Research article

On the initial-boundary value problem for a Kuramoto-Velarde equation

  • Published: 20 January 2026
  • The Kuramoto-Velarde equation describes the spatio-temporal evolution of step morphology on crystal surfaces, as well as the dynamics of spinodal decomposition in phase-separating systems subjected to an external field. In this paper, we prove the well-posedness of the solutions for the initial-boundary value problem for this equation, under several possible boundary conditions.

    Citation: Giuseppe Maria Coclite, Lorenzo di Ruvo. On the initial-boundary value problem for a Kuramoto-Velarde equation[J]. Networks and Heterogeneous Media, 2026, 21(1): 92-146. doi: 10.3934/nhm.2026005

    Related Papers:

  • The Kuramoto-Velarde equation describes the spatio-temporal evolution of step morphology on crystal surfaces, as well as the dynamics of spinodal decomposition in phase-separating systems subjected to an external field. In this paper, we prove the well-posedness of the solutions for the initial-boundary value problem for this equation, under several possible boundary conditions.



    加载中


    [1] C. L. Emmott, A. J. Bray, Coarsening dynamics of a one-dimensional driven Cahn-Hilliard system, Phys. Rev. E, 54 (1996), 4568–4575. https://doi.org/10.1103/PhysRevE.54.4568 doi: 10.1103/PhysRevE.54.4568
    [2] Kwan tai Leung. K. T. Leung, Theory on morphological instability in driven systems, J. Stat. Phys., 61 (1990), 345–364. http://doi.org/10.1007/BF01013969 doi: 10.1007/BF01013969
    [3] C. Yeung, T. Rogers, A. Hernandez-Machado, D. Jasnow, Phase separation dynamics in driven diffusive systems, J. Stat. Phys., 66 (1992), 1071–1088. https://doi.org/10.1007/BF01055717 doi: 10.1007/BF01055717
    [4] A. Golovin, S. Davis, A. Nepomnyashchy, A convective Cahn-Hilliard model for the formation of facets and corners in crystal growth, Physica D, 122 (1998), 202–230, http://doi.org/10.1016/S0167-2789(98)00181-X doi: 10.1016/S0167-2789(98)00181-X
    [5] M. Khenner, Step growth and meandering in a precursor-mediated epitaxy with anisotropic attachment kinetics and terrace diffusion, Math. Model. Nat. Phenom., 10 (2015), 97–110. https://doi.org/10.1051/mmnp/201510406 doi: 10.1051/mmnp/201510406
    [6] Y. Saito, M. Uwaha, Anisotropy effect on step morphology described by Kuramoto-Sivashinsky equation, J. Phys. Soc. Jpn., 65 (1996), 3576–3581, http://doi.org/10.1143/JPSJ.65.3576 doi: 10.1143/JPSJ.65.3576
    [7] A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy, Model for faceting in a kinetically controlled crystal growth, Phys. Rev. E, 59 (1999), 803–825, https://doi.org/10.1103/PhysRevE.59.803 doi: 10.1103/PhysRevE.59.803
    [8] A. A. Golovin, A. A. Nepomnyashchy, S. H. Davis, M. A. Zaks, Convective Cahn-Hilliard models: From coarsening to roughening, Phys. Rev. Lett., 86 (2001), 1550–1553, https://doi.org/10.1103/PhysRevLett.86.1550 doi: 10.1103/PhysRevLett.86.1550
    [9] M. E. Gurtin. Thermomechanics of evolving phase boundaries in the plane, Oxford: Clarendon Press, 1993. 10.1093/oso/9780198536949.001.0001
    [10] A. Di Carlo, M. E. Gurtin, P. Podio-Guidugli, A regularized equation for anisotropic motion-by-curvature, SIAM J. Appl. Math., 52 (1992), 1111–1119. https://doi.org/10.1137/0152065 doi: 10.1137/0152065
    [11] S. J. Watson, Crystal growth, coarsening and the convective Cahn–Hilliard equation, in Free Boundary Problems: Theory and Applications, Proceedings of a Conference, Basel: Birkhäuser, 2003,329–341.
    [12] C. Christov, M. Velarde, Dissipative solitons, Physica D, 86 (1995), 323–347, http://doi.org/10.1016/0167-2789(95)00111-G doi: 10.1016/0167-2789(95)00111-G
    [13] P. L. Garcia-Ybarra, J. L. Castillo, M. G. Velarde, Bénard-Marangoni convection with a deformable interface and poorly conducting boundaries, Phys. Fluids, 30 (1987), 2655–2661.
    [14] P. Garcia-Ybarra, J. Castillo, M. Velarde, A nonlinear evolution equation for Bénard-Marangoni convection with deformable boundary, Phys. Lett. A, 122 (1987), 107–110, http://doi.org/10.1016/0375-9601(87)90785-7 doi: 10.1016/0375-9601(87)90785-7
    [15] J. M. Hyman, B. Nicolaenko, Coherence and chaos in the Kuramoto-Velarde equation, Directions in partial differential equations, Directions Partial Differ. Equ., 54 (1987), 89–111. https://doi.org/10.1016/B978-0-12-195255-6.50013-1 doi: 10.1016/B978-0-12-195255-6.50013-1
    [16] M. G. Velarde, C. Normand, Convection, Sci. Am., 243 (1980), 92–109. Available from: http://www.jstor.org/stable/24966371.
    [17] J. Zierep, H. Oertel Jr, Convective transport and instability phenomena, 1982.
    [18] J. Topper, T. Kawahara, Approximate equations for long nonlinear waves on a viscous fluid, J. Phys. Soc. Jpn., 44 (1978), 663–666. http://doi.org/10.1143/JPSJ.44.663 doi: 10.1143/JPSJ.44.663
    [19] B. Cohen, J. Krommes, W. Tang, N. Rosenbluth, Nonlinear saturation of the dissipative trapped-ion mode by mode coupling, Nucl. fusion, 16 (1976), 971. https://doi.org/10.1088/0029-5515/16/6/009 doi: 10.1088/0029-5515/16/6/009
    [20] O. Y. Kamenov, Solitary-wave and periodic solutions of the Kuramoto-Velarde dispersive equation, J. Theor. Appl. Mech., 46 (2016), 65–74. 10.1515/jtam-2016-0016 doi: 10.1515/jtam-2016-0016
    [21] A. Rodríguez-Bernal, Initial value problem and asymptotic low dimensional behavior in the Kuramoto-Velarde equation, Nonlinear Anal. Theory Methods Appl., 19 (1992), 643–685. https://doi.org/10.1016/0362-546X(92)90099-Z doi: 10.1016/0362-546X(92)90099-Z
    [22] C. I. Christov, M. G. Velarde, On localized solutions of an equation governing Benard-Marangoni convection, Appl. Math. Modell., 17 (1993), 311–320, https://doi.org/10.1016/0307-904X(93)90056-M doi: 10.1016/0307-904X(93)90056-M
    [23] M. B. A. Mansour, Existence of traveling wave solutions for a nonlinear dissipative-dispersive equation, Appl. Math. Mech., 30 (2009), 513–516. https://doi.org/10.1007/s10483-009-0411-6 doi: 10.1007/s10483-009-0411-6
    [24] O. Y. Kamenov, Periodic solutions of the non-integrable convective fluid equation, J. Math. Phys., 53 (2012), 063705. https://doi.org/10.1063/1.4727870 doi: 10.1063/1.4727870
    [25] D. Pilod, Sharp well-posedness results for the Kuramato-Velarde equation, Commun. Pure Appl. Anal., 7 (2008), 867–881.
    [26] G. M. Coclite, L. di Ruvo, Well-posedness result for the Kuramoto-Velarde equation, Boll. Unione Mat. Ital., 14 (2021), 659–679. https://doi.org/10.1007/s40574-021-00303-7 doi: 10.1007/s40574-021-00303-7
    [27] G. M. Coclite, L. di Ruvo, $H^1$ solutions for a Kuramoto-Velarde type equation, Mediterr. J. Math., 20 (2023), 110. https://doi.org/10.1007/s00009-023-02295-4 doi: 10.1007/s00009-023-02295-4
    [28] Y. Kuramoto, Diffusion-induced chaos in reaction systems, Prog. Theor. Phys. Suppl., 64 (1978), 346–367. http://doi.org/10.1143/PTPS.64.346 doi: 10.1143/PTPS.64.346
    [29] Y. Kuramoto, T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356–369, http://doi.org/10.1143/PTP.55.356 doi: 10.1143/PTP.55.356
    [30] Y. Kuramoto, T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems: Reductive perturbation approach, Prog. Theor. Phys., 54 (1975), 687–699, http://doi.org/10.1143/PTP.54.687 doi: 10.1143/PTP.54.687
    [31] G. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames–Ⅰ. derivation of basic equations, Acta Astronautica, 4 (1977), 1177–1206. http://doi.org/10.1016/0094-5765(77)90096-0 doi: 10.1016/0094-5765(77)90096-0
    [32] L. H. Chen, H. C. Chang, Nonlinear waves on liquid film surfaces–Ⅱ. bifurcation analyses of the long-wave equation, Chem. Eng. Sci., 41 (1986), 2477–2486. http://doi.org/10.1016/0009-2509(86)80033-1 doi: 10.1016/0009-2509(86)80033-1
    [33] A. P. Hooper, R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, Phys. Fluids, 28 (1985), 37–45.
    [34] R. E. LaQuey, S. M. Mahajan, P. H. Rutherford, W. M. Tang, Nonlinear saturation of the trapped-ion mode, Phys. Rev. Lett., 34 (1975), 391–394. https://doi.org/10.1103/PhysRevLett.34.391 doi: 10.1103/PhysRevLett.34.391
    [35] D. J. Benney, Long waves on liquid films, J. Math. Phys., 45 (1966), 150–155.
    [36] S. P. Lin, Finite amplitude side-band stability of a viscous film, J. Fluid Mech., 63 (1974), 417–429. https://doi.org/10.1017/S0022112074001704 doi: 10.1017/S0022112074001704
    [37] C. Li, G. Chen, S. Zhao, Exact travelling wave solutions to the generalized kuramoto-sivashinsky equation, Lat. Am. Appl. Res., 34 (2004), 65–68.
    [38] C. Foias, B. Nicolaenko, G. R. Sell, R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl., 67 (1988), 197–226.
    [39] N. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Phys. Lett. A, 147 (1990), 287–291, http://doi.org/10.1016/0375-9601(90)90449-X doi: 10.1016/0375-9601(90)90449-X
    [40] B. Nicolaenko, B. Scheurer, Remarks on the Kuramoto-Sivashinsky equation, Physica D, 12 (1984), 391–395. http://doi.org/10.1016/0167-2789(84)90543-8 doi: 10.1016/0167-2789(84)90543-8
    [41] B. Nicolaenko, B. Scheurer, R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: Nonlinear stability and attractors, Physica D, 16 (1985), 155–183. http://doi.org/10.1016/0167-2789(85)90056-9 doi: 10.1016/0167-2789(85)90056-9
    [42] Y. Xie, Solving the generalized Benney equation by a combination method, Int. J. Nonlinear Sci., 15 (2013), 350–354.
    [43] A. Armaou, P. D. Christofides, Feedback control of the kuramoto–sivashinsky equation, Physica D, 137 (2000), 49–61, https://doi.org/10.1016/S0167-2789(99)00175-X doi: 10.1016/S0167-2789(99)00175-X
    [44] E. Cerpa, Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation, Commun. Pure Appl. Anal., 9 (2010), 91–102. https://doi.org/10.3934/cpaa.2010.9.91 doi: 10.3934/cpaa.2010.9.91
    [45] L. Giacomelli, F. Otto, New bounds for the Kuramoto-Sivashinsky equation, Commun. Pure Appl. Math., 58 (2005), 297–318. https://doi.org/10.1002/cpa.20031 doi: 10.1002/cpa.20031
    [46] C. Hu, R. Temam, Robust control of the Kuramoto-Sivashinsky equation, Dyn. Contin. Discrete Impuls. Syst. Ser. B, Appl. Algorithms, 8 (2001), 315–338.
    [47] W. J. Liu, M. Krstić, Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation, Nonlinear Anal. Theory Methods Appl., 43 (2001), 485–507. https://doi.org/10.1016/S0362-546X(99)00215-1 doi: 10.1016/S0362-546X(99)00215-1
    [48] P. D. Christofides, A. Armaou, Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control, Syst. Control Lett., 39 (2000), 283–294. https://doi.org/10.1016/S0167-6911(99)00108-5 doi: 10.1016/S0167-6911(99)00108-5
    [49] H. A. Biagioni, J. L. Bona, R. J. j. Iorio, M. Scialom, On the Korteweg-de Vries-Kuramoto-Sivashinsky equation, Adv. Differ. Equ., 1 (1996), 1–20. https://doi.org/10.57262/ade/1366896312 doi: 10.57262/ade/1366896312
    [50] E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal., 17 (1986), 884–893. https://doi.org/10.1137/0517063 doi: 10.1137/0517063
    [51] G. M. Coclite, L. di Ruvo, $H^1$ solutions for a Kuramoto-Sinelshchikov-Cahn-Hilliard type equation, Ric. Mat., 72 (2023), 159–180. https://doi.org/10.1007/s11587-021-00623-y doi: 10.1007/s11587-021-00623-y
    [52] G. M. Coclite, L. Di Ruvo, On the initial-boundary value problem for a Kuramoto-Sinelshchikov type equation, Math. Eng., 3 (2021), 1–43. https://doi.org/10.3934/mine.2021036 doi: 10.3934/mine.2021036
    [53] J. Li, B. Y. Zhang, Z. Zhang, A nonhomogeneous boundary value problem for the Kuramoto-Sivashinsky equation in a quarter plane, Math. Methods Appl. Sci., 40 (2017), 5619–5641. https://doi.org/10.1002/mma.4413 doi: 10.1002/mma.4413
    [54] J. Li, B. Y. Zhang, Z. Zhang, A non-homogeneous boundary value problem for the Kuramoto-Sivashinsky equation posed in a finite interval, ESAIM. Control. Optim. Calc. Var., 26 (2020), 26. https://doi.org/10.1051/cocv/2019027 doi: 10.1051/cocv/2019027
    [55] G. M. Coclite, L. di Ruvo, Dispersive and diffusive limits for Ostrovsky-Hunter type equations, NoDEA, Nonlinear Differ. Equ. Appl., 22 (2015), 1733–1763.
    [56] P. G. LeFloch, R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal. Theory Methods Appl., 36 (1999), 213–230. https://doi.org/10.1016/S0362-546X(98)00012-1 doi: 10.1016/S0362-546X(98)00012-1
    [57] M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Commun. Partial Differ. Equ., 7 (1982), 959–1000.
    [58] T. Liu, H. Zhang, S. Wang, A new high-order compact CN-ADI scheme on graded meshes for three-dimensional nonlinear PIDEs with multiple weakly singular kernels, Appl. Math. Lett., 171 (2025), 109697. https://doi.org/10.1016/j.aml.2025.109697 doi: 10.1016/j.aml.2025.109697
    [59] X. Yang, W. Qiu, H. Chen, H. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math., 172 (2022), 497–513. https://doi.org/10.1016/j.apnum.2021.11.004 doi: 10.1016/j.apnum.2021.11.004
    [60] X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
    [61] X. Yang, H. Zhang, Q. Zhang, G. Yuan, Simple positivity-preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear Dyn., 108 (2022), 3859–3886. https://doi.org/10.1007/s11071-022-07399-2 doi: 10.1007/s11071-022-07399-2
    [62] X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
    [63] X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
    [64] G. M. Coclite, L. di Ruvo, Convergence of the Kuramoto-Sinelshchikov equation to the Burgers one, Acta Appl. Math., 145 (2016), 89–113. https://doi.org/10.1007/s10440-016-0049-2 doi: 10.1007/s10440-016-0049-2
    [65] A. Chatziafratis, T. Ozawa, S. F. Tian, Rigorous analysis of the unified transform method and long-range instabilities for the inhomogeneous time-dependent Schrödinger equation on the quarter-plane, Math. Ann., 389 (2024), 3535–3602. https://doi.org/10.1007/s00208-023-02698-4 doi: 10.1007/s00208-023-02698-4
    [66] J. E. Colliander, C. E. Kenig, The generalized Korteweg-de Vries equation on the half line, Commun. Partial Differ. Equ., 27 (2002), 2187–2266. https://doi.org/10.1081/PDE-120016157 doi: 10.1081/PDE-120016157
    [67] A. S. Fokas, A Unified Approach to Boundary Value Problems, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 78 (2008).
    [68] Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of $N$-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639
    [69] S. F. Tian, Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method, J. Differ. Equ., 262 (2017), 506–558. https://doi.org/10.1016/j.jde.2016.09.033 doi: 10.1016/j.jde.2016.09.033
    [70] M. E. Taylor, Partial Differential Equations. I: Basic Theory, 2nd edition, New York, NY: Springer, 115 (2011).
    [71] G. M. Coclite, L. di Ruvo, A note on the non-homogeneous initial boundary problem for an Ostrovsky-Hunter type equation, Discrete Contin. Dyn. Syst., Ser. S, 13 (2020), 3357–3389. https://doi.org/10.3934/dcdss.2020236 doi: 10.3934/dcdss.2020236
    [72] G. M. Coclite, L. di Ruvo, Well-posedness of the classical solution for the Kuramto-Sivashinsky equation with anisotropy effects, Z. Angew. Math. Phys., 72 (2021), 68. https://doi.org/10.1007/s00033-021-01506-w doi: 10.1007/s00033-021-01506-w
    [73] G. M. Coclite, L. di Ruvo, Well-posedness of the classical solutions for a Kawahara-Korteweg-de Vries-type equation, J. Evol. Equ., 21 (2021), 625–651. https://doi.org/10.1007/s00028-020-00594-x doi: 10.1007/s00028-020-00594-x
    [74] G. M. Coclite, L. di Ruvo, Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one, J. Differ. Equ., 256 (2014), 3245–3277. https://doi.org/10.1016/j.jde.2014.02.001 doi: 10.1016/j.jde.2014.02.001
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(145) PDF downloads(17) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog