Research article

Exploring fractional dynamics in the fractional-in-time Gierer-Meinhardt reaction-diffusion model with periodic boundary condition

  • Published: 16 January 2026
  • This paper presents a new numerical method for simulating the dynamic behavior of the fractional-in-time Gierer-Meinhardt reaction-diffusion model with periodic boundary conditions. A recursive algorithm for binomial coefficients is introduced, avoiding numerical instabilities associated with Gamma functions. High-precision polynomial expansions and the short-memory principle are employed to enhance efficiency and accuracy. Numerical simulations reveal diverse pattern formation.

    Citation: Xinzhi Wang, Wei Zhang. Exploring fractional dynamics in the fractional-in-time Gierer-Meinhardt reaction-diffusion model with periodic boundary condition[J]. Networks and Heterogeneous Media, 2026, 21(1): 55-69. doi: 10.3934/nhm.2026003

    Related Papers:

  • This paper presents a new numerical method for simulating the dynamic behavior of the fractional-in-time Gierer-Meinhardt reaction-diffusion model with periodic boundary conditions. A recursive algorithm for binomial coefficients is introduced, avoiding numerical instabilities associated with Gamma functions. High-precision polynomial expansions and the short-memory principle are employed to enhance efficiency and accuracy. Numerical simulations reveal diverse pattern formation.



    加载中


    [1] K. B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press: New York, NY, USA, 1974. https://doi.org/10.1016/s0076-5392(09)x6012-1
    [2] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons: New York, NY, USA, 1993.
    [3] I. Podlubny, Fractional Differential Equations, Academic Press: San Diego, CA, USA, 1999. https://doi.org/10.1016/s0076-5392(99)x8001-5
    [4] I. Petráš, Fractional-Order Nonlinear Systems, Modeling, Analysis and Simulation, Springer: Heidelberg, Germany, 2011. https://doi.org/10.1007/978-3-642-18101-6
    [5] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [6] C. P. Li, F. H. Zeng, Numerical Methods for Fractional Calculus, CRC Press, Boca Raton, 2015. https://doi.org/10.1201/b18503
    [7] C. P. Li, M. Cai, Theory and Numerical Approximations of Fractional Integrals and Derivatives, Society for Industrial and Applied Mathematics, Philadelphia, 2020. https://doi.org/10.1137/1.9781611975888
    [8] M. B. Almatrafi, Abundant traveling wave and numerical solutions for Novikov-Veselov system with their stability and accuracy, Appl. Anal., 102 (2023), 2389–2402. https://doi.org/10.1080/00036811.2022.2027381 doi: 10.1080/00036811.2022.2027381
    [9] H. L. Zhang, Z. Y. Li, X. Y Li. Numerical simulation of pattern and chaos dynamic behaviour in the fractional-order-in-time Lengyel-Epstein reaction-diffusion system, Int. J. Comput. Math., https://doi.org/10.1080/00207160.2025.2612196
    [10] X. H. Wang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of the fractional Hastings–Powell model with the Grünwald–Letnikov differential derivative, Int. J. Bifurcat. Chaos, 35 (2025), 1250145. https://doi.org/10.1142/S0218127425501457 doi: 10.1142/S0218127425501457
    [11] X. L. Gao, Z. Y. Li, Y. L. Wang, Chaotic dynamic behavior of a fractional-order financial system with constant inelastic demand, Int. J. Bifurcat. Chaos, 34 (2024), 2450111. https://doi.org/10.1142/S0218127424501116 doi: 10.1142/S0218127424501116
    [12] H. Che, Y. L. Wang, Z. Y. Li, Novel patterns in a class of fractional reaction-diffusion models with the Riesz fractional derivative, Math. Comput. Simul., 202 (2022), 149–163. https://doi.org/10.1016/j.matcom.2022.05.037 doi: 10.1016/j.matcom.2022.05.037
    [13] C. Han, Y. L. Wang, Z. Y. Li, A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125 (2022), 107759. https://doi.org/10.1016/j.aml.2021.107759 doi: 10.1016/j.aml.2021.107759
    [14] C. Han, Y. L. Wang, Z. Y. Li, Numerical solutions of space fractional variable-coefficient KdV-modified KdV equation by Fourier spectral method, Fractals, 29 (2021), 2150246. https://doi.org/10.1142/S0218348X21502467 doi: 10.1142/S0218348X21502467
    [15] L. Zhu, T. Zheng, Pattern dynamics analysis and application of West Nile virus spatiotemporal models based on higher-order network topology, Bull. Math. Biol., 87 (2025), 121. https://doi.org/10.1007/s11538-025-01501-6 doi: 10.1007/s11538-025-01501-6
    [16] L. Zhu, Y. Ding, S. Shen, Green behavior propagation analysis based on statistical theory and intelligent algorithm in data-driven environment, Math. Biosci., 379 (2025), 109340. https://doi.org/10.1016/j.mbs.2024.109340 doi: 10.1016/j.mbs.2024.109340
    [17] T. Yang, L. Zhu, S. Shen, L. He, Pattern dynamics analysis and parameter identification of spatiotemporal infectious disease models on complex networks, Math. Biosci., 387 (2025), 109502. https://doi.org/10.1016/j.mbs.2025.109502 doi: 10.1016/j.mbs.2025.109502
    [18] H. L. Zhang, Y. L. Wang, J. X. Bi, S. H. Bao, Novel pattern dynamics in a vegetation-water reaction-diffusion model, Math. Comput. Simul., 241 (2026), 97–116. https://doi.org/10.1016/j.matcom.2025.09.020 doi: 10.1016/j.matcom.2025.09.020
    [19] H. Sha, L. Zhu, Dynamic analysis of pattern and optimal control research of rumor propagation model on different networks, Inf. Process. Manage., 62 (2025), 104016. https://doi.org/10.1016/j.ipm.2024.104016 doi: 10.1016/j.ipm.2024.104016
    [20] J. Shi, L. Zhu, Turing pattern theory on homogeneous and heterogeneous higher-order temporal network system, J. Math. Phys., 66 (2025), 042706. https://doi.org/10.1063/5.0211728 doi: 10.1063/5.0211728
    [21] X. L. Gao, H. L. Zhang, Y. L. Wang, Z. Y. Li, Research on pattern dynamics behavior of a fractional vegetation-water model in arid flat environment, Fractal Fract., 8 (2024), 264. https://doi.org/10.3390/fractalfract8050264 doi: 10.3390/fractalfract8050264
    [22] B. Li, L. Zhu, Turing instability analysis of a reaction–diffusion system for rumor propagation in continuous space and complex networks, Inf. Process. Manage., 61 (2024), 103621. https://doi.org/10.1016/j.ipm.2023.103621 doi: 10.1016/j.ipm.2023.103621
    [23] J. Y. Yang, Y. L. Wang, Z. Y. Li, Exploring dynamics and pattern formation of a fractional-order three-variable Oregonator model, Netw. Heterog. Media, 20 (2025), 1201–1229. https://doi.org/10.3934/nhm.2025052 doi: 10.3934/nhm.2025052
    [24] J. Ning, Y. L. Wang, Fourier spectral method for solving fractional-in-space variable coefficient KdV-Burgers equation, Indian J. Phys., 98 (2024), 1727–1744. https://doi.org/10.1007/s12648-023-02934-2 doi: 10.1007/s12648-023-02934-2
    [25] X. L. Gao, H. L. Zhang, X. Y. Li, Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture, AIMS Math., 9 (2024), 18506–18527. https://doi.org/10.3934/math.2024901 doi: 10.3934/math.2024901
    [26] S. Zhang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of a fractional phytoplankton-zooplankton ecological model, Netw. Heterog. Media, 20 (2025), 648–669. https://doi.org/10.3934/nhm.2025028 doi: 10.3934/nhm.2025028
    [27] M. McCourt, N. Dovidio, M. Gilbert, Spectral methods for resolving spike dynamics in the Geirer-Meinhardt model, Commun. Comput. Phys., 3 (2008), 659–678.
    [28] G. Q. Sun, C. H. Wang, Z. Y. Wu, Pattern dynamics of a Gierer-Meinhardt model with spatial effects, Nonlinear Dyn., 88 (2017), 1385–1396. https://doi.org/10.1007/s11071-016-3317-9 doi: 10.1007/s11071-016-3317-9
    [29] G. Karali, T. Suzuki, Y. Yamada, Global-in-time behavior of the solution to a Gierer-Meinhardt system, Discrete Contin. Dyn. Syst., 33 (2013), 2885–2900. https://doi.org/10.3934/dcds.2013.33.2885 doi: 10.3934/dcds.2013.33.2885
    [30] S. Chen, Y. Salmaniw, R. Xu, Global existence for a singular Gierer-Meinhardt system, J. Differ. Equations, 262 (2017), 2940–2960. https://doi.org/10.1016/j.jde.2016.11.022 doi: 10.1016/j.jde.2016.11.022
    [31] J. Wang, Y. Li, X. Hou, Supercritical Hopf bifurcation and Turing patterns for an activator and inhibitor model with different sources, Adv. Differ. Equ., 2018 (2018), 241. https://doi.org/10.1186/s13662-018-1697-5 doi: 10.1186/s13662-018-1697-5
    [32] Y. Song, R. Yang, G. Sun, Pattern dynamics in a Gierer-Meinhardt model with a saturating term, Appl. Math. Model., 46 (2017), 476–491. https://doi.org/10.1016/j.apm.2017.01.081 doi: 10.1016/j.apm.2017.01.081
    [33] L. Guo, X. Shi, J. Cao, Turing patterns of Gierer-Meinhardt model on complex networks, Nonlinear Dyn., 105 (2021), 899–909. https://doi.org/10.1007/s11071-021-06618-6 doi: 10.1007/s11071-021-06618-6
    [34] X. P. Yan, Y. J. Ding, C. H. Zhang, Dynamics analysis in a Gierer-Meinhardt reaction-diffusion model with homogeneous Neumann boundary condition, Int. J. Bifurcat. Chaos, 29 (2019), 1930025. https://doi.org/10.1142/S0218127419300258 doi: 10.1142/S0218127419300258
    [35] Z. Qiao, Numerical investigations of the dynamical behaviors and instabilities for the Gierer-Meinhardt system, Commun. Comput. Phys., 3 (2008), 406–426.
    [36] Y. S. Choi, P. J. McKenna, A singular Gierer-Meinhardt system of elliptic equations: The classical case, Nonlinear Anal., 55 (2003), 521–541. https://doi.org/10.1016/j.na.2003.07.003 doi: 10.1016/j.na.2003.07.003
    [37] R. Yang, X. Q. Yu, Turing-Hopf bifurcation in diffusive Gierer-Meinhardt model, Int. J. Bifurcat. Chaos, 32 (2022), 2250046. https://doi.org/10.1142/S0218127422500468 doi: 10.1142/S0218127422500468
    [38] D. Y. Xue, L. Bai, Numerical algorithms for Caputo fractional-order differential equations, Int. J. Control, 90 (2016), 1201–1211. https://doi.org/10.1080/00207179.2016.1158419 doi: 10.1080/00207179.2016.1158419
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(184) PDF downloads(15) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog