In this work, we offer the novel class of $ ({p}, {q}) $-Hermite-Appell polynomials. Some attributes of this class are constructed, along with the generating function, series definition, $ ({p}, {q}) $-derivative properties, $ ({p}, {q}) $-integral representation, summation formulas, and determinate representation. Additionally, we consider a few components for the $ ({p}, {q}) $ -Hermite-Appell polynomials and infer certain elements of their traits. The generating function and series expansions of some classes of two-dimensional $ ({p}, {q}) $-Hermite-Appell polynomials are provided. Moreover, we acquire a $ ({p}, {q}) $-differential operator formula for $ ({p}, {q}) $-Hermite-Appell polynomials. Finally, the Wolfram Mathematica software is used to plot the graphical diagrams of select components of $ ({p}, {q}) $-Hermite-Appell, along with two-dimensional $ ({p}, {q}) $-Hermite-Appell polynomials.
Citation: Mohammed Fadel, Ugur Duran, Clemente Cesarano, William Ramírez. Determinant approach of the $ (p, q) $-Hermite-Appell polynomials and some of their components[J]. Networks and Heterogeneous Media, 2026, 21(1): 70-91. doi: 10.3934/nhm.2026004
In this work, we offer the novel class of $ ({p}, {q}) $-Hermite-Appell polynomials. Some attributes of this class are constructed, along with the generating function, series definition, $ ({p}, {q}) $-derivative properties, $ ({p}, {q}) $-integral representation, summation formulas, and determinate representation. Additionally, we consider a few components for the $ ({p}, {q}) $ -Hermite-Appell polynomials and infer certain elements of their traits. The generating function and series expansions of some classes of two-dimensional $ ({p}, {q}) $-Hermite-Appell polynomials are provided. Moreover, we acquire a $ ({p}, {q}) $-differential operator formula for $ ({p}, {q}) $-Hermite-Appell polynomials. Finally, the Wolfram Mathematica software is used to plot the graphical diagrams of select components of $ ({p}, {q}) $-Hermite-Appell, along with two-dimensional $ ({p}, {q}) $-Hermite-Appell polynomials.
| [1] |
A. Benahmadi, A. Ghanmi, Post-quantum complex Hermite polynomials, Bol. Soc. Mat. Mex., 30 (2024). https://doi.org/10.1007/s40590-023-00586-0 doi: 10.1007/s40590-023-00586-0
|
| [2] |
R. Chakrabarti, R. Jagannathan, A $(p, q)$-oscillator realization of two-parameter quantum algebras, J. Phys. A, 24 (1991), L711$-$L718. https://doi.org/10.1088/0305-4470/24/13/002 doi: 10.1088/0305-4470/24/13/002
|
| [3] | R. B. Corcino, On $(p, q)$-binomial coefficients, Electron. J. Combin. Number Theory, 8 (2008). |
| [4] |
U. Duran, M. Acikgoz, A. Esi, S. Araci, A note on the $ (p, q)$-Hermite polynomials, J. Appl. Math. Inf. Sci., 12 (2018), 227$-$231. https://doi.org/10.18576/amis/120122 doi: 10.18576/amis/120122
|
| [5] | U. Duran, M. Acikgoz, S. Araci, On higher order $(p, q)$-Frobenius-Euler polynomials, TWMS J. Pure Appl. Math., 8 (2017), 198$-$208. |
| [6] |
N. Raza, M. Fadel, W. S. Du, New summation and integral representations for 2-variable $(p, q)$-Hermite polynomials, Axioms, 13 (2024), 196. https://doi.org/10.3390/axioms13030196 doi: 10.3390/axioms13030196
|
| [7] |
P. N. Sadjang, On $(p, q)$-Appell polynomials, Anal. Math., 45 (2019), 583–598. https://doi.org/10.1007/s10476-019-0826-z doi: 10.1007/s10476-019-0826-z
|
| [8] |
G. Yasmin, A. Muhyi, On a family of $(p, q)$-hybrid polynomials, Kragujevac J. Math., 45 (2019), 409$-$426. https://doi.org/10.46793/kgjmat2103.409y doi: 10.46793/kgjmat2103.409y
|
| [9] |
N. Raza, M. Fadel, S. Khan, On monomiality property of $q$-Gould-Hopper-Appell polynomials, Arab. J. Basic Appl. Sci., 32 (2025), 21$-$29. https://doi.org/10.1080/25765299.2025.2457206 doi: 10.1080/25765299.2025.2457206
|
| [10] |
W. Ramírez, D. Bedoya, A. Urieles, C. Cesarano, M. Ortega, New U–Bernoulli, U–Euler and U–Genocchi polynomials and their matrices, Carpathian Math., 15 (2023), 449$-$467. https://doi.org/10.15330/cmp.15.2.449-467 doi: 10.15330/cmp.15.2.449-467
|
| [11] |
W. Ramírez, C. Kızılateş, D. Bedoya, C. Cesarano, C. S. Ryoo, On certain properties of three parametric kinds of Apostol–type unified Bernoulli–Euler polynomials, AIMS Math., 10 (2025), 137–158. https://doi.org/10.3934/math.2025008 doi: 10.3934/math.2025008
|
| [12] |
A. Urieles, M. Ortega, W. Ramírez, D. Bedoya, Fourier expansion and integral representation for generalized Apostol–type Frobenius–Euler polynomials, Adv. Differ. Equ., 534 (2020), 1$-$14. https://doi.org/10.1186/s13662-020-02988-0 doi: 10.1186/s13662-020-02988-0
|
| [13] |
N. Raza, M. Fadel, C. Cesarano, On 2-variable $q$-Legendre polynomials: The view point of the $q$-operational technique, Carpathian Math. Publ., 17 (2025), 14$-$26. https://doi.org/10.15330/cmp.17.1.14-26 doi: 10.15330/cmp.17.1.14-26
|
| [14] |
M. Fadel, N. Raza, A. Al-Gonah, U. Duran, Bivariate $q$-Laguerre-Appell polynomials and their applications, Appl. Math. Sci. Eng., 32 (2024). https://doi.org/10.1080/27690911.2024.2412545 doi: 10.1080/27690911.2024.2412545
|
| [15] |
I. M. Burban, A. U. Klimyk, $(p, q)$-Differentiation, $ (p, q)$-Integration, and $(p, q)$-Hypergeometric functions related to quantum groups, Integr. Transforms Spec. Funct. 2 (1994), 15$-$36. https://doi.org/10.1080/10652469408819035 doi: 10.1080/10652469408819035
|
| [16] |
F. A. Costabile, E. Longo, $\Delta h-$Appell sequences and related interpolation problem, Numer. Algorithms, 63 (2013), 165$-$186. https://doi.org/10.1007/s11075-012-9619-1 doi: 10.1007/s11075-012-9619-1
|
| [17] |
P. N. Sadjang, U. Duran, On two bivariate kinds of $(p, q)$-Bernoulli polynomials, Miskolc Math. Notes, 20 (2019), 1185$-$1199. https://doi.org/10.18514/mmn.2019.2587 doi: 10.18514/mmn.2019.2587
|
| [18] |
F. A. Costabile, E. Longo, A determinantal approach to Appell polynomials, J. Comput. Appl. Math., 234 (2010), 1528$-$1542. https://doi.org/10.1016/j.cam.2010.02.033 doi: 10.1016/j.cam.2010.02.033
|
| [19] |
F. A. Costabile, E. Longo, An algebraic approach to Sheffer polynomial sequences, Integr. Transforms Spec. Funct., 25 (2014), 295$-$311. https://doi.org/10.1080/10652469.2013.842234 doi: 10.1080/10652469.2013.842234
|
| [20] | M. E. Keleshteri, N. I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comput., 260 (2015), 351−369. https://doi.org/10.1016/j.amc.2015.03.017 |