyte loss and large demyelinated lesions characterized by the annual ring-like alternating pattern of demyelinating and myelin-preserved regions. In [5], the authors found that tissue preconditioning might explain why Baló lesions develop a concentric pattern. According to the tissue preconditioning theory and the analogies between Baló's sclerosis and the Liesegang periodic precipitation phenomenon, Khonsari and Calvez [6] established the following chemotaxis model

    $ ˜uτ=DΔX˜udiffusion ofactivated macrophagesX(˜χ˜u(ˉu˜u)˜v)chemoattractant attractssurrounding activated macrophages+μ˜u(ˉu˜u)production of activated macrophages,˜ϵΔX˜vdiffusion of chemoattractant=˜α˜v+˜β˜wdegradationproduction of chemoattractant,˜wτ=κ˜uˉu+˜u˜u(ˉw˜w)destruction of oligodendrocytes, $ (1.1)

    where $ \tilde{u} $, $ \tilde{v} $ and $ \tilde{w} $ are, respectively, the density of activated macrophages, the concentration of chemoattractants and density of destroyed oligodendrocytes. $ \bar{u} $ and $ \bar{w} $ represent the characteristic densities of macrophages and oligodendrocytes respectively.

    By numerical simulation, the authors in [6,7] indicated that model (1.1) only produces heterogeneous concentric demyelination and homogeneous demyelinated plaques as $ \chi $ value gradually increases. In addition to the chemoattractant produced by destroyed oligodendrocytes, "classically activated'' M1 microglia also can release cytotoxicity [8]. Therefore we introduce a linear production term into the second equation of model (1.1), and establish the following BCS chemotaxis model with linear production term

    $ {˜uτ=DΔX˜uX(˜χ˜u(ˉu˜u)˜v)+μ˜u(ˉu˜u),˜ϵΔX˜v+˜α˜v=˜β˜w+˜γ˜u,˜wτ=κ˜uˉu+˜u˜u(ˉw˜w). $ (1.2)

    Before going to details, let us simplify model (1.2) with the following scaling

    $ u=˜uˉu,v=μˉu˜ϵD˜v,w=˜wˉw,t=μˉuτ,x=μˉuDX,χ=˜χ˜ϵμ,α=D˜α˜ϵμˉu,β=˜βˉw,γ=˜γˉu,δ=κμ, $

    then model (1.2) takes the form

    $ {ut=Δu(χu(1u)v)+u(1u),xΩ,t>0,Δv+αv=βw+γu,xΩ,t>0,wt=δu1+uu(1w),xΩ,t>0,ηu=ηv=0,xΩ,t>0,u(x,0)=u0(x),w(x,0)=w0(x),xΩ, $ (1.3)

    where $ \Omega\subset \mathbb{R}^{n}\; (n\geq 1) $ is a smooth bounded domain, $ \eta $ is the outward normal vector to $ \partial \Omega $, $ \partial_{\eta} = \partial/\partial \eta $, $ \delta $ balances the speed of the front and the intensity of the macrophages in damaging the myelin. The parameters $ \chi, \; \alpha $ and $ \delta $ are positive constants as well as $ \beta, \; \gamma $ are nonnegative constants.

    If $ \delta = 0 $, then model (1.3) is a parabolic-elliptic chemotaxis system with volume-filling effect and logistic source. In order to be more line with biologically realistic mechanisms, Hillen and Painter [9,10] considered the finite size of individual cells-"volume-filling'' and derived volume-filling models

    $ {ut=(Du(q(u)q(u)u)uq(u)uχ(v)v)+f(u,v),vt=DvΔv+g(u,v). $ (1.4)

    $ q(u) $ is the probability of the cell finding space at its neighbouring location. It is also called the squeezing probability, which reflects the elastic properties of cells. For the linear choice of $ q(u) = 1-u $, global existence of solutions to model (1.4) in any space dimension are investigated in [9]. Wang and Thomas [11] established the global existence of classical solutions and given necessary and sufficient conditions for spatial pattern formation to a generalized volume-filling chemotaxis model. For a chemotaxis system with generalized volume-filling effect and logistic source, the global boundedness and finite time blow-up of solutions are obtained in [12]. Furthermore, the pattern formation of the volume-filling chemotaxis systems with logistic source and both linear diffusion and nonlinear diffusion are shown in [13,14,15] by the weakly nonlinear analysis. For parabolic-elliptic Keller-Segel volume-filling chemotaxis model with linear squeezing probability, asymptotic behavior of solutions is studied both in the whole space $ \mathbb{R}^{n} $ [16] and on bounded domains [17]. Moreover, the boundedness and singularity formation in parabolic-elliptic Keller-Segel volume-filling chemotaxis model with nonlinear squeezing probability are discussed in [18,19].

    Very recently, we [20] investigated the uniform boundedness and global asymptotic stability for the following chemotaxis model of multiple sclerosis

    $ \left\{ut=Δu(χ(u)v)+u(1u),χ(u)=χu1+u,xΩ,t>0,τvt=Δvβv+αw+γu,xΩ,t>0,wt=δu1+uu(1w),xΩ,t>0, \right. $

    subject to the homogeneous Neumann boundary conditions.

    In this paper, we are first devoted to studying the local existence and uniform boundedness of the unique classical solution to system (1.3) by using Neumann heat semigroup arguments, Banach fixed point theorem, parabolic Schauder estimate and elliptic regularity theory. Then we discuss that exponential asymptotic stability of the positive equilibrium point to system (1.3) by constructing Lyapunov function.

    Although, in the pathological mechanism of BCS, the initial data in model (1.3) satisfy $ 0 < u_{0}(x)\leq\; 1, w_{0}(x) = 0 $, we mathematically assume that

    $ {u0(x)C0(ˉΩ)with0,u0(x)1inΩ,w0(x)C2+ν(ˉΩ)with0<ν<1and0w0(x)1inΩ. $ (1.5)

    It is because the condition (1.5) implies $ u(x, t_0) > 0 $ for any $ t_0 > 0 $ by the strong maximum principle.

    The following theorems give the main results of this paper.

    Theorem 1.1. Assume that the initial data $ (u_{0}(x), w_{0}(x)) $ satisfy the condition (1.5). Then model (1.3) possesses a unique global solution $ (u(x, t), v(x, t), w(x, t)) $ satisfying

    $ u(x,t)C0(ˉΩ×[0,))C2,1(ˉΩ×(0,)),v(x,t)C0((0,),C2(ˉΩ)),w(x,t)C2,1(ˉΩ×[0,)), $ (1.6)

    and

    $ 0 \lt u(x, t)\leq 1, \; \; 0\leq v(x, t)\leq \frac{\beta+\gamma}{\alpha}, \; \; w_{0}(x)\leq w(x, t)\leq 1, \; \; \mathrm{in}\; \bar{\Omega}\times(0, \infty). $

    Moreover, there exist a $ \nu\in(0, 1) $ and $ M > 0 $ such that

    $ uC2+ν,1+ν/2(ˉΩ×[1,))+vC0([1,),C2+ν(ˉΩ))+wCν,1+ν/2(ˉΩ×[1,))M. $ (1.7)

    Theorem 1.2. Assume that $ \beta \geq 0, \; \gamma\geq 0, \; \beta+\gamma > 0 $ and

    $ χ<{min $ (1.8)

    Let $ (u, v, w) $ be a positive classical solution of the problem (1.3), (1.5). Then

    $ \begin{equation} \|u(\cdot, t)-u^{\ast}\|_{L^{\infty}(\Omega)}+\|v(\cdot, t)-v^{\ast}\|_{L^{\infty}(\Omega)} +\|w(\cdot, t)-w^{\ast}\|_{L^{\infty}(\Omega)}\rightarrow 0, \; \; \mathit{\text{as}}\, t\rightarrow \infty. \end{equation} $ (1.9)

    Furthermore, there exist positive constants $ \lambda = \lambda(\chi, \alpha, \gamma, \delta, n) $ and $ C = C(|\Omega|, \chi, \alpha, \beta, \gamma, \delta) $ such that

    $ \begin{equation} \|u-u^{\ast}\|_{L^{\infty}(\Omega)}\leq C e^{-\lambda t}, \, \|v-v^{\ast}\|_{L^{\infty}(\Omega)}\leq C e^{-\lambda t}, \, \|w-w^{\ast}\|_{L^{\infty}(\Omega)} \leq C e^{-\lambda t}, \; \; t \gt 0, \end{equation} $ (1.10)

    where $ (u^{\ast}, v^{\ast}, w^{\ast}) = (1, \frac{\beta+\gamma}{\alpha}, 1) $ is the unique positive equilibrium point of the model (1.3).

    The paper is organized as follows. In section 2, we prove the local existence, the boundedness and global existence of a unique classical solution. In section 3, we firstly establish the uniform convergence of the positive global classical solution, then discuss the exponential asymptotic stability of positive equilibrium point in the case of weak chemotactic sensitivity. The paper ends with a brief concluding remarks.

    The aim of this section is to develop the existence and boundedness of a global classical solution by employing Neumann heat semigroup arguments, Banach fixed point theorem, parabolic Schauder estimate and elliptic regularity theory.

    Proof of Theorem 1.1 (ⅰ) Existence. For $ p\in (1, \infty) $, let $ A $ denote the sectorial operator defined by

    $ Au: = -\Delta u \; \mathrm{for}\; u\in D(A): = \Big\{\varphi\in W^{2, p}(\Omega)\Big|\frac{\partial}{\partial \eta}\varphi\Big|_{\partial\Omega} = 0\Big\}. $

    $ \lambda_{1} > 0 $ denote the first nonzero eigenvalue of $ -\Delta $ in $ \Omega $ with zero-flux boundary condition. Let $ A_{1} = -\Delta+\alpha $ and $ X^{l} $ be the domains of fractional powers operator $ A^{l}, \; l\geq 0 $. From the Theorem 1.6.1 in [21], we know that for any $ p > n $ and $ l\in(\frac{n}{2p}, \frac{1}{2}) $,

    $ \begin{equation} \|z\|_{L^{\infty}(\Omega)}\leq C\|A_{1}^{l}z\|_{ L^{p}(\Omega)}\, \, \mathrm{for\; all}\, \, z\in X^{l}. \end{equation} $ (2.1)

    We introduce the closed subset

    $ S: = \left\{u\in X\big| \|u\|_{L^{\infty}((0, T);L^{\infty}(\Omega))}\leq R+1\right\} $

    in the space $ X: = C^{0}([0, T];C^{0}(\bar{\Omega})) $, where $ R $ is a any positive number satisfying

    $ \|u_{0}(x)\|_{L^{\infty}(\Omega)}\leq R $

    and $ T > 0 $ will be specified later. Note $ F(u) = \frac{u}{1+u} $, we consider an auxiliary problem with $ F(u) $ replaced by its extension $ \tilde{F}(u) $ defined by

    $ \tilde{F}(u) = \begin{cases} F(u)u\; \; &\text{if}\; \; u\geq 0, \\ -F(-u)(-u)\; \; &\text{if}\; \; u \lt 0. \end{cases} $

    Notice that $ \tilde{F}(u) $ is a smooth globally Lipshitz function. Given $ \hat{u}\in S $, we define $ \Psi\hat{u} = u $ by first writing

    $ \begin{equation} w(x, t) = (w_{0}(x)-1)e^{-\delta\int_{0}^{t}\tilde{F} (\hat{u})\hat{u}ds}+1, \; \; x\in\Omega, \; t \gt 0, \end{equation} $ (2.2)

    and

    $ w_{0}\leq w(x, t)\leq 1, \; \; x\in\Omega, \; t \gt 0, $

    then letting $ v $ solve

    $ \begin{equation} \left\{\begin{array}{ll} -\Delta v+\alpha v = \beta w+\gamma \hat{u}, &x\in\Omega, \; t\in(0, T), \\ \partial_{\eta}v = 0, &x\in\partial\Omega, \; t\in(0, T), \\ \end{array} \right. \end{equation} $ (2.3)

    and finally taking $ u $ to be the solution of the linear parabolic problem

    $ \left\{\begin{array}{ll} u_{t} = \Delta u-\chi \nabla\cdot(\hat{u}(1-\hat{u})\nabla v)+\hat{u}(1-\hat{u}), &x\in\Omega, \; t\in(0, T), \\ \partial_{\eta}u = 0, &x\in\partial\Omega, \; t\in(0, T), \\ u(x, 0) = u_{0}(x), &x\in\Omega.\\ \end{array} \right. $

    Applying Agmon-Douglas-Nirenberg Theorem [22,23] for the problem (2.3), there exists a constant $ C $ such that

    $ \begin{equation} \begin{aligned} \|v\|_{W_{p}^{2}(\Omega)}&\leq C(\beta\|w\|_{L^{p}(\Omega)}+\gamma\|\hat{u}\|_{L^{p}(\Omega)})\\ &\leq C(\beta|\Omega|^{\frac{1}{p}}+\gamma (R+1)) \end{aligned} \end{equation} $ (2.4)

    for all $ t\in(0, T) $. From a variation-of-constants formula, we define

    $ \Psi(\hat{u}) = e^{t\Delta}u_{0}-\chi\int^{t}_{0}e^{(t-s)\Delta}\nabla\cdot\left(\hat{u}(1-\hat{u})\nabla v(s)\right)ds+\int^{t}_{0}e^{(t-s)\Delta}\hat{u}(s)(1-\hat{u}(s))ds. $

    First we shall show that for $ T $ small enough

    $ \|\Psi(\hat{u})\|_{L^{\infty}((0, T);L^{\infty}(\Omega))}\leq R+1 $

    for any $ \hat{u}\in S $. From the maximum principle, we can give

    $ \begin{equation} \|e^{t\Delta}u_{0}\|_{L^{\infty}(\Omega)}\leq \|u_{0}\|_{L^{\infty}(\Omega)}, \end{equation} $ (2.5)

    and

    $ \begin{equation} \begin{aligned} \int^{t}_{0}\|e^{t\Delta}\hat{u}(s)(1-\hat{u}(s))\|_{L^{\infty} (\Omega)}ds \leq& \int^{t}_{0}\|\hat{u}(s)(1-\hat{u}(s))\|_{L^{\infty} (\Omega)}ds\\ \leq&(R+1)(R+2)T \end{aligned} \end{equation} $ (2.6)

    for all $ t\in(0, T) $. We use inequalities (2.1) and (2.4) to estimate

    $ \begin{equation} \begin{aligned} &\chi\int^{t}_{0}\|e^{(t-s)\Delta}\nabla\cdot(\hat{u}(1-\hat{u})\nabla v(s))\|_{L^{\infty}(\Omega)}ds\\ \leq& C\int^{t}_{0}(t-s)^{-l} \|e^{\frac{t-s}{2}\Delta}\nabla\cdot(\hat{u}(1-\hat{u})\nabla v(s))\|_{L^{p}(\Omega)}ds \\ \leq& C\int^{t}_{0}(t-s)^{-l-\frac{1}{2}} \|(\hat{u}(1-\hat{u})\nabla v(s)\|_{L^{p}(\Omega)}ds \\ \leq& C T^{\frac{1}{2}-l}(R+1)(R+2)(\beta|\Omega|^{\frac{1}{p}}+\gamma (R+1)) \end{aligned} \end{equation} $ (2.7)

    for all $ t\in(0, T) $. This estimate is attributed to $ T < 1 $ and the inequality in [24], Lemma 1.3 iv]

    $ \| e^{t\Delta}\nabla z\|_{L^{p}(\Omega)}\leq C_{1}(1+t^{-\frac{1}{2}})e^{-\lambda_{1}t}\| z\|_{L^{p}(\Omega)}\; \mathrm{for\; all}\; \; z\in C^{\infty}_{c}(\Omega). $

    From inequalities (2.5), (2.6) and (2.7) we can deduce that $ \Psi $ maps $ S $ into itself for $ T $ small enough.

    Next we prove that the map $ \Psi $ is a contractive on $ S $. For $ \hat{u}_{1}, \hat{u}_{2}\in S $, we estimate

    $ \begin{align*} \; \; \; \; \; \; \; \; &\|\Psi(\hat{u}_{1})-\Psi(\hat{u}_{2})\|_{L^{\infty}(\Omega)} \\ \leq & \chi \int^{t}_{0}(t-s)^{-l-\frac{1}{2}}\|\left[\hat{u}_{2}(s)(1-\hat{u}_{2}(s))-\hat{u}_{1}(s)(1-\hat{u}_{1}(s))\right] \nabla v_{2}(s)\|_{L^{p}(\Omega)}ds\\ &+\chi \int^{t}_{0}\|\hat{u}_{1}(s)(1-\hat{u}_{1}(s))(\nabla v_{1}(s)- \nabla v_{2}(s))\|_{L^{p}(\Omega)}ds \\ &+\int^{t}_{0}\|e^{(t-s)\Delta}[\hat{u}_{1}(s)(1-\hat{u}_{1}(s))-\hat{u}_{2}(s)(1-\hat{u}_{2}(s))]\|_{L^{\infty}(\Omega)}ds \\ \leq & \chi \int^{t}_{0}(t-s)^{-l-\frac{1}{2}}(2R+1)\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{X}\|\nabla v_{2}(s)\|_{L^{p}(\Omega)}ds\\ &+\chi \int^{t}_{0}(R+1)(R+2)\left(\beta \|w_{1}(s)-w_{2}(s)\|_{L^{p}(\Omega)}+\gamma \|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{L^{p}(\Omega)}\right)ds \\ & +\int^{t}_{0}(2R+1)\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{X}ds \\ \leq & \chi \int^{t}_{0}(t-s)^{-l-\frac{1}{2}}(2R+1)\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{X}\|\nabla v_{2}(s)\|_{L^{p}(\Omega)}ds\\ &+2\beta\delta \chi \int^{t}_{0}(R+1)(R+2)t\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{L^{p}(\Omega)}+\gamma \|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{L^{p}(\Omega)}ds\\ & +\int^{t}_{0}(2R+1)\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{X}ds \\ \leq & \left(C\chi T^{\frac{1}{2}-l}(2R+1)(\beta|\Omega|^{\frac{1}{p}}+\gamma (R+1))+2\beta\delta \chi T(R^{2}+3R+\gamma+2)+T(2R+1)\right)\|\hat{u}_{1}(s)-\hat{u}_{2}(s)\|_{X}. \end{align*} $

    Fixing $ T\in(0, 1) $ small enough such that

    $ \left(C\chi T^{\frac{1}{2}-l}(2R+1)(\beta|\Omega|^{\frac{1}{p}}+\gamma (R+1))+2\beta\delta \chi T(R^{2}+3R+\gamma+2)+T(2R+1)\right)\leq \frac{1}{2}. $

    It follows from the Banach fixed point theorem that there exists a unique fixed point of $ \Psi $.

    (ⅱ) Regularity. Since the above of $ T $ depends on $ \|u_{0}\|_{L^{\infty}(\Omega)} $ and $ \|w_{0}\|_{L^{\infty}(\Omega)} $ only, it is clear that $ (u, v, w) $ can be extended up to some maximal $ T_{\max}\in(0, \infty] $. Let $ Q_{T} = \Omega \times (0, T] $ for all $ T\in (0, T_{\max}) $. From $ u\in C^{0}(\bar{Q}_{T}) $, we know that $ w\in C^{0, 1}(\bar{Q}_{T}) $ by the expression (2.2) and $ v\in C^{0}([0, T], W_{p}^{2}(\Omega)) $ by Agmon-Douglas-Nirenberg Theorem [22,23]. From parabolic $ L^{p} $-estimate and the embedding relation $ W_{p}^{1}(\Omega)\hookrightarrow C^{\nu}(\bar{\Omega}), \; p > n $, we can get $ u\in W^{2, 1}_{p}(Q_{T}) $. By applying the following embedding relation

    $ \begin{equation} W^{2, 1}_{p}(Q_{T})\hookrightarrow C^{\nu, \nu/2}(\bar{Q}_{T}), \; p \gt \frac{n+2}{2}, \end{equation} $ (2.8)

    we can derive $ u(x, t)\in C^{\nu, \nu/2}(\bar{Q}_{T}) $ with $ 0 < \nu\leq 2-\frac{n+2}{p} $. The conclusion $ w\in C^{\nu, 1+\nu/2}(\bar{Q}_{T}) $ can be obtained by substituting $ u\in C^{\nu, \nu/2}(\bar{Q}_{T}) $ into the formulation (2.2). The regularity $ u\in C^{2+\nu, 1+\nu/2}(\bar{Q}_{T}) $ can be deduced by using further bootstrap argument and the parabolic Schauder estimate. Similarly, we can get $ v\in C^{0}((0, T), C^{2+\nu}(\bar{\Omega})) $ by using Agmon-Douglas-Nirenberg Theorem [22,23]. From the regularity of $ u $ we have $ w\in C^{2+\nu, 1+\nu/2}(\bar{Q}_{T}) $.

    Moreover, the maximal principle entails that $ 0 < u(x, t)\leq 1 $, $ 0\leq v(x, t)\leq\frac{\beta+\gamma}{\alpha} $. It follows from the positivity of $ u $ that $ \tilde{F}(u) = F(u) $ and because of the uniqueness of solution we infer the existence of the solution to the original problem.

    (ⅲ) Uniqueness. Suppose $ (u_{1}, v_{1}, w_{1}) $ and $ (u_{2}, v_{2}, w_{2}) $ are two deferent solutions of model $ (1.3) $ in $ \Omega\times [0, T] $. Let $ U = u_{1}-u_{2} $, $ V = v_{1}-v_{2} $, $ W = w_{1}-w_{2} $ for $ t\in (0, T) $. Then

    $ \begin{equation} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\int_{\Omega}U^{2}dx+\int_{\Omega}|\nabla U|^{2}dx\\ \leq& \chi\int_{\Omega}|u_{1}(1-u_{1})-u_{2}(1-u_{2})|\nabla v_{1}||\nabla U|+u_{2}(1-u_{2})|\nabla V||\nabla U| dx\\ &+\int_{\Omega}|u_{1}(1-u_{1})-u_{2}(1-u_{2})||U|dx \\ \leq & \chi\int_{\Omega}|U||\nabla v_{1}||\nabla U|+\frac{1}{4}|\nabla V||\nabla U| dx +\int_{\Omega}|U|^{2}dx \\ \leq &\int_{\Omega}|\nabla U|^{2}dx+\frac{\chi^{2}}{32}\int_{\Omega}|\nabla V|^{2}dx+ \frac{\chi^{2} K^{2}+2}{2}\int_{\Omega}|U|^{2}dx, \end{aligned} \end{equation} $ (2.9)

    where we have used that $ |\nabla v_{1}|\leq K $ results from $ \nabla v_{1}\in C^{0}([0, T], C^{0}(\bar{\Omega})). $

    Similarly, by Young inequality and $ w_{0}\leq w_{1}\leq 1 $, we can estimate

    $ \begin{equation} \int_{\Omega}|\nabla V|^{2}dx+\frac{\alpha}{2}\int_{\Omega}| V|^{2}dx\leq\frac{\beta^{2}}{\alpha} \int_{\Omega}|W|^{2}dx+\frac{\gamma^{2}}{\alpha} \int_{\Omega}|U|^{2}dx, \end{equation} $ (2.10)

    and

    $ \begin{equation} \frac{d}{dt}\int_{\Omega}W^{2}dx\leq \delta\int_{\Omega}|U|^{2}+|W|^{2}dx. \end{equation} $ (2.11)

    Finally, adding to the inequalities (2.9)–(2.11) yields

    $ \frac{d}{dt}\left(\int_{\Omega}U^{2}dx+\int_{\Omega}W^{2}dx\right)\leq C\left(\int_{\Omega}U^{2}dx+\int_{\Omega}W^{2}dx\right)\; \mathrm{for\; all}\; t \in (0, T). $

    The results $ U\equiv 0 $, $ W\equiv0 $ in $ \Omega\times(0, T) $ are obtained by Gronwall's lemma. From the inequality (2.10), we have $ V\equiv 0 $. Hence $ (u_{1}, v_{1}, w_{1}) = (u_{2}, v_{2}, w_{2}) $ in $ \Omega\times(0, T) $.

    (ⅳ) Uniform estimates. We use the Agmon-Douglas-Nirenberg Theorem [22,23] for the second equation of the model (1.3) to get

    $ \begin{equation} \|v\|_{C^{0}([t, t+1], W_{p}^{2}(\Omega))}\leq C\left(\|u\|_{L^{p}(\Omega \times [t, t+1])}+\|w\|_{L^{p}(\Omega \times [t, t+1])}\right) \leq C_{2} \end{equation} $ (2.12)

    for all $ t\geq 1 $ and $ C_{2} $ is independent of $ t $. From the embedded relationship $ W_{p}^{1}(\Omega)\hookrightarrow C^{0}({\bar{\Omega}}), \; p > n $, the parabolic $ L^{p} $-estimate and the estimation (2.12), we have

    $ \|u\|_{W_{p}^{2, 1}(\Omega\times[t, t+1])}\leq C_{3} $

    for all $ t\geq 1 $. The estimate $ \|u\|_{C^{\nu, \frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{4} $ for all $ t\geq 1 $ obtained by the embedded relationship (2.8). We can immediately compute $ \|w\|_{C^{\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{5} $ for all $ t\geq 1 $ according to the regularity of $ u $ and the specific expression of $ w $. Further, bootstrapping argument leads to $ \|v\|_{C^{0}([t, t+1], C^{2+\nu}(\bar{\Omega}))}\leq C_{6} $ and $ \|u\|_{C^{2+\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{7} $ for all $ t\geq 1 $. Thus the uniform estimation (1.7) is proved.

    Remark 2.1. Assume the initial data $ 0 < u_{0}(x)\leq 1 $ and $ w_{0}(x) = 0 $. Then the BCS model (1.3) has a unique classical solution.

    In this section we investigate the global asymptotic stability of the unique positive equilibrium point $ (1, \frac{\beta+\gamma}{\alpha}, 1) $ to model (1.3). To this end, we first introduce following auxiliary problem

    $ \begin{equation} \left\{\begin{array}{ll} u_{\epsilon t} = \Delta u_{\epsilon}-\nabla\cdot(u_{\epsilon}(1-u_{\epsilon})\nabla v_{\epsilon})+u_{\epsilon}(1-u_{\epsilon}), & x\in\Omega, \; t \gt 0, \\ -\Delta v_{\epsilon}+\alpha v_{\epsilon} = \beta w_{\epsilon}+\gamma u_{\epsilon}, &x\in\Omega, \; t \gt 0, \\ w_{\epsilon t} = \delta\frac{u_{\epsilon}^{2}+\epsilon}{1+u_{\epsilon}} (1-w_{\epsilon}), &x\in\Omega, \; t \gt 0, \\ \partial_{\eta}u_{\epsilon} = \partial_{\eta}v_{\epsilon} = 0, &x\in\partial\Omega, \; t \gt 0, \\ u_{\epsilon}(x, 0) = u_{0}(x), \; w_{\epsilon}(x, 0) = w_{0}(x), &x\in\Omega. \end{array} \right. \end{equation} $ (3.1)

    By a similar proof of Theorem 1.1, we get that the problem (3.1) has a unique global classical solution $ (u_{\epsilon}, v_{\epsilon}, w_{\epsilon}) $, and there exist a $ \nu\in(0, 1) $ and $ M_{1} > 0 $ which is independent of $ \epsilon $ such that

    $ \begin{equation} \|u_{\epsilon}\|_{C^{2+\nu, 1+\nu/2}(\bar{\Omega}\times[1, \infty))}+\|v_{\epsilon}\|_{C^{2+\nu, 1+\nu/2}(\bar{\Omega}\times[1, \infty))} +\|w_{\epsilon}\|_{C^{\nu, 1+\nu/2}(\bar{\Omega}\times[1, \infty))}\leq M_{1}. \end{equation} $ (3.2)

    Then, motivated by some ideas from [25,26], we construct a Lyapunov function to study the uniform convergence of homogeneous steady state for the problem (3.1).

    Let us give following lemma which is used in the proof of Lemma 3.2.

    Lemma 3.1. Suppose that a nonnegative function $ f $ on $ (1, \infty) $ is uniformly continuous and $ \int_{1}^{\infty}f(t)dt < \; \infty $. Then $ f(t)\rightarrow 0 $ as $ t\rightarrow \infty. $

    Lemma 3.2. Assume that the condition (1.8) is satisfied. Then

    $ \begin{equation} \|u_{\epsilon}(\cdot, t)-1\|_{L^{2}(\Omega)}+ \|v_{\epsilon}(\cdot, t)-v^{\ast}\|_{L^{2}(\Omega)} +\|w_{\epsilon}(\cdot, t)-1\|_{L^{2}(\Omega)}\rightarrow 0, \; \; t\rightarrow \infty, \end{equation} $ (3.3)

    where $ v^{\ast} = \frac{\beta+\gamma}{\alpha} $.

    Proof We construct a positive function

    $ E(t): = \int_{\Omega}(u_{\varepsilon}-1-\ln u_{\epsilon}) +\frac{1}{2\delta\epsilon}\int_{\Omega}(w_{\epsilon}-1)^{2}, \; \; t \gt 0. $

    From the problem (3.1) and Young's inequality, we can compute

    $ \begin{equation} \frac{d}{dt}E(t)\leq {\frac{\chi^{2}}{4}}\int_{\Omega}|\nabla v_{\epsilon}|^{2}dx-\int_{\Omega}(u_{\epsilon}-1)^{2}dx-\int_{\Omega}(w_{\epsilon}-1)^{2}dx, \; \; t \gt 0. \end{equation} $ (3.4)

    We multiply the second equations in system (3.1) by $ v_{\epsilon}-v^{\ast} $, integrate by parts over $ \Omega $ and use Young's inequality to obtain

    $ \begin{equation} \int_{\Omega}|\nabla v_{\epsilon}|^{2}dx\leq\frac{\gamma^{2}}{2\alpha}\int_{\Omega}(u_{\epsilon}-1)^{2}dx +\frac{\beta^{2}}{2\alpha}\int_{\Omega}(w_{\epsilon}-1)^{2}dx, \; \; t \gt 0, \end{equation} $ (3.5)

    and

    $ \begin{equation} \int_{\Omega}(v_{\epsilon}-v^{\ast})^{2}dx\leq\frac{2\gamma^{2}}{\alpha^{2}}\int_{\Omega}(u_{\epsilon}-1)^{2}dx+\frac{2 \beta^{2}}{\alpha^{2}}\int_{\Omega}(w_{\epsilon}-1)^{2}dx, \; \; t \gt 0. \end{equation} $ (3.6)

    Substituting inequality (3.5) into inequality (3.4) to get

    $ \begin{equation} \nonumber \frac{d}{dt}E(t)\leq -C_{8}\left(\int_{\Omega}(u_{\epsilon}-1)^{2}dx+\int_{\Omega}(w_{\epsilon}-1)^{2}dx\right), \; \; t \gt 0, \end{equation} $

    where $ C_{8} = \min\left\{1-\frac{\chi^{2}\beta^{2}}{8\alpha}, 1-\frac{\chi^{2}\gamma^{2}}{8\alpha}\right\} > 0. $

    Let $ f(t): = \int_{\Omega}(u_{\epsilon}-1)^{2}+(w_{\epsilon}-1)^{2}dx $. Then

    $ \int_{1}^{\infty}f(t)dt\leq \frac{E(1)}{C_{8}} \lt \infty, \; \; t \gt 1. $

    It follows from the uniform estimation $ (3.2) $ and the Arzela-Ascoli theorem that $ f(t) $ is uniformly continuous in $ (1, \infty) $. Applying Lemma 3.1, we have

    $ \begin{equation} \int_{\Omega}(u_{\epsilon}(\cdot, t)-1)^{2}+ (w_{\epsilon}(\cdot, t)-1)^{2}dx\rightarrow 0, \; \; t\rightarrow \infty. \end{equation} $ (3.7)

    Combining inequality (3.6) and the limit (3.7) to obtain

    $ \int_{\Omega}(v_{\epsilon}(\cdot, t)-v^{\ast})^{2}dx \rightarrow 0, \; \; t\rightarrow \infty. $

    Proof of Theorem 1.2 As we all known, each bounded sequence in $ C^{2+\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times[1, \infty)) $ is precompact in $ C^{2, 1}(\bar{\Omega}\times[1, \infty)) $. Hence there exists some subsequence $ \{u_{\epsilon_{n}}\}_{n = 1}^{\infty} $ satisfying $ \epsilon_{n}\rightarrow0 $ as $ n\rightarrow \infty $ such that

    $ \lim\limits_{n\rightarrow \infty}\|u_{\epsilon_{n}}-u_{\ast}\|_{C^{2, 1}(\bar{\Omega}\times[1, \infty))} = 0. $

    Similarly, we can get

    $ \lim\limits_{n\rightarrow \infty}\|v_{\epsilon_{n}}-v_{\ast}\|_{C^{2}(\bar{\Omega})} = 0, $

    and

    $ \lim\limits_{n\rightarrow \infty}\|w_{\epsilon_{n}}-w_{\ast}\|_{C^{0, 1}(\bar{\Omega}\times[1, \infty))} = 0. $

    Combining above limiting relations yields that $ (u_{\ast}, v_{\ast}, w_{\ast}) $ satisfies model (1.3). The conclusion $ (u_{\ast}, v_{\ast}, w_{\ast}) = (u, v, w) $ is directly attributed to the uniqueness of the classical solution of the model (1.3). Furthermore, according to the conclusion, the strong convergence (3.3) and Diagonal line method, we can deduce

    $ \begin{equation} \|u(\cdot, t)-1\|_{L^{2}(\Omega)}+ \|v(\cdot, t)-v^{\ast}\|_{L^{2}(\Omega)} +\|w(\cdot, t)-1\|_{L^{2}(\Omega)}\rightarrow 0, \; \; t\rightarrow \infty. \end{equation} $ (3.8)

    By applying Gagliardo-Nirenberg inequality

    $ \begin{equation} \|z\|_{L^{\infty}}\leq C\|z\|_{L^{2}(\Omega)}^{2/(n+2)}\|z\|_{W^{1, \infty}(\Omega)}^{n/(n+2)}, \; \; z\in W^{1, \infty}(\Omega), \end{equation} $ (3.9)

    comparison principle of ODE and the convergence (3.8), the uniform convergence (1.9) is obtained immediately.

    Since $ \lim_{t\rightarrow \infty}\|u(\cdot, t)-1\|_{L^{\infty}(\Omega)} = 0 $, so there exists a $ t_{1} > 0 $ such that

    $ \begin{equation} u(x, t)\geq \frac{1}{2}\; \; \mathrm{for\; all}\; \; x\in \Omega, \; \; t \gt t_{1}. \end{equation} $ (3.10)

    Using the explicit representation formula of $ w $

    $ w(x, t) = (w_{0}(x)-1)e^{-\delta\int_{0}^{t}F(u)uds}+1, \; \; x\in\Omega, \; t \gt 0 $

    and the inequality (3.10), we have

    $ \begin{equation} \|w(\cdot, t)-1\|_{L^{\infty}(\Omega)}\leq e^{-\frac{\delta}{6}(t-t_{1})}, \; \; t \gt t_{1}. \end{equation} $ (3.11)

    Multiply the first two equations in model (1.3) by $ u-1 $ and $ v-v^{\ast} $, respectively, integrate over $ \Omega $ and apply Cauchy's inequality, Young's inequality and the inequality (3.10), to find

    $ \begin{equation} \frac{d}{dt}\int_{\Omega}(u-1)^{2}dx\leq \frac{\chi^{2}}{32}\int_{\Omega}|\nabla v|^{2}dx-\int_{\Omega}(u-1)^{2}dx, \; \; t \gt t_{1}. \end{equation} $ (3.12)
    $ \begin{equation} \int_{\Omega}|\nabla v|^{2}dx+\frac{\alpha}{2}\int_{\Omega}(v-v^{\ast})^{2}dx\leq \frac{\beta^{2}}{\alpha}\int_{\Omega}(w-1)^{2}dx +\frac{\gamma^{2}}{\alpha}\int_{\Omega}(u-1)^{2}dx, \; \; t \gt 0. \end{equation} $ (3.13)

    Combining the estimations (3.11)–(3.13) leads us to the estimate

    $ \begin{equation} \nonumber \frac{d}{dt}\int_{\Omega}(u-1)^{2}dx\leq \left(\frac{\chi^{2}\gamma^{2}}{32\alpha}-1\right)\int_{\Omega}(u-1)^{2}dx +\frac{\chi^{2}\beta^{2}}{32\alpha}e^{-{\frac{\delta}{3}(t-t_{1})}}, \; \; t \gt t_{1}. \end{equation} $

    Let $ y(t) = \int_{\Omega}(u-1)^{2}dx $. Then

    $ y'(t)\leq \left(\frac{\chi^{2}\gamma^{2}}{32\alpha}-1\right)y(t) +\frac{\chi^{2}\beta^{2}}{32\alpha}e^{-{\frac{\delta}{3}(t-t_{1})}}, \; \; t \gt t_{1}. $

    From comparison principle of ODE, we get

    $ y(t)\leq \left(y(t_{1})-\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}\right) e^{-\left(1-\frac{\chi^{2}\gamma^{2}}{32\alpha}\right)(t-t_{1})} +\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}e^{-\frac{\delta}{3}(t-t_{1})}, \; \; t \gt t_{1}. $

    This yields

    $ \begin{equation} \int_{\Omega}(u-1)^{2}dx\leq C_{9} e^{-\lambda_{2} (t-t_{1})}, \; \; t \gt t_{1}, \end{equation} $ (3.14)

    where $ \lambda_{2} = \min\{1-\frac{\chi^{2}\gamma^{2}}{32\alpha}, \frac{\delta}{3}\} $ and $ C_{9} = \max\left\{|\Omega|-\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}, \frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}\right\} $.

    From the inequalities (3.11), (3.13) and (3.14), we derive

    $ \begin{equation} \int_{\Omega}\left(v-\frac{\beta+\gamma}{\alpha}\right)^{2}dx\leq C_{10}e^{-\lambda_{2}(t-t_{1})}, \; \; t \gt t_{1}, \end{equation} $ (3.15)

    where $ C_{10} = \max\left\{\frac{2\gamma^{2}}{\alpha^{2}}C_{9}, \frac{2\beta^{2}}{\alpha^{2}}\right\} $. By employing the uniform estimation (1.7), the inequalities (3.9), (3.14) and (3.15), the exponential decay estimation (1.10) can be obtained.

    The proof is complete.

    In this paper, we mainly study the uniform boundedness of classical solutions and exponential asymptotic stability of the unique positive equilibrium point to the chemotactic cellular model (1.3) for Baló's concentric sclerosis (BCS). For model (1.1), by numerical simulation, Calveza and Khonsarib in [7] shown that demyelination patterns of concentric rings will occur with increasing of chemotactic sensitivity. By the Theorem 1.1 we know that systems (1.1) and (1.2) are {uniformly} bounded and dissipative. By the Theorem 1.2 we also find that the constant equilibrium point of model (1.1) is exponentially asymptotically stable if

    $ \tilde{\chi} \lt \frac{2}{\bar{w}\tilde{\beta}} \sqrt{\frac{2D\mu\tilde{\alpha}\tilde{\epsilon}}{\bar{u}}}, $

    and the constant equilibrium point of the model (1.2) is exponentially asymptotically stable if

    $ \tilde{\chi} \lt 2\sqrt{\frac{2D\mu\tilde{\alpha}\tilde{\epsilon}}{\bar{u}}}\min \left\{\frac{1}{\bar{w}\tilde{\beta}}, \frac{1}{\bar{u}\tilde{\gamma}}\right\}. $

    According to a pathological viewpoint of BCS, the above stability results mean that if chemoattractive effect is weak, then the destroyed oligodendrocytes form a homogeneous plaque.

    The authors would like to thank the editors and the anonymous referees for their constructive comments. This research was supported by the National Natural Science Foundation of China (Nos. 11761063, 11661051).

    We have no conflict of interest in this paper.



    [1] Hirschler V, Maccallini G, Molinari C, et al. (2018) Type 2 diabetes markers in indigenous Argentinean children living at different altitudes. AIMS Public Health 5: 440–453. doi: 10.3934/publichealth.2018.4.440
    [2] Miele CH, Schwartz AR, Gilman RH, et al. (2016) Increased Cardiometabolic Risk and Worsening Hypoxemia at High Altitude. High Alt Med Biol 17: 93–100. doi: 10.1089/ham.2015.0084
    [3] Woolcott OO, Castillo OA, Gutierrez C, et al. (2014) Inverse association between diabetes and altitude: a cross-sectional study in the adult population of the United States. Obesity (Silver Spring) 22: 2080–2090. doi: 10.1002/oby.20800
    [4] Woolcott OO, Ader M, Bergman RN (2015) Glucose homeostasis during short-term and prolonged exposure to high altitudes. Endocr Rev 36: 149–173. doi: 10.1210/er.2014-1063
    [5] Woolcott OO, Gutierrez C, Castillo OA, et al. (2016) Inverse association between altitude and obesity: A prevalence study among andean and low-altitude adult individuals of Peru. Obesity (Silver Spring) 24: 929–937. doi: 10.1002/oby.21401
    [6] Moldobaeva MS, Vinogradova AV, Esenamanova MK (2017) Risk of type 2 diabetes mellitus development in the native population of low- and high-altitude regions of kyrgyzstan: Finnish diabetes risc score questionnaire Results. High Alt Med Biol 18: 428–435. doi: 10.1089/ham.2017.0036
    [7] Bernabé-Ortiz A, Carrillo-Larco RM, Gilman RH, et al. (2016) Geographical variation in the progression of type 2 diabetes in Peru: The CRONICAS Cohort Study. Diabetes Res Clin Pract 121: 135–145. doi: 10.1016/j.diabres.2016.09.007
    [8] Pulgaron ER, Delamater AM (2014) Obesity and type 2 diabetes in children: epidemiology and treatment. Curr Diab Rep 14: 508. doi: 10.1007/s11892-014-0508-y
    [9] National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114: 555–576. doi: 10.1542/peds.114.2.S2.555
    [10] Burtscher M, Burtscher J (In press) Blood pressure and hypertension in people living at high altitude. Hypertens Res: In press.
    [11] Keskin M, Kurtoglu S, Kendirci M, et al. (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 115: 500–503. doi: 10.1542/peds.2004-1921
  • This article has been cited by:

    1. Lu Xu, Chunlai Mu, Qiao Xin, Global boundedness and asymptotic behavior of solutions for a quasilinear chemotaxis model of multiple sclerosis with nonlinear signal secretion, 2023, 28, 1531-3492, 1215, 10.3934/dcdsb.2022118
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4650) PDF downloads(993) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog