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Abstract: This paper presents a new numerical method for simulating the dynamic behavior of the
fractional-in-time Gierer-Meinhardt reaction-diffusion model with periodic boundary conditions. A
recursive algorithm for binomial coefficients is introduced, avoiding numerical instabilities associated
with Gamma functions. High-precision polynomial expansions and the short-memory principle are
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1. Introduction

Fractional calculus, as a generalization of classical integer-order calculus, has gained considerable
attention in recent decades due to its ability to model memory-dependent and non-local phenomena in
various scientific and engineering fields. Foundational works by Oldham and Spanier [1], Miller and
Ross [2], Podlubny [3], and Petráš [4] have laid the theoretical groundwork for fractional derivatives
and integrals.

In recent years, the development of high-precision numerical methods for fractional differential equations
has become a focal point in computational mathematics, driven by the need to accurately simulate systems
with memory effects and non-local interactions. Various numerical approaches have been proposed,
including finite difference, spectral methods, and optimization-based algorithms. For instance, Diethelm [5],
and Li [6, 7] developed stable and efficient numerical schemes for fractional-order systems. Almatrafi
developed efficient numerical schemes for solving fractional nonlinear wave equations, demonstrating
superior accuracy and stability in long-time simulations [8, 9]. Wang et al. introduced a high-precision
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Grünwald–Letnikov-based method for fractional dynamical systems such as the Hastings–Powell
model, and conducted comprehensive numerical stability and convergence analyses [10]. In the context
of financial systems, Gao et al. extended integer-order models to fractional settings and proposed a
high-order numerical scheme to capture chaotic dynamics more effectively [11]. Che et al. applied
Fourier spectral methods coupled with Runge–Kutta time integration to solve fractional
reaction-diffusion models such as Gray–Scott and FitzHugh–Nagumo systems [12–14]. Zhu et al.
combined network Laplacian operators with reaction-diffusion frameworks to model virus spread and
green behavior propagation, employing multi-scale analysis and amplitude equations to predict pattern
selection [15, 16]. Yang et al. incorporated optimal control theory into parameter identification for
infectious disease models on complex networks [17]. Zhang et al. proposed a four-variable
reaction-diffusion model and used a high-precision Fourier spectral method to simulate novel pattern
morphologies [18]. Sha and Zhu further extended these methods to rumor propagation models, comparing
different optimization algorithms for parameter convergence on various network topologies [19]. Shi and
Zhu developed a theoretical and numerical framework for Turing patterns on higher-order temporal
networks, revealing how oscillatory interactions influence pattern diversity [20]. Gao et al. numerically
investigated a fractional vegetation-water model in arid environments, identifying fractal patterns and
analyzing the impact of fractional order on pattern stability [21]. Li and Zhu analyzed Turing instability
in rumor propagation systems with time delays, using linear stability analysis and numerical
simulations to validate theoretical conditions [22]. Wang et al. also derived amplitude equations for a
fractional Oregonator model and conducted extensive two-dimensional numerical experiments to
confirm pattern predictions [23], and so on [24–26].

The classical Gierer-Meinhardt model (GMM) represented an activator-inhibitor system where one
substance (the activator) promoted its own production along with the production of an inhibitor, which
subsequently suppressed the activator.

The main numerical simulation methods for the Gierer-Meinhardt model include the finite difference
method, the finite element method, the meshless method, and the spectral method. In [27], researchers
employed a spectral collocation method to analyze the GMM, providing comparative analysis of when
spectral methods were preferable to moving mesh methods. Their study encompassed both one- and
two-dimensional systems, with results validated against a moving finite element method. Subsequent
work [28] examined dynamical behaviors in an activator-inhibitor model with varied sources, where
linear stability analysis yielded conditions for Turing bifurcation and derived amplitude equations. This
research demonstrated various pattern formations supported by numerical simulations.The biological
pattern formation aspects of GMM received particular attention in [29], where investigators focused on
long-term solution behavior. They established that under specific conditions, solutions existed globally
in time and eventually converged to periodic-in-time solutions, causing spatial patterns to disappear.
Mathematical challenges in singular GMM with zero Dirichlet boundary conditions were addressed in [30]
through innovative application of functional methods and Sobolev embedding theorems to prove existence
of positive solutions. Further pattern generation mechanisms were explored in [31] for a generalized GMM
with diffusion, where researchers established existence and stability conditions for Hopf bifurcation and
derived Turing instability criteria, revealing both stripe and spot patterns through numerical simulations.
The modified GMM with saturation term was investigated in [32], identifying parameter regions for Turing
instability and deriving predictive amplitude equations, complemented by Fourier transform analysis
of emerging patterns. Network effects on pattern formation were examined in [33], which analyzed
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how system parameters, network topology, and average degree influenced Turing patterns in GMM on
complex networks, proposing an exponential decay model for pattern prediction. Boundary condition
effects were systematically studied in [34] through analysis of homogeneous Neumann conditions,
combining eigenvalue analysis with numerical validation of stability and bifurcation results. Numerical
approaches received particular attention, in [35], where an efficient moving mesh finite element method
was employed to investigate spike pattern dynamics and instabilities. Existence proofs for generalized
GMM solutions, particularly addressing singular nonlinearities near boundaries, were established in [36].
Time-delayed systems were analyzed in [37], deriving comprehensive conditions for various bifurcations
and validating results through normal form analysis and numerical simulations.

Motivated by these advancements in numerical methods for fractional reaction-diffusion systems, in
this paper, we propose a new high-precision numerical scheme for solving the time-fractional generalized
Michaelis–Menten (GMM) system:Dαt u = d1∇

2u + ρ
u2

v
− au + b,

Dαt v = d2∇
2v + γ(cu2 − v),

(1.1)

where a, b, c, γ, ρ, d1, and d2 are all positive real numbers. Dαt u, andDαt v denote the Grünwald-Letnikov
fractional derivative.

This paper makes the following main contributions:

• The first high-precision numerical scheme for the fractional-in-time Gierer–Meinhardt model with
periodic boundaries.
• A new recursive binomial algorithm avoiding Gamma-function overflow, combined with a high-

order polynomial expansion.
• Integration of the short-memory principle for efficient long-time pattern simulations, enabling the

discovery of novel fractional-order-dependent patterns.

This paper is organized as follows. Section 2 introduces the numerical method and its implementation.
Section 3 provides simulation results and pattern discussion. Finally, Section 4 concludes the paper.

2. Description of numerical method

Definition 2.1. The α-th Grünwald-Letnikov fractional derivative for a function f (t) is given by

Dαt f (t) = lim
h→0

1
τα

⌊ t−t0
τ

⌋∑
j=0

(−1) j

(
α

j

)
f (t − jh), t ∈ [t0, t]. (2.1)

where [·] denotes the nearest integer function. (−1) j
(
α
j

)
is the binomial coefficient, and

c j = (−1) j

(
α

j

)
= (−1) j Γ(α + 1)

Γ( j + 1)Γ(α − j + 1)
. (2.2)

The numerical calculation of the α-th Grünwald–Letnikov fractional derivative can be directly
computed by the following formula:

Dαt f (t) ≈
1
τα

⌊ t−t0
τ

⌋∑
j=0

c j f (t − jh). (2.3)
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For the numerical computation of the α-th Grünwald–Letnikov fractional derivative in Eq (2.3),
direct implementation of the definition involves calculating Gamma function values for large numbers.
However, terms including Γ(172) and subsequent values become infinite (Inf) under MATLAB’s double-
precision arithmetic. This leads to unavoidable computational errors when using the Gamma function
to compute binomial coefficients. To address this issue, a more reliable approach for computing GL
fractional derivatives is required. Specifically, we employ the following recursive algorithm to calculate
binomial coefficients while avoiding the use of Gamma functions.

c0 = 1, c j =

(
1 −
α + 1

j

)
c j−1, j = 1, 2, · · · (2.4)

Thus, by recursively computing the binomial coefficients w j using Eq (2.4), we can directly evaluate
the fractional derivative of a given function via Eq (2.3). Since the recursive algorithm successfully
avoids explicit computation of Gamma functions, it resolves the numerical issues inherent in the direct
implementation of the definition. Moreover, it can be shown that this algorithm achieves an accuracy
of o(h).

To improve computational precision, one may replace the binomial expansion in the recursive
formula for the Grünwald-Letnikov fractional derivative with a polynomial expansion. We explore the
construction methods for such generating functions.

Definition 2.2. A p-order polynomial generating function of first-order derivative is defined as:

gp(z) =
p∑

k=1

1
k

(1 − z)k. (2.5)

Here, p is a positive integer.

For p-order generating functions, the following theorem holds:

Theorem 2.3. The p-order generating function gp(z) can be expressed as a polynomial:

gp(z) =
p∑

k=0

akzk, (2.6)

where the coefficients gk can be computed directly from the following matrix equation:

a0 + a1 + a2 + · · · + ap = 0,
a0 + 2a1 + 3a2 + · · · + (p + 1)ap = −1,
a0 + 22a1 + 32a2 + · · · + (p + 1)2ap = −2,
...

a0 + 2pa1 + 3pa2 + · · · + (p + 1)pap = −p.

(2.7)

Proof. From formulas (2.5) and (2.6), we have

p∑
k=0

akzk =

p∑
k=1

1
k

(1 − z)k. (2.8)
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Substituting z = 1 into formula (2.8), we have
p∑

k=0

ak = 0. (2.9)

Multiplying both sides of formula (2.8) by z and then taking the first derivative with respect to z,
we have

p∑
k=0

(k + 1)akzk =

p∑
k=1

1
k

(1 − z)k − z
p∑

k=1

(1 − z)k−1. (2.10)

Substituting z = 1 into formula (2.10), we have
p∑

k=0

(k + 1)ak = −1.

Multiplying both sides of formula (2.10) by z and taking the first derivative with respect to z again ,
we have

p∑
k=0

(k + 1)2akzk =

p∑
k=1

1
k

(1 − z)k − 3z
p∑

k=1

(1 − z)k−1 + z2
p∑

k=2

1
k − 1

(1 − z)k−2. (2.11)

Substituting z = 1 into formula (2.11) leads to
p∑

k=0

(k + 1)2ak = −2.

Repeating this process, we can establish the Eq (2.7).

Definition 2.4. The p-order generating function with fractional derivative α is defined as:

gαp(z) = (a0 + a1z + · · · + apzp)α.

Theorem 2.5. Taylor series expansion of the p-order generating function gαp(z) with the fractional
derivative α can be written as

gαp(z) =
∞∑

k=0

cαk zk,

where,
c0 = g0,

cm = −
1
g0

m−1∑
i=1

gi

(
1 − i

1 + α
m

)
cm−i, for m = 1, 2, · · · , p − 1,

ck = −
1
g0

p∑
i=1

gi

(
1 − i

1 + α
k

)
ck−i, for k = p, p + 1, p + 2, · · · .

(2.12)

If the binomial coefficients here are replaced by high-precision polynomials of order o(hp), we can
define a high-precision algorithm. The high-precision numerical calculation of the Grünwald–Letnikov
fractional derivative can be directly computed by the following formula:

t0D
α
t f (t) ≈

1
τα

⌊ t−t0
τ

⌋∑
j=0

c j f (t − jh). (2.13)
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where c j is shown in formula (2.12).
Next, we present the numerical method for solving the fractional partial differential Eq (1.1).
The uniform spatial grid is:

xi = ih, i = 0, . . . ,N − 1,
y j = jh, j = 0, . . . ,N − 1,
tk = kτt, k = 0, . . . ,M.

where u(xi, y j, tk) ≈ uk
i, j, v(xi, y j, tk) ≈ vk

i, j.
The initial conditions are discretized as:

u0
i, j = v0

i, j =

 0.5 + 0.1ξi, j for 80 ≤ i, j ≤ N − 80.
0.1ξi, j otherwise,

ξi, j ∼ U[−0.5, 0.5].

The periodic boundary conditions are implemented as:

u0, j = uN, j, uN+1, j = u1, j, ui,0 = ui,N , ui,N+1 = ui,1,

v0, j = vN, j, vN+1, j = v1, j, vi,0 = vi,N , vi,N+1 = vi,1,

with special handling for the corners.

u0,0 = uN,N , u0,N = uN,0, uN,0 = u0,N , uN,N = u0,0,

v0,0 = vN,N , v0,N = vN,0, vN,0 = v0,N , vN,N = v0,0.

For boundary points, the Laplacian is computed with periodic conditions.

∆huk
1, j = uk

2, j + uk
N, j + uk

1, j+1 + uk
1, j−1 − 4uk

1, j, ∆huk
N, j = uk

1, j + uk
N−1, j + uk

N, j+1 + uk
N, j−1 − 4uk

N, j,

∆huk
i,1 = uk

i+1,1 + uk
i−1,1 + uk

i,2 + uk
i,N − 4uk

i,1, ∆huk
i,N = uk

i+1,N + uk
i−1,N + uk

i,1 + uk
i,N−1 − 4uk

i,N ,

and similarly for v.
At the interior points (i, j) ∈ [2,N − 1] × [2,N − 1], the calculation formula is

∆huk
i, j = uk

i+1, j + uk
i−1, j + uk

i, j+1 + uk
i, j−1 − 4uk

i, j,

∆hvk
i, j = vk

i+1, j + vk
i−1, j + vk

i, j+1 + vk
i, j−1 − 4vk

i, j.

Using Eq 2.13, a high-precision computational format of Eq 1.1 is given by
uk+1

i, j −
∑k

m=0 cmuk−m
i, j

τα
= d1∆huk

i, j + NL1(uk
i, j, v

k
i, j),

vk+1
i, j −

∑k
m=0 cmvk−m

i, j

τα
= d2∆hvk

i, j + NL2(vk
i, j, u

k
i, j),

(2.14)

where NL1(u, v) = ρ
u2

v
− au + b,NL2(u, v) = γ(cu2 − v).

In general cases, if the computation step size h is chosen too small or the value [t/h] becomes
too large, the number of points involved in the summation in Eq (2.13) can become extremely large,
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potentially leading to significantly increased computational load. When the computation becomes
infeasible, we should consider reducing the number of computation points. In practical applications,
computing fractional derivatives does not necessarily require using all historical information from [t/h];
using only recent information from the time interval [t − L, t] can reduce the computational load [28]:

t0D
α
t f (t) ≈t−L D

α
t f (t).

This method is called the short-memory effect [3, 38]. Using this approach, the Grünwald–Letnikov
fractional derivative can be approximated as:

y(t) ≈
1
hα

N(t)∑
j=0

c j f (t − jh),

where N(t) = min
{⌊

t
τ

⌋
, L

h

}
. L is called the memory length. To improve computational efficiency for

large-scale simulations, we can leverage the short-memory principle: Using Eq (2.13), a high precision
computational format with the short-memory principle of Eq (1.1) is:

 uk+1
i, j = τ

α
(
d1∆huk

i, j + NL1(uk
i, j, v

k
i, j)

)
+Memo(u, c, k),

vk+1
i, j = τ

α
(
d2∆hvk

i, j + NL2(vk
i, j, u

k
i, j)

)
+Memo(v, c, k),

(2.15)

where NL1(u, v) = ρ
u2

v
− au + b, and NL2(u, v) = γ(cu2 − v). ck is shown in Eq (2.12). The memory

term is Memo(u, c, k) =
∑N(t)

m=0 cmuk−m
i, j , and similarly for v.

3. Numerical simulation

The solution obtained by ode45 is taken as the fundamental solution. The effectiveness of the
present method can be seen from Figure 1. Using the present method, we discover some novel dynamic
behaviors, which are shown in Figures 1–6. For α = 1, the time derivative can be calculated using the
Euler format. The method can be extended and applied to 3D space. 3D patterns are shown in Figure 5.

Figure 1 compares the absolute errors of different numerical methods (the GL method, closed-
form solution, the proposed method, and predictor-corrector methods) under specific parameters:
d1 = 0, d2 = 0, ρ = 0.5, a = 0.15, b = 0.1, γ = 0.2, c = 0.3, τ = 0.0001, and α = 1. This figure validates
the accuracy and superiority of the proposed high-precision numerical scheme in the integer-order case
(α = 1).

Figure 2 compares dynamic behaviors under different fractional derivative orders (α, α) with initial
condition x0 = [3, 5] and parameters τ = 0.1, t = 300, d1 = d2 = 0, γ = 0.3, and c = 0.8. This figure
reveals the significant influence of the fractional derivative order on the system’s dynamics, indicating
that α is a key parameter controlling pattern selection.
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Figure 1. Comparing the absolute error for the GL method, closed-form solution, present
method, and the predictive-corrective methods at d1 = 0, d2 = 0, rho = 0.5, a = 0.15, b =
0.1, γ = 0.2, c = 0.3, τ = 0.0001, α = 1.

Stability at ρ = 1.0, a = 0.5, b = 1.0, α =
1.2

Stability at ρ = 0.8, a = 0.15, b = 0.4, α =
1.3

Time series at ρ = 1.0, a = 0.5, b = 1.0 Time series at ρ = 0.8, a = 0.15, b = 0.4

Phase diagram at ρ = 1.0, a = 0.5, b = 1.0 Phase diagram at ρ = 0.8, a = 0.15, b =
0.4

Figure 2. Comparison of dynamic behavior at different fractional derivative (α, α), x0 =

[3, 5], τ = 0.1, t = 300, d1 = d2 = 0, γ = 0.3, and c = 0.8.
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u at α = 0.998 u at α = 0.999 u at α = 1

Figure 3. Pattern dynamic behavior at d1 = 0.0011, d2 = 0.029, τ = 0.09, h = 0.8,M =
40, 000,M = 80, ρ = 0.5, a = 0.15, b = 0.1, γ = 0.2, and c = 0.3.

u at b = 0.02 u at b = 0.04 u at b = 0.08 u at b = 0.12

v at b = 0.02 v at b = 0.04 v at b = 0.08 v at b = 0.12

Figure 4. Pattern dynamic behavior at d1 = 0.0011, d2 = 0.029, τ = 0.09, h = 0.8,M =
80, 000,N = 80, ρ = 0.5, a = 0.15, γ = 0.2, and c = 0.3, α = 1.

u at b = 0.1, h = 0.5, α = 0.999 v at b = 0.1, h = 0.5, α = 0.999

u at b = 0.04, h = 0.8, α = 0.998 v at b = 0.04, h = 0.8, α = 0.998

Figure 5. Pattern dynamic behavior at d1 = 0.0011, d2 = 0.029, α = 2.5, τ = 0.09,M =
80, 000,N = 80, ρ = 0.5, a = 0.15, γ = 0.2, and c = 0.3.
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u at d1 = 0.2, d2 = 2.3, α = 1 v at d1 = 0.2, d2 = 2.3, α = 1

u at d1 = 0.1, d2 = 2.5, α = 1 v at d1 = 0.1, d2 = 2.5, α = 1

u at d1 = 0.05, d2 = 0.5, α = 0.999 v at d1 = 0.05, d2 = 0.5, α = 0.999

u at d1 = 0.0011, d2 = 0.029, α = 1 v at d1 = 0.0011, d2 = 0.029, α = 1

u at d1 = 0.0011, d2 = 0.029, α = 1.001 v at d1 = 0.0011, d2 = 0.029, α = 1.001

Figure 6. Pattern dynamic behavior at d1 = 0.2, d2 = 2.3, τ = 0.1, h = 1,M = 20, 000,N =
200, ρ = 1.0, a = 0.1, b = 0.5, γ = 0.2, and c = 0.3.
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Figure 3 shows pattern dynamic behavior for α = 0.998, 0.999, and 1 at the parameters d1 =

0.0011, d2 = 0.029, τ = 0.09, h = 0.8,M = 40, 000,N = 80, ρ = 0.5, a = 0.15, b = 0.1, γ = 0.2, and
c = 0.3. The figure displays spatial distributions of the u component for different α values, showing that
as α approaches 1, the pattern structure gradually becomes more stable and regular.

Figure 4 Explores pattern dynamic behavior for different values of b (0.02, 0.04, 0.08, 0.12) with
other parameters d1 = 0.0011, d2 = 0.029, τ = 0.09, h = 0.8,M = 80, 000,N = 80, ρ = 0.5, a =
0.15, γ = 0.2, c = 0.3, and α = 1. The figure presents pattern evolution of both u and v components as b
varies, indicating that the parameter b modulates pattern morphology.

Figure 5 displays pattern dynamic behavior for different combinations of b and h with α = 0.999
and α = 0.998, at parameters d1 = 0.0011, d2 = 0.029, τ = 0.09,M = 80, 000,N = 80, ρ = 0.5, a =
0.15, γ = 0.2, and c = 0.3. This figure further validates the coupled influence of fractional derivative
order and spatial step size on pattern formation.

Figure 6 shows the pattern structure of the v component under parameters d1 = 0.2, d2 = 2.3, and
α = 1, illustrating pattern characteristics when diffusion coefficients are relatively large, potentially
related to spot or stripe Turing patterns.

4. Discussion and conclusions

This paper presents a high-precision numerical method for the fractional Gierer-Meinhardt model,
successfully applied to systems with periodic boundary conditions. By introducing a recursive algorithm
for binomial coefficients and employing high-order polynomial expansions, the method effectively
avoids numerical instabilities associated with Gamma functions. Combined with the short-memory
principle, the approach significantly improves computational efficiency for long-time simulations while
maintaining accuracy.

Numerical simulation results (Figures 1–6) systematically demonstrate the regulatory effects of the
fractional derivative α, system parameters (such as b, d1, d2), and spatial step size h on pattern formation.
In particular, Figures 2 and 3 show that as α approaches 1, the system’s dynamic behavior gradually
converges to that of the classical integer-order model, while still retaining the memory and non-local
effects characteristic of fractional-order systems. Figure 4 further reveals the role of the parameter b in
balancing the activator-inhibitor dynamics, where its variation can induce various Turing patterns, from
spot-like to stripe-like structures.

It is noteworthy that the proposed method demonstrates comparable accuracy to traditional methods
in the integer-order case (Figure 1), while stably capturing complex spatiotemporal patterns in fractional-
order cases (Figures 3 and 5). These results validate the robustness and applicability of the proposed
numerical framework.

However, although the short-memory principle significantly enhances computational efficiency, its
theoretical error bounds in strongly memory-dependent systems require further investigation. Future
work could explore adaptive memory length selection strategies, extensions to non-uniform boundary
conditions, and the method’s potential applications in three-dimensional or higher-dimensional systems.

In summary, this study provides a reliable and efficient tool for the numerical simulation of fractional
reaction-diffusion systems. It reveals the profound influence of the fractional derivative on pattern
selection mechanisms within the Gierer-Meinhardt model, offering new computational insights for
understanding complex processes such as biological morphogenesis and ecological pattern formation.
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